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ABSTRACT: Mitochondria are classically known to be cellular energy producers. Given the high‐energy 

demanding nature of neurons in the brain, it is essential that the mitochondrial pool remains healthy and 

provides a continuous and efficient supply of energy. However, mitochondrial dysfunction is inevitable in aging 

and neurodegenerative diseases. In Alzheimer’s disease (AD), neurons experience unbalanced homeostasis like 

damaged mitochondrial biogenesis and defective mitophagy, with the latter promoting the disease-defining 

amyloid β (Aβ) and p-Tau pathologies impaired mitophagy contributes to inflammation and the aggregation of 

Aβ and p-Tau-containing neurotoxic proteins. Interventions that restore defective mitophagy may, therefore, 

alleviate AD symptoms, pointing out the possibility of a novel therapy. This review aims to illustrate 

mitochondrial biology with a focus on mitophagy and propose strategies to treat AD while maintaining 

mitochondrial homeostasis. 
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1. Introduction 

 

Alzheimer’s disease (AD) is the most frequent cause of 

dementia, affecting around 50 million individuals in 2018. 

By 2050, it will rise to 152 million [1]. AD prevalence is 

low among persons younger than 65 years, but increases 

to 10% to 30% among persons older than 85 [2-4]. 

Neuropathologically, the disease-defining histo-

pathological abnormalities, including extracellular 

deposits of amyloid-β (Aβ) peptide and intraneuronal 

accumulation of hyperphosphorylated tau (p-Tau), spread 

through the brain in a nonrandom manner with early 

pathology occurring in the entorhinal cortex and 

hippocampus [5-8]. Efforts made in AD research during 

the last several decades have provided essential insights 

into the pathogenesis of AD, but the molecular 

mechanisms are not fully understanding recovered. 

Numerous standard and rare susceptibility AD-associated 

genes had found. Which can confer small etiologic 

origination [9-12]? Although AD was first discovered in 
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the late 19th century[13], an effective treatment has yet to 

develop. Moreover, there has not, however, been a 

pharmacological method created to fundamentally cure 

AD, with mounting Anti-AD drugs ‘dying’ in phase III 

clinical trials [14]. 

Excluding the aggregate of Aβ peptides 

extracellularly and microtubule-associated p-Tau 

intracellularly [15, 16], the AD research community 

increasingly believes that the accumulative damaged 

mitochondrial biogenesis in the brain mainly results from 

deficient mitochondrial autophagy (mitophagy), 

contributing a lot to AD pathogenesis [17, 18]. This 

review aims to discuss both the pivotal mammalian 

components of mitochondrial biology and aspects of 

mitophagy and the possible strategies to maintain 

mitochondrial homeostasis.  

 

2. Mitochondrial integrity and regulation 

 

2.1 Mitochondrion in reasonable condition 

 

Mitochondria vary tremendously across cell types and 

tissues in morphology and allow for rapid changes in 

response to external lesions and metabolic prompts. 

Generally, there are multiple copies of mitochondria 

within cells, with diameters ranging from 0.75 and 3um. 

However, all mitochondria are well known as the energy 

factories within various types of cells, employing the 

oxidative phosphorylation (OXPHOS) process to produce 

Adenosine triphosphate (ATP). The mitochondrion in 

most eukaryotic cells is a double-membrane-bound 

organelle comprised of a phospholipid bilayer. As Figure 

1A shows, it has an inner mitochondrial membrane (IMM) 

with numerous folded cristae, a smooth outer 

mitochondrial membrane (OMM) and the intermembrane 

space (IMS) between them. The mitochondrial 

morphology is dramatically shaped by ongoing fusion and 

fission (see Fig. 1B and 1C) on IMM and OMM [19, 20]. 

Beyond the IMM is the jelly-like matrix for respiration, 

where the breakdown of pyruvate into adenine 

triphosphate (ATP) and the tricarboxylic acid (TCA) 

cycle takes place [21, 22]. Additionally, the electron 

transport chain (ETC) locates at the IMM, which is 

essential for the generation of ATP via oxidative 

phosphorylation machinery [23]. 

 

 
 
Figure 1.  Mitochondrial cell biology. (A) structure of mitochondrion and general features of mitochondrial 

dynamics (B) fusion (C) fission.   
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In addition to its most essential functions of energy 

production, ROS production, and Ca2+ homeostasis, 

mitochondria also play a role in apoptosis [23]. Cell 

apoptosis can trigger by the release of cell death signaling 

molecules from the mitochondria to the cytoplasm 

through the permeabilization of OMM [24]. This 

mitochondrion-involved apoptosis modulated by three 

groups of Bcl-2 family proteins: Bcl-2-like proteins, 

Bax/Bak proteins, and BH3 proteins [25]. The OMM 

permeabilization is caused by the channel within the 

OMM formed by Bax/Bak proteins. Through this channel, 

the caspase protein, a key signaling molecule, is released 

into the cytoplasm. After activation by cytochrome C，
Smac and Omi, the apoptosome is formed and activated, 

causing severe cell death [25]. 

 

2.2 Mitochondrial biogenesis, degradation, and their 

regulations 

 

Mitochondrial productions show an interaction present 

between the nuclear and mitochondrial genomes. In the 

mammalian genome, 37 genes have been defined in 

mitochondrial DNA (mtDNA. Of these genes, 13 are 

mRNAs that encode polypeptides for OXPHOS, and the 

rest aid in the transcription and translation within the 

organelle, with 22 being tRNAs and 2 being rRNAs [26-

31]. However, the nuclear genome encoded around 1500 

kinds of proteins and translated on cytoplasmic 

ribosomes, where they are eventually imported into 

mitochondria by the translocase of the inner membrane 

(TIM) and the outer membrane (TOM) [32]. This dual 

origin implies that coordinate mitochondria. 

Phospholipids are either directly synthesized in the 

organelle or imported from the endoplasmic reticulum 

membrane after synthesis, along with many cofactors and 

metals. The OMM has a similar composition to the rest of 

the cell and contains a pore formed by the β-barrel protein 

voltage-dependent anion channel (VDAC) through which 

interchange happens between the cytosol and the IMS 

[32]. The IMM greatly enhances its area by infolding into 

cristae in the shape of gracile sacs and contains a large 

amount of the phospholipid cardiolipin on the surface. In 

a sense, the crista is a supporting measure for very useful 

OXPHOS [19] and has the vast majority proteases. As the 

first phase of mitochondrial quality control, a 

mitochondrion can clean low levels of damaged proteins 

with the aid of intraorganellar proteases and chaperones, 

for instance, HTRA2 and TRAP1 [33]. 

Mitochondria continually divide, blend, and alter 

their size, knitting a dynamic network within the cell, and 

their movement and turnover in the matrix coordinated by 

the cytoskeleton [34]. These processes collectively 

termed as mitochondrial dynamics. In other words, to 

maintain both of the quality and quantity or meet the 

needs of cells/tissues, mitochondria go through constant 

fusion and fission. The latter recognize as one core 

mitochondrial quality-control pathway [33]. Balanced 

fusion and fission can shape the final mitochondria to fit 

mitochondrial metabolism and ensure the removal of 

other dysfunctional organelles [20]. Mitochondrial 

degradation happens in response to cellular damage and 

nutrient excess and has documented in cancer, obesity, 

and cardiovascular and neuromuscular disorders [26, 28, 

35-39]. The autophagic clearance of mitochondria 

facilitated to adapt the mitochondrial activities to satisfy 

the physiological needs[40]. 

 

3. Mitophagy- mitochondrial autophagy 

 

3.1 Autophagy and autophagy flux 

 

Macroautophagy, commonly known as autophagy, is a 

major intracytoplasmic pathway for the elimination of 

damaged organelles and protein aggregates, recycles 

cellular biomaterial. It is a conserved lysosomal 

degradative process whereby obsolete cellular 

constituents are delivered by double-membrane vesicles 

(called autophagosomes) to the lysosome for degradation. 

The dynamic process of autophagy presented with the 

term ‘autophagic flux.’ It mainly includes autophagosome 

formation, maturation, fusion with lysosomes, and 

subsequent decomposition and release of the remaining 

molecules into the cytosol [41, 42]. In AD, Aβ, one of its 

pathological hallmarks, may be degraded by autophagy or 

even be reduced by the upregulation of autophagy in many 

in vivo and in vitro systems [43-46]. Additionally, 

aberrant Tau induces an increase in the number of 

autophagosomes and contributes to toxicity in AD [47, 

48]. The in vitro experiments and the mouse model 

showed that Tau binds lysosomal membranes to change 

its permeability [49, 50]. Perez et al. indicated that 

defective lysosomal membrane integrity contributes to 

AD onset, which is independent of Tau or Aβ pathology 

[51]. In a word, several studies demonstrated that 

autophagic flux defects are closely correlated to the 

pathogenesis of AD [52-54], and the overall 

investigations predict that modulations of autophagy are 

therapeutic opportunities for AD [55, 56]. However, the 

autophagy pathway is involved with multiple steps and 

different modes of regulation which makes it complicated. 

 

3.2 Mitophagy cell biology and detection 
 

Compared with nuclear DNA, disruption of mitochondrial 

dynamics results in reasonably high ROS, which causes 

more oxidative damage to mtDNA as there is no 

protection of associated histones and other chromatin 

proteins. These damaged mitochondria are selectively 
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marked, elongated by phagophores to form a mature 

mitophagosome, and fused with lysosomes where they 

degrade as autolysosomes. This macroautophagy process, 

namely mitophagy, is one of the mitochondrial quality 

control pathways used to guarantee basal mitochondrial 

turnover [57-59]. In addition to the ROS inducer, 

mitophagy also can be induced by some physiological 

conditions, including the maturation of erythrocytes and 

the development of fertilized oocytes [60, 

61]mitochondrial dynamics and mitophagy, cells can 

have stringent quality control mechanisms to maintain a 

healthy mitochondrial population [62]. 

All types of mitophagy are mainly modulated by the 

(PTEN-induced putative kinase 1) Pink1-Parkin pathway, 

whose primary target is the mitochondrion devoid of the 

membrane potential (ΔΨm) [63]. In normal 

circumstances, Pink1 is predominately expressed on the 

IMM, translocated to the cytosol, and digested by the 

proteasome. However, when mitochondria lose biological 

functions, the Pink-Parkin pathway is immediately 

activated. Instead of being degraded by the proteasome, 

Pink translocated to the OMM, which results in its 

accumulation on the OMM [64-66]. Subsequently, Pink 

stabilizes on OMM and promotes the recruitment of 

Parkin, whose E3 ligase activity launched. Parkin then 

ubiquitinates several components on the OMM to format 

poly-ubiquitin chains. After subsequent phosphorylation 

by Pink1, the poly-ubiquitin chains release ‘clean me’ 

signals for autophagic machinery. As a result, 

dysfunctional mitochondria are recognized and bound by 

adaptor proteins (such as p62, OPTN, NDP52) through 

the poly-ubiquitin chains followed by the elongation, 

maturation, and enclosure of the double membraned 

phagophore [67]. The autophagosome formation is 

initiated by binding with LC3, and finally, the matured 

autophagosome fuses with the acidic lysosome for the 

degradation and recycling of the engulfed mitochondria. 

Moreover, independent of Parkin, autophagosomes can be 

recruited to mitochondria via direct interaction with LC3 

by increasing the expression of FUNDC1 and NIX in 

mammalian cells [68, 69]. Some ubiquitin ligases can 

target depolarized mitochondria for mitophagy, such as 

SMURF1 [70, 71]. Other molecular mechanisms of 

mitophagy have been extensively studied [16, 72, 73]. 

Collectively, the major mitophagy pathways include the 

PHB2 pathway, the cardiolipin pathway, the NBR1 

pathway, the Tax1 binding protein 1 (TAXIBP1) pathway, 

the OPTN pathway, the BNIP3 pathway, the BCL2L13 

pathway, the FKBP8 pathway, the AMBRA1 pathway, 

and the NDP52 pathway. A detailed description of these 

pathways has summarized in recent reviews [72-74]. 
Remarkably, Lu et al. found a new class of adaptors, 

namely CUET proteins, can bind ubiquitylated substrates 

in yeast, implying the potential variety of the 

complements in the above pathways [75]. Emerging 

evidence suggests that mitochondrial dynamics affect the 

homeostasis of mitophagy. As mitochondrial fusion and 

fission have implicated in many of the classical 

mitochondrion-associated cellular pathways such as 

calcium signaling, apoptosis, and the cell cycle, it 

generally believes that mitochondrial fission facilitates 

mitophagy as smaller mitochondria are easier for 

autophagic engulfment [34, 76]. Thus, it is critical to 

correctly measuring mitophagy. There are several 

versatile methods to quantify mitophagy in human cells, 

C. elegans (e.g., Rosella and DCT-1/LGG-1 strains), flies 

(e.g., mito-QC and mito-Keima strains). Besides, the 

mito-QC and mito-Keima stains in mice are also 

available, enabling a temporospatial evaluation of 

mitophagy [73, 77-81]. 

Interestingly, Paasch et al. proposed that 

nonfunctional mitochondrial proteins modestly induced 

by failed mitochondrial import can mark by SUMO (small 

ubiquitin-like modifier). Therefore, SUMOylation can 

serve as intraorganellar protein quality control [82]. Since 

mitophagy is a constant, dynamic and sophisticated 

cellular process, a combination of different mitophagy 

detection approaches, including cross-species evaluation, 

will improve the accuracy of measuring mitophagy and 

lead to a better understanding of mitophagy in the 

physiology of neurons, potentially contributing valuable 

information to the effort of advancing the therapy of 

neurodegenerative diseases. 

 

3.3. Compromised mitophagy in AD  

 

Although the exact mechanism is not precise, emerging 

findings suggest that impaired mitophagy contributes to 

neuronal dysfunction and cognitive decline by trigging 

Aβ and p-Tau accumulation in AD pathophysiology [16, 

28, 83]. These protein aggregations can produce adverse 

effects on mitochondrial functions, such as a disruption to 

the membrane potential resulting in less ATP production. 

This disruption also can change the permeabilization of 

the OMM by opening mitochondrial permeability 

transition pore (mPTP) [23]. Moreover, intra-

mitochondrial Aβ has been demonstrated to interplay with 

ABAD (Aβ binding alcohol dehydrogenase) than to 

generate ROS [33]. Partly due to these processes, the 

neurons in AD patients experience mitochondrial 

dysfunction, which causes a bioenergetic deficit early and 

promotes the Aβ and p-Tau pathologies [16]. Mitophagy 

predominantly regulates mitochondrial dynamics and the 

timely clearance of dysfunctional mitochondria that is 

necessary for the maintenance of synaptic plasticity, 

neuronal function and neuronal survival. Mitophagy in 

neurons is essential to prevent neuronal death and 

pathogenic brain aging via targeting the superfluous or 



Li W., et al                                                                                        Alzheimer’s disease, mitochondria, aging 

Aging and Disease • Volume 11, Number 5, October 2020                                                                              1264 

 

dysfunctional mitochondria by lysosomes [72, 84, 85]. 

Cumulative evidence reveals that compromised 

mitophagy contributes to aging and neurodegeneration 

observed in models of premature aging disease and AD 

[16, 77, 85-88]. Mitophagy deficits and accumulation of 

mitochondria detected in AD human post-mortem tissue 

as well as reduced phosphorylation of mitophagy 

initiation proteins (ULK1, TBK1) and elevated levels of 

mitochondrial membrane proteins (COXIV, TOMM20) 

[77, 88]. Increasing experiments from C. elegans, murine 

and human cell lines overexpressing WT and mutant tau 

implicate impaired mitophagy, which leads to the 

accumulation of dysfunctional mitochondria and the 

impairment of cognitive deficits [77, 86, 88].  

Impaired autophagic flux related to mitochondria is 

another contributor to the neurodegeneration of AD. The 

defects may arise from any of the critical processes 

mentioned above. Unfortunately, the mechanisms 

underlying the deficiencies in AD are not fundamentally 

understood. As mentioned earlier in this review, 

autophagic flux consistently and efficiently initiated by 

autophagosomes, also called autophagic vacuoles (AVs) 

followed by formation, maturation, fusion, and digestion 

within lysosomes. Induced autophagy causes the AV 

aggregations in AD, impairment of digestion/breakdown 

steps, and a high rate of autophagosome formation 

companying with inefficient fusion with lysosomes [89]. 

Boland et al. proved that blocking the clearance of 

autophagosomes in cultured neurons by restraining 

lysosomal proteolysis results in rapid and marked AV 

accumulation [43]. Nevertheless, the autophagosomes 

accumulation in the AD brain does not mean that 

autophagy initiation is upregulated [90, 91]. 

On the contrary, one of the essential initiators, 

Beclin-1 cleaved by caspase three enzyme is low 

expressed in AD patients [92]. In an APP transgenic 

mouse model, the deletion of Beclin-1 stops autophagy 

and accelerates Aβ accumulation [90]. In addition to the 

defects in the initiation process, genetic or functional 

alterations may exist in autophagosome maturation, 

formation, or clearance processes [89, 93, 94]. Taking the 

mutations in presenilin-1 as an example, the primary 

defect in lysosome acidification and proteolysis causes 

pathogenic protein accumulation in AD. 

 

 
 
Figure 2. Overview of autophagy/mitophagy in neurons.   

The neurodegeneration of AD directly linked to 

autophagic flux, and there are several methods developed 

to identify the status of autophagic fix [42]. The most 

straightforward approach in experiments for monitoring 

autophagy is Atg8/LC3 detection and quantification [95, 

96]. Autophagic flux perceives by LC3-II turnover with 
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the aid of western blot in the absence and presence of 

lysosomal degradation inhibitors, such as E64d, pepstatin 

A, NH4Cl, bafilomycin A1 and chloroquine. The signal of 

LC3-II increases in the presence of one of the above 

inhibitors when the autophagic flux is occurring as the 

transition of LC3-II is blocked [97-99]. The other two 

methods are assays for degradation of SQSTM1/p62 and 

long-lived proteins, for details, please refer to [42, 100]. 

(Fig. 2) 

 

3.4 Impaired proteostasis related to mitophagy 

 

The phenomena of protein misfolding and aggregation 

presented in many kinds of neurodegenerative disease 

studies. Presently, each of them characterized 

neurodegenerative diseases with at least one pivotal 

protein misfolded, which serves as a clinical biomarker. 

Usually, this protein repeatedly generated and aggregated, 

along with the disease exacerbation [101]. In AD, the 

most significant manifestation of misfolded proteins is 

cerebral plaques. P-Tau proteins and Aβ peptides 

separately form neurofibrillary tangles (NFTs) and Aβ 

plaques. Reasonably, the cellular proteostasis in AD-

related to mitophagy is easily impaired, including those 

involved in mitochondrial biogenesis (PGC-1α) [102], 

mitochondrial responses to oxidative [103] and 

bioenergetic challenges (SIRT3) [104], mitochondrial 

fission and fusion (Drp1) [105]. Lysosomes are the 

protease pool in cells that play the role of disintegrating 

the ultimately damaged and dysfunctional molecules. 

Nevertheless, the experiments on cell culture and AD 

animal models illustrated that mitochondrial 

concomitants emerged from the excessive fission as a 

result of lysosomal dysfunction [106, 107]. 
 

Table 1. Summary of different pathways and 

genes/proteins involved in autophagy/mitophagy. 

 
Pathways Genes/Proteins  Refs 

The PINK1/Parkin-

dependent pathway 

PINK1, Parkin, USP8, 

USP30, AMBRA1, Bcl2, 

FUNDC1, MUL1, Nix, 

ATG5, LC3 

[74, 

119] 

The Parkin-

independent 

pathway 

PINK1 [120] 

The Reticulocyte 

pathway 

Nix, LC3 [60] 

The Zygote pathway VCPs, MUL1, LC3 [121-

123] 

The MDVs pathway PINK1, Parkin, LC3 [124] 

The mTOR pathway ULK1, Atg1, Atg13, Akt, 

PKC, FOXO3  

[45] 

 

 

In mammals, about 20 proteins are involved in 

mitophagy, including Drp1, mitofusin, PGC-1α, SIRT, 

ULK1, BNIP3L/NIX, TBK1, PINK1, and Parkin (see 

Table 1). Several studies have declared that increased 

levels of Drp1 in the brains of AD mice and patients were 

detected while some others have conflicting results [108, 

109]. Analyses of postmortem brain tissues of AD patients 

and age-matched controls have uncovered reduced 

expression of genes associated with mitochondrial 

biogenesis, including TFAM, PGC-1α, and NRF2. The 

mitochondrial SIRT3 and nuclear SIRT1 are NAD+-

dependent deacetylases, which may inhibit AD through 

the modulation of many cellular pathways. The reduction 

of these two proteins may link to neurodegenerative 

diseases. Studies in the parietal cortex of AD patients 

shown that reduced SIRT1 expression is closely 

associated with the accumulation of Tau tangles and Aβ 

plaques [110]. Notably, SIRT1 can upregulate PGC-1α 

and participate in the mitophagy induction through the 

activation and deacetylation of the major autophagy 

proteins (ATG8/LC3, ATG5, ATG7) and the upregulation 

of the mitophagy proteins (NIX/BNIP3L, LC3) [85, 87]. 

Martine and her colleagues provided a mechanism for cell 

death with the axis of PAPR-1_NAD+_SIRT1_PGC-1α, 

which links nuclear DNA damage to mitochondrial 

homeostasis. They explained that activated PARP-1 (the 

enzyme poly(ADP-ribose) polymerase1) contributes to 

AD by the accumulation of ADP-ribose polymers and 

energy crisis [84, 111]. A steep reduction of NAD+ levels 

can induce through the increase of PARP-1 activity, with 

the consequence of mitochondrial impairment [112]. 

Genetically, mutations in genes encoding the proteins 

outlined above contribute to the etiology of AD [113, 

114]. Furthermore, the modifications in core autophagy 

genes also facilitate AD incidence. An E122D ATG5 

mutation weakens the combination of ATG5 and ATG12, 

resulting in reduced autophagy flux and decreased 

autophagosome formation [115]. Another gene is 

WDR45, which codes for the protein WIPI4. In 

mammalian cells, the WIPI4 proteins bridge PI3P 

production and LC3 lipidation to assist autophagosome 

maturation [116, 117]. Together, the well-defined roles in 

mitophagy demonstrate that defects in proteins related to 

mitochondrial quality control and homeostasis are 

intimately involved in the pathology of AD [118]. 

 

4. Autophagy/mitophagy therapeutics for AD 

 

4. 1 Autophagy upregulation as therapy for AD 

 

Plentiful previous studies suggest the performance of 

autophagic dysfunction in the pathogenesis of 

neurodegenerative diseases, including AD, because of 

aggregated proteins [125-128]. These ‘toxins’ are mainly 
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degraded by both the ubiquitin-proteasome pathway and 

the autophagy pathway as substrates [129]. However, the 

former path cannot vigorously work as only unfolded 

substrates can pass through the proteasome barrel [130]. 

Double-membrane-bounded autophagosome besieges 

them into the center to start autophagy. The lysosome then 

fuses with the circinate autophagosome to create auto 

phagolysosome, in which multiple proteases degrade the 

protein complex. Numerous studies provide proof of the 

modulation of autophagy as a good therapeutic approach 

for neurodegenerative disease. The in vitro work 

examining the effect of autophagy upregulation on the 

clearance of aggregation-prone proteins caused by polyQ 

and polyA expansions, mutant tau, and ataxin-3 [131, 

132] and mutant α-synuclein [133, 134] has suggested 

reductions in both of associated cell death and 

intracytoplasmic aggregates. Autophagy protects against 

both pro-apoptotic[135, 136] and pro-necrotic insults 

[137]. The protective effect from autophagy induction in 

cell models has successfully translated into a range of 

animal models. However, the experiments of Zhou et al. 

on C. elegans and mice lacking sgk-1 (serum/ 

glucocorticoid regulated kinase-1) illustrated that a high 

level of mPTP opening induced by elevated autophagy 

unexpectedly shortens their lifespan [138], implying side 

effects maybe occur while enhancing autophagy. 
 

Table 2. Pharmacological agents potentially stimulate autophagy/mitophagy. 

 
Agents Study model Effect Refs 

2,4-Dinitrophenol (DNP) animal model stimulate autophagy [139] 

rapamycin AD mouse reduce Aβ pathology [45] 

spermidine human and yeast cells; 

nematodes 

induce autophagy independent of SIRT1 [140] 

urolithin A C. elegans; mouse induce mitophagy, prolong lifespan; increase muscle 

function 

[141] 

antibiotic the mt-Keima mouse provide a method to analyze mitophagy alterations [81] 

2-deoxyglucose AD female mouse stimulate ketogenesis and induce mild bioenergetic 

stress; 

enhance mitochondrial function;  

stimulate autophagy and clearance of Aβ 

[142-149] 

nicotinamide 

mononucleotide (NMN) 

Mouse model of fatty liver 

disease; AD mouse 

increase NAD+ pool [150-154] 

5-aminoimidazole-4-

carboxamide 

ribonucleotide (AICAR) 

myopathy mouse activates AMPK to acts on PGC-1 [155-157] 

actinonin Caenorhabditis elegans reverse memory impairment [77] 

mdivi1 excitotoxic mouse enhance DRP1 activity [158-164] 
 

Numerous autophagy-modulating agents developed 

to treat AD, including the mechanistic target of rapamycin 

(mTOR)-dependent and mTOR-independent autophagy-

including agents (see Table 2) [165]. The master 

metabolic regulator mTOR can formulate two different 

functional complexes. The researcher believes that mTOR 

complex 1 (mTORC1) inhibits autophagy, while 

mTORC2 may differentially regulate autophagy/ 

mitophagy under different conditions [138, 166]. 

Rapamycin was the first drug to be identified as an 

autophagy inducer[167, 168]. Although the mTOR 

pathway is involved in a wide range of cellular functions, 

the therapeutic effects of rapamycin in models of 

neurodegenerative disease are predominantly autophagy-

mediated [132, 166]. The restricted absorption of 

rapamycin has driven the development of many rapalogs 

such as everolimus (RAD001), temsirolimus (CCI-779), 

and ridaforolimus (AP23573). To date, it is these rapalogs 

that have investigated due to their potential therapeutic 

value in the treatment of neurodegenerative diseases. 

ATP-competitive mTOR inhibitors are newly developed 

mTOR inhibitors [169]. Stimulation of the AMPK 

pathway upregulates autophagy as an mTOR-dependent 

manner [170]. Metformin is an AMPK activator with 

therapeutic potential in neurodegenerative disease [171]. 

There is no doubt that further testing of such compounds 

in different AD animal models are necessary for their 

implementation in AD patient iPSC-derived neurons and 

glial cells. What is noticeable is that autophagy inducers 

are unlikely to be pancreatically linked for many 

neurodegenerative diseases [172], which, for instance, 

can be seen by short-term fasting [173]. 
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4. 2 Enhancing mitophagy as a novel therapeutic 

strategy for AD  

 

Accumulating studies suggest that dysfunctional 

mitochondria are mainly due to impaired mitophagy in 

neurons in AD [83, 174-177]. The ‘vicious cycle’ 

hypothesis proposed that loss-of-function mitophagy and 

Aβ and p-Tau, the biomarkers in AD pathophysiology, 

strongly influence each other [103, 114]. Moreover, the 

‘vicious cycle’ experiments state that Aβ-dependent 

neuronal hyperactivity supports circuit dysfunction in the 

early stages of AD [178]. Recently, Fang and his 

colleagues successfully stimulated mitophagy and 

reversed memory impairment using NAD+ 

supplementation, urolithin A and action in both Aβ and 

tau Caenorhabditis elegans models [77]. The stimulation 

of mitophagy affected the PINK1-, PDR1- or DCT1-

dependent pathways. In human neurons derived from the 

hippocampus of AD patients and in AD animal models, 

enhanced mitophagy can even diminish insoluble Aβ and 

prevent cognitive impairment in AD mouse model 

through the suppression of neuroinflammation and 

microglial phagocytosis of Aβ plaques [77]. These 

findings predict that enhancing mitophagy could be a 

novel approach to delay or even treat AD [179, 180]. To 

this end, plentiful pharmacological agents have been 

examined in preclinical studies [181-183].  
Research over the last few decades has extended 

understanding of nicotinamide adenine dinucleotide 

(NAD+) from a vital redox carrier and energy provider to 

a critical signaling molecule that is involved in the 

regulation of a multitude of fundamental cellular 

processes. To date, NAD+ plays vital roles in gene 

expression, DNA repair, calcium signaling, cell cycle 

regulation, mitochondrial homeostasis and neuronal 

maintenance and plasticity [184]. NAD+ is also a substrate 

for several families of regulatory proteins, such as poly 

(ADP-ribose) polymerases (PARPs), CD38/CD73, 

Sirtuins, and SARM1 [184, 185]. At the molecular level, 

the NAD+-dependent signaling events differ from hydride 

transfer since these NAD+-consuming enzymes cleave 

NAD+ into an ADP-ribosyl moiety and nicotinamide. 

Therefore, non-redox functions of NAD+ require 

continuous biosynthesis of the dinucleotide. 

As an essential cellular metabolite, NAD+ exists in 

all living cells, including brain cells, where it plays 

fundamental roles in neuroplasticity and cellular stress 

resistance [186]. Because neurons consume relatively 

large amounts of energy, they are susceptible to decreased 

NAD+ levels as well as the impairment of ATP production 

[16, 85]. Furthermore, NAD+ affects neuronal health and 

survival through regulation of the balance between 

mitochondrial biogenesis and mitophagy, which are 

controlled by the NAD+/SIRT1-PGC-1α pathway and the 

DAF-16/FOXO3 pathway [85, 87]. Decreased NAD+ 

levels can compromise mitophagy and trigger the 

accumulation of misfolded proteins leading to neuronal 

death [87, 187]. Cellular NAD+ levels are affected by 

several NAD+-consuming enzymes which have links to 

AD [188]. 

NAD+ levels decline in the AD brain in a few 

possible ways. PARP1 is an enzyme that responds to 

DNA strand breaks by catalyzing poly ADP-ribosylation 

(PARylation) of target proteins using NAD+ as a cofactor 

[85, 188, 189]. While PARP1 was localizing the nucleus, 

it is now known to also localize to mitochondria in cells 

under stress where it can PARylate electron transport 

chain proteins. Levels of PARP1 activity are increased, 

and PARylated proteins accumulate in brain tissue 

samples from vulnerable brain regions of AD patients 

[190]. Therefore, oxidative stress is a likely trigger for 

PARP1 activation in AD, which may occur both upstream 

and downstream of Aβ accumulation. CD38 is a 

multifunctional enzyme that catalyzes the synthesis and 

hydrolysis of cyclic ADP-ribose (cADPR) from NAD+ to 

ADP-ribose and mediates Ca2+ release from the 

endoplasmic reticulum. Importantly, PARP1 and CD38 

activity may lead to decreased NAD+ levels and thus 

lower sirtuin activity. Treatment of neural cells with a 

PARP1 inhibitor can protect them against mitochondrial 

dysfunction and cell death caused by Aβ [191]. APP/PS1 

double mutant transgenic mice that lack CD38 exhibit 

reduced levels of Aβ  in their brains and improved 

learning and memory [192], consistent with NAD+ 

depletion in the promotion of amyloidogenesis in this 

mouse model of AD. Many researchers suggest that 

NAD+ deficiency in AD, possibly caused by PARP1 

activation due to increased oxidative stress-mediated 

DNA damage, leads to decreased mitophagy, decreased 

sirtuin activity, and mitochondrial dysfunction. 

 

4. 3 Other therapeutic strategies for AD  

 

In addition to pharmacological agents, lifestyle 

interventions also can stimulate mitophagy to protect the 

mitochondrial population. It has been evaluated in animal 

models and even in MCI (mild cognitive impairment) or 

AD patients. Experiments using rodents show that fasting 

can reduce ROS and inflammation, optimize energy 

metabolism, and enhance autophagy [173, 193]. For 

example, fasting for two days can make GFC-LC3 

transgenic mice have more autophagosomes in the 

neurons of the cerebral cortex. Studies of human subjects 

and animal models demonstrate that regular exercise 

provides robust beneficial effects, which in turn can 

reduce the risk of AD [194]. Vaynman et al. showed that 

by upregulating mitochondrial uncoupling protein 2 

(UCP2) levels in the hippocampus, exercise could lower 
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ROS and active autophagy. Caloric restriction (CR) also 

can enhance mitochondrial function. On the one hand, CR 

can decrease ROS and reduce oxidative DNA damage; on 

the other hand, CR can induce the expression of many 

sirtuins, especially SIRT1. Its overexpression can extend 

the life span and improve the syndromes of AD [195]. In 

sum, the enhanced mitophagy can reclaim the 

dysfunctional mitochondria to maintain high-quality 

mitochondrial homeostasis in neurons. 

 

5. Conclusions 

 

In this review, we have delineated mitochondrial biology, 

the average and defective autophagy and mitophagy in 

AD, highlighting their pathogenesis and corresponding 

therapeutic strategies. In AD, mitochondrial dysfunction 

and the bioenergetic deficit contribute to the Aβ and p-

Tau pathologies; in turn, these two pathologies promote 

mitochondrial defects. As a consequence, a fundamental 

characteristic of AD is the impairment of mitochondria, 

which has been ascertained in both sporadic and familiar 

types of samples as well as in animal models. As stated 

above, pharmacological agents, fasting, physical exercise, 

and caloric restriction can reverse this impairment. The 

main target of these methods is to enhance autophagy and 

mitophagy. Mitophagy plays a fundamental role in 

mitochondrial quality control and homeostasis, and the 

pathological consequences of its misregulation 

demonstrate its importance. However, the exact positions 

of mitophagy in AD etiology are still unclear as multiple 

steps are affected. Cells regulate mitochondrial 

degradation not only through control of the mitophagy 

machinery but also through delicate tuning of 

mitochondrial fusion and fission [34, 76]. It remains to see 

whether other cellular processes linked with mitochondria 

also have a role to play in mitophagy regulation. Further 

understanding of the mechanisms involved in 

mitochondrial quality control will hopefully hold 

therapeutic potential for AD. 

Here we would like to recommend NAD+ to 

implement further research in drug discovery for AD. The 

importance of the regulatory roles of NAD+ has 

established in many excellent studies. While impressive 

progress has made regarding the mechanisms of NAD+-

dependent inhibition of AD pathology and the restoration 

of cognitive function, some critical questions remain 

unanswered. For example, cellular NAD+ biosynthesis 

and consumption compartmentalized in the cell, but how 

these organellar NAD+ pools are established and 

maintained in neurons and glial cells, including astrocytes 

and microglia, remains unknown. Furthermore, what are 

the differences between different NAD+ precursors, 

NMN, NR, nicotinic acid, and nicotinamide, in treating 

AD? The pharmacokinetics and potential toxicity data of 

NAD+ augmentation strategies in AD patients need to 

obtain in the clinic.AD might be not only a brain disorder 

but also a systemic disease with widespread abnormalities 

beyond the brain. Thus, systemic factors might interact 

with brain-related elements to modify the AD process. AD 

diagnosis and treatment should have a corresponding 

focus not only on pathological changes in the brain but 

also on peripheral abnormalities, which vary among 

individuals. Identifying these peripheral abnormalities 

might offer new opportunities for diagnosis of early AD 

and lead to the design of specific treatment strategies for 

individuals with AD at different stages. 

 

6. Future perspectives  

 

In the past 20 years, most of the drugs tested in the clinic 

for AD have targeted the Aβ accumulation; however, 

none of these anti-Aβ therapies overcome the central 

problem [196]. Today, a promising alternative option for 

AD therapeutics is to maintain mitochondrial homeostasis 

by enhancing autophagy and stimulating mitophagy. 

Dysfunctional mitophagy can increase Aβ and Tau 

pathologies, while aggregating Aβ can impair neuronal 

mitophagy in reverse. These outcomes indicate pivotal 

roles for mitophagy dysfunction, both upstream and 

downstream of Aβ and Tau pathways [16]. In all, different 

theories such as “amyloid plaques, NFT, mitochondrial 

dysfunction, neuroinflammation, comprised autophagy et 

al.” result in AD etiologies that interact with each other 

[197]. The ‘Chicken and egg’ relationships between 

different hallmarks of AD need to establish, and specific 

therapy should direct to target the reason for the neuronal 

insult and not the host response. Meanwhile, we can seek 

some clues from the treatment of other diseases like 

cancers, diabetes and rheumatoid arthritis. 
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