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Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly
implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV
associated cancers account for over 200,000 new cases of cancer and cause 150,000
deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to
70% of adolescents and young adults in developed countries suffer from infectious
mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis
of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies
holds great promise for prevention of EBV associated diseases. EBV envelope proteins
including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells,
and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV
infection of target cells and markedly decrease EBV titers in the peripheral blood of
humanized mice challenged with lethal dose EBV. Recent studies demonstrated that
immunization with the combination of gH/gL, gB and/or gp350 induced markedly
increased synergistic EBV neutralizing activity compared to immunization with individual
proteins. As previous clinical trials focused on gp350 alone were partially successful, the
inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising
approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also
been tested clinically with encouraging results. Immunization with various vaccine
platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted
specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV
envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a
therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors,
and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-
cell therapy has been successfully used in the prevention and treatment of post-transplant
lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor
engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have
been in development, with the goal to increase the specificity and efficacy of treatment of
EBV associated cancers.
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INTRODUCTION

Epstein-Barr virus (EBV) is a gamma human herpesvirus that
primarily infects B cells and epithelial cells. EBV is the primary
cause of infectious mononucleosis (1, 2). There are ~125,000 new
cases of infectious mononucleosis each year in the United States,
and it is the most common cause of lost time for new Army
recruits (3–5). Infectious mononucleosis could cause persistent
fatigue for up to 6 months and cause severe neurologic,
hematologic, or liver complications (2, 3, 6, 7). EBV is also the
first human tumor virus discovered, and it has been strongly
implicated in the etiology of multiple lymphoid and epithelial
cancers, such as Burkitt lymphoma (BL), Hodgkin lymphoma
(HL), post-transplant lymphoproliferative disorder (PTLD),
nasopharyngeal carcinoma (NPC), and gastric carcinoma (GC)
(8–11). Overall EBV associated cancers account for over 200,000
new cases of cancer and cause 150,000 deaths world-wide each
year (3, 8, 10). Patients undergoing solid organ or stem cell
transplantation are at risk of developing uncontrolled B cell
proliferation due to EBV reactivation, termed PTLD that can
evolve into Hodgkin lymphoma or non-Hodgkin lymphoma,
and a similar phenomenon also occurs in patients with AIDS (3,
12–14). A role for EBV has also been suggested in the
pathogenesis of T and NK cell lymphomas, aggressive NK cell
leukemia, and lymphoepithelioma-like carcinoma of the lung,
salivary gland and thymus (15–17). Many studies further suggest
a possible role for EBV in the pathogenesis of several
autoimmune diseases, including multiple sclerosis, systemic
lupus erythematosus, rheumatoid arthritis and Sjogren’s
syndrome (7, 18). In addition, there is evidence suggesting that
childhood EBV infection in sub-Saharan Africa may worsen the
clinical course of malaria (19). It has also been proposed that
EBV infection in the oral cavity may play an important role in
promoting chronic periodontitis (20).

EBV prophylactic vaccine aiming at prevention of primary
EBV infection has been in development for more than 30 years,
and clinical trials of therapeutic EBV vaccines targeting EBV
associated cancers have been conducted for more than 10 years.
Though neither an EBV prophylactic vaccine nor a therapeutic
EBV vaccine has been licensed, promising progresses have been
made. Encouraged by the spectacular results of CAR-T cell
Frontiers in Immunology | www.frontiersin.org 2
therapy targeting B cell antigens, CAR-T cell therapy and TCR
engineered T cell therapy targeting EBV antigens are in
development, with the goal of development of highly efficient
treatment for EBV associated cancers and avoid the adverse
effects of targeting B cell antigen.
EPSTEIN-BARR VIRUS

EBV has a linear, double-stranded DNA genome that is
approximately 170 kilobase pairs in length, which encodes
more than 80 proteins and 46 functional small untranslated
RNAs (21, 22). EBV is typically transmitted via saliva and
contracted during infancy in developing countries, whereas in
the developed world, it is typically contracted during adolescence
(5, 23). EBV infects >95% of the world population by adulthood.
The target cells of EBV are B lymphocytes and epithelial cells,
and the mechanism by which EBV enters into host cells is shared
in many aspects by other members of the herpesvirus family (24–
28). Infection of B cells with EBV is initiated by binding of the
EBV envelope protein gp350 to the complement receptor 2
(CR2)/CD21. Upon binding to B cell CR2, EBV gp42 interacts
with the host cell surface MHC-II, leading to its association with
the heterodimeric protein gH/gL. EBV gH/gL then activates the
EBV fusion protein gB, that directly mediates viral-host cell
endosomal membrane fusion [(25–27), Figure 1A]. EBV
infection of epithelial cells involves EBV BMRF2 binding to
integrins, followed by gH/gL binding to integrins and ephrin
receptor A2, triggering activation of gB and fusion of the viral
envelope to the plasma membrane of the epithelial cell [(7, 28–
36), Figure 1B]. Thus, EBV envelope glycoproteins gH/gL, gB
and gp350 play key roles in EBV infection of target cells, where
gH/gL and gB constitute the “core fusion machinery” mediating
fusion with the cell membrane (24, 25, 28). The native
conformation of EBV gB is a trimer, and EBV gH and gL
naturally form a heterodimer (24). EBV envelope proteins gH/
gL and gB are essential for EBV infection of both B cells and
epithelial cells, whereas gp350 is important for efficient infection
of B cells (24, 25, 28, 33).

Once infecting the host, EBV establishes two alternative
modes of infection: lytic and latent. During the lytic infection,
A B

FIGURE 1 | EBV entry and infection of target cells. (A) EBV infection of B cells. (B) EBV infection of epithelial cells.
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EBV expresses more than 80 lytic proteins and these proteins
facilitate the generation of new EBV viral particles and engage in
immune evasion (37, 38). During the process of developing
latency, EBV progresses through three different EBV latency
programs characterized by a set of gradually restricted viral gene
expression patterns, but no production of EBV virions. Through
this process EBV develops eventual lifetime persistence in
memory B cells (39, 40). Latent EBV infections play a key role
in the pathogenesis of EBV associated cancer. In type III latency,
all eight EBV latent antigens are expressed, including six EBV
nuclear antigens (EBNA 1, EBNA2, EBNA3A, EBNA3B, EBNA
3C and EBNA 6/LP), and two latent membrane proteins (LMP1
and LMP2) (21). Latency III is mainly seen in PTLD and
immunoblastic lymphomas in HIV infected patients (41).
Latency II exists in HL, NPC and GC, where EBNA1, LMP1
and LMP2 are expressed (42). In type I latency, only EBNA1 is
expressed and is seen in BL (21).
EBV INFECTION AND INFECTIOUS
MONONUCLEOSIS

EBV is found in saliva, and is transmitted through kissing,
coughing, intimate intact or sharing food and eating utensils
(43, 44). After successful transmission, EBV infects oral epithelial
cells, most likely squamous epithelial cells in the tonsil (45). EBV
also infects B cells in the lymphatic tissues of Waldeyer’s Ring
including the tonsils (44). It is unknown whether epithelial cells
or B cells are infected first. EBV replication occurs exclusively in
epithelial cells which are thus responsible for EBV transmission.
Epithelial cells lack MHC-II so are unable to sequester gp42 upon
release of EBV virions. These virions expressing gp42, then
demonstrate a preference for infection of B cells, which express
MHC-II. Likewise, the presence of gp42 blocks gH binding to
integrins on epithelial cells thus inhibiting epithelial cell
infection. When released from B cells, MHC-II sequesters gp42
thus producing EBV virions lacking gp42 and demonstrating a
preference for infecting epithelial cells (25). In developing
countries primary EBV infection usually occurs during infancy
and childhood with most individuals infected by 4 years of age.
In contrast, in developed countries, primary EBV infection
typically occurs during adolescence or early adulthood. These
differences are most likely caused by socioeconomic factors (44).

Primary EBV infection in young children usually produces no
significant symptoms, whereas primary EBV infection in
adolescents and young adults could cause infectious
mononucleosis (IM), and up to 70% of adolescents and young
adults present with the classical symptoms of IM after EBV
infection (44, 46). IM is characterized by two to four weeks of
fever, pharyngitis, cervical lymphadenopathy and fatigue
accompanied by a massive expansion of the number of EBV-
specific CD8+ T cells after an incubation period of about six
weeks (44, 47). Disease severity and duration of IM correlate with
CD8+ T cell counts rather than with the viral kinetics (48–50).
This indicates that IM is caused by an overreaction of the
immune system due to a failure in early control of viral
Frontiers in Immunology | www.frontiersin.org 3
replications, leading to an exaggerated CD8+ T cell response
with consequent inflammatory cytokine release (39, 48, 51). It
has been suggested that infants and children, but not older
individuals produce an NK cell subset important for early EBV
control, thus preventing the occurrence of IM in this population
(52). The vast majority of IM cases are self-limiting with an
excellent prognosis, with rare cases of severe acute complications
such as splenic rupture, hepatitis and airway obstruction due to
tonsil enlargement (43, 44, 53). Late complications to IM include
Hodgkin lymphoma and multiple sclerosis (21). Life-long latent
EBV infection establishes following primary infection (41).
EBV ASSOCIATED CANCERS

EBV is the first human tumor virus identified. EBV not only
causes infectious mononucleosis, it is also strongly associated
with epithelial cell cancers such as nasopharyngeal cancer
(NPC), gastric cancer as well as lymphoid cancers such as
Burkitt lymphoma (BL), Hodgkin lymphoma (HL) and post
transplantation lymphoproliferative disorder (PTLD) (8–14).
NPC is endemic in southeast Asia, and the vast majority are
the nonkeratinized type, accounting for 80,000 new cases each
year worldwide (10, 41, 54). Nonkeratinized NPC displays a
lymphoepithelial-like (LEL) appearance with a marked
lymphocytic infiltration, which is 100% EBV positive (41).
About 10% of gastric cancers are associated with EBV
infection, have a similar LEL pathological change and are EBV
positive, accounting for about 83,000 new cases each year (41, 55,
56). Essentially all Burkitt lymphoma in equatorial Africa and in
Papua New Guinea, are EBV genome-positive, accounting for
7,000 new cases each year (57–59). Hodgkin lymphoma is also
strongly associated with EBV, especially the mixed cellularity
subtype, of which 80-90% are EBV positive (60–63). PTLD is
another example that EBV plays a critical role in cancer
pathogenesis, all the cases of PTLD are EBV positive, and
adoptive transfer of EBV specific T cells could prevent or cure
the disease (64–68). The role of EBV in cancer pathogenesis has
also been confirmed in animal models, as inoculation of cotton
top tamarins or humanized mice with high titers of EBV results
in the development of B-cell lymphomas and lymphoproliferative
disease that are seen in humans (69–78).

Burkitt’s Lymphoma
Burkitt’s lymphoma (BL) is highly aggressive and it is the most
common pediatric cancer in the world (42, 58). Based on clinical
observations and disease epidemiology, BL is classified into three
different forms: endemic, sporadic and immunodeficiency-
associated BLs (79). Endemic BL occurs in equatorial Africa
and in Papua New Guinea, where essentially all cases are EBV
genome-positive (41, 80). Sporadic BL has a wide global
distribution, but has a much lower frequency with only 10–
15% linked to EBV except for North East Brazil where the
frequency of EBV in sporadic BL exceeds 80% (81, 82).
Immunodeficiency-associated BL has been diagnosed in HIV
carriers who develop the lymphoma before progressing to AIDS,
October 2021 | Volume 12 | Article 734471
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with an incidence of 10 to 100-fold higher than that of the
sporadic BL, and about 30-40% of Immunodeficiency-associated
BL are positive for EBV (41, 83, 84).

BLs have a characteristic histology with sheets of
monomorphic tumor cells resembling germinal centroblasts
interspersed with macrophages, and have hypermutated Ig
gene sequences typical of their geminal center (GC) origin and
all carry chromosomal translocations that bring the c-myc gene
under the control of either the Ig heavy chain or light chain loci
(84). The resultant deregulation leading to constitutive
expression of c-myc proteins at high levels in BL cells, and
causes uncontrolled cell growth in BL (85). The expression of
EBV genes in EBV positive BL is restricted to the type I latency
program, where only EBNA-1 is expressed (86). Though the
mechanism of EBV in the pathogenesis of BL is still unclear, it
has been shown the expression of EBNA-1 in BL cell lines
promotes cell proliferation by inhibiting apoptosis (87). Also,
coinfection with other pathogens seem to play an important role,
such as coinfection of EBV and Plasmodium falciparum in
endemic BL, and coinfect ion of EBV and HIV in
immunodeficiency-associated BLs (88, 89).

Hodgkin Lymphoma
Hodgkin lymphoma (HL) originates from B cell and is
characterized by the presence of few malignant multinucleated
giant Reed Sternberg cells surrounded by a massively
outnumbered non-neoplastic inflammatory infiltrate (41).
Based on the nature of the infiltrate, classical HL is divided
into four histologic subtypes namely the mixed cellularity (MC),
nodular sclerosing (NS) and the rarer lymphocyte rich (LR) and
lymphocyte-depleted (LD) subtypes (60). A minor, non-classical
subtype of HL is referred to as lymphocyte predominant (LP).
About 96% of MC cases are EBV genome-positive, whereas only
15-20% of cases of NS are associated with EBV. The rarer LR
subtype is associated with EBV in 40% of cases, and most LD
cases are EBV+ (42, 90). EBV is not associated with the non-
classical LP subtype (91). Overall, about 30-40% of HL cases in
North America and Europe were reported to be EBV positive,
but in Latin America, Africa and Asia, EBV was found in almost
100% of all HL cases (91).

The Reed Sternberg cells in HL are B cells arrested at the
germinal center (GC) or post-GC stages of B cell differentiation
where somatic mutations in immunoglobulin (Ig) V genes are
detected (92–95). The Reed Sternberg cells of the classical type of
HL fail to express most B cell-specific genes, including Ig genes
(91). Though the role of EBV in HL pathogenesis is still not fully
understood, it is reported that all EBV-positive tumors
consistently exhibit Latency II infection with high levels of the
LMP1 and LMP2A proteins maintained in every Reed-Sternberg
cell (41). LMP1 functions as a constitutively active variant of the
CD40 receptor, and activates the aberrant transcriptional
programs in Reed Sternberg cells, including the NF-kB, JAK/
STAT, AP-1, and (PI3K)/AKT pathways (96–103). LMP1 could
also promote the survival of EBV-infected B cell receptor (BCR)-
negative Reed Sternberg progenitors and increase the expression
of anti-apoptotic molecules, including BCL2 and MCL1 (104–
106). LMP2A mimics BCR, allows B cell development in the
Frontiers in Immunology | www.frontiersin.org 4
absence of BCR signaling, activates RAS/PI3K/AKT signaling
and the mTOR pathway (107–111). LMP2A is also critical for the
EBV-induced immortalization of BCR-negative GC B cells and
LMP2A expression in different B cells systems can induce many
of the cellular transcriptional changes characteristic of Reed
Sternberg cells (112–117).

Post-Transplant Lymphoproliferative
Disorder
Post-transplant lymphoproliferative disorder (PTLD) is an
uncontrolled B cell proliferation observed in some patients
after solid organ or hematopoietic stem cell transplantation
that can lead to non-Hodgkin and Hodgkin lymphoma (118).
The prevalence of EBV-associated PTLD ranges from 1-20%,
with incidence varying according to the type of allograft, age, and
pretransplant EBV serostatus of transplant recipient (42). PTLD
occurs as a result of increased proliferation of B cells due to either
primary EBV infection, or reactivation of EBV from latently
infected cells after treatment with immunosuppressant to avoid
allograft rejection (119). The genome of EBV has been found in
all of the B cells from PTLD patients. The use of immune
suppressive drugs after organ transplant leads to depletion of
EBV-specific T cells, and the impairment of EBV-specific T cell
mediated immune surveillance results in uncontrolled
lymphoproliferative blast, which causes PTLD in transplant
recipients (119–122). PTLD display Latency III infection, and
all the eight EBV latent antigens are expressed, including six EBV
nuclear antigens EBNA 1, EBNA2, EBNA3A, EBNA3B, EBNA
3C, EBNA 6/LP and two latent membrane proteins LMP1 and
LMP2 (41, 42). These latent EBV proteins play key roles in the
uncontrolled proliferation of B cells, and they are also the targets
of EBV specific CD8+ T cells (21, 123).

Nasopharyngeal Cancer
Nasopharyngeal cancer (NPC) is a squamous cell epithelial
tumor that arises from the lateral wall of nasopharynx,
including the fossa of Rosenmüller and superior posterior wall
(124). NPC shows remarkable variation in ethnic and
geographical distribution, with about 80% cases reported in
Southern China and Southeast Asia (42, 125). NPC rates are
low in the United States and Europe, the tumor occurs at
intermediate to high incidence throughout South-East Asia and
reaches its peak in populations of Southern Chinese decent
where NPC is endemic, with a rate that is 30-fold higher than
that of the United States and Europe (126). NPC is classified into
two histological variants, namely squamous cell carcinomas
(SCCs) and undifferentiated carcinomas of the nasopharyngeal
type (UCNT) (42, 127). In a non-endemic region, about 63% of
NPC cases are UCNT, while in Southern China, more than 95%
of the cases are UCNT (128). Irrespective of geography and of
incidence rate, all cases of undifferentiated NPC worldwide are
EBV-associated, and the EBV genome present in every
malignant cell (10).

Though genetic element and lifestyle/environmental factor
contribute to NPC risk, EBV infection plays a critical role in NPC
pathogenesis (41, 42). The viral infection in NPC epithelial cells
October 2021 | Volume 12 | Article 734471
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is clonal, developed from clonal proliferation of single EBV
infected epithelial cell (42, 129). EBV viral gene expression in
NPC tumor cells is an intermediate form, Latency I/II, all tumors
express EBNA1, the non-coding EBERs and BART-miRs, and
LMP2, whereas LMP-1 has been found in about two-thirds of
NPC cases (86, 130). The BART-miRs and LMP2 promote
epithelial cell growth (131–134). LMP1 activates the NFkB
signaling pathway, which is a consistent feature of all
NPCs (135).

Gastric Cancer
Gastric cancer (GC) has a worldwide annual incidence of over
950,000 cases, and ranks as the third leading cause of cancer-
related mortality globally (42). Though 75% of gastric cancers
appear to be linked to H. pylori infection, up to 10% of gastric
cancers are EBV-positive, accounting for 90,000 new cases each
year (55, 56). The EBV associated gastric cancers appear to form
a clinically and pathogenetically distinct subgroup, occurs
predominantly in the proximal stomach including the cardia,
fundus and body, tend to present earlier in life, have a lower rate
of lymph node involvement and a relatively favorable prognosis
(56, 136–138). EBV associated gastric cancer is classified into
three histological subtypes, lymphoepithelioma like carcinoma
(LELC)-type, conventional adenocarcinoma (CA)-type, and
carcinoma Crohn’s, and more than 90% of EBV associated
gastric cancers show LELC-type morphology (138). Latency I
or intermediate Latency I/II EBV infection are detected in EBV
associated gastric cancer cells, and all the malignant cells within
an individual tumor carry the same monoclonal virus genome
(139). Though the role of EBV in the pathogenesis of gastric
carcinoma is poorly understood, EBV-positive gastric cancer
shows a distinctive hyper-methylated genome (140, 141). It is
proposed that EBV actively drives oncogenic change through
epigenetic modification of the host cell genome, and silences
tumor suppressor genes such as p16 and E cadherin (142).
EBV AND MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is the most common autoimmune
demyelinating disease, affecting both the brain and spinal cord.
It is a lifetime, potentially debilitating condition with both
remitting/relapsing and progressive phases. It typically occurs
in young adults, especially Caucasians with a prevalence of 1/
1,000 in this latter population and affects ~2.5 million people
worldwide (143). EBV is recognized as the strongest infectious
risk factor for this disease. Essentially all MS patients are EBV
seropositive, and although still controversial, EBV may be a
necessary pre-requisite for MS development (144). Several lines
of evidence suggest an etiological role of EBV in MS, including
but not limited to a high titer of anti-EBNA1 antibodies observed
several years before MS onset, preliminary success of EBV-
specific T cell therapy for treating progressive MS, and
intriguing data from animal modeling (145–148). Of note,
individuals carrying the HLA-DR15 gene (found in ~25% of
the overall population) who develop IM have at least a 10-fold
Frontiers in Immunology | www.frontiersin.org 5
increased risk of developing MS (149). MS typically develops >5
years after IM. Although a prophylactic EBV vaccine holds
promise for markedly reducing the incidence of MS,
confirmation will likely require long-term follow-up of
individuals receiving the vaccine for other indications, most
likely prevention of IM.
PROPHYLACTIC EBV VACCINE

An EBV prophylactic vaccine holds great promise for prevention
of cancers caused by EBV infection, as has been the case for
prophylactic vaccines against human papilloma virus (HPV) and
hepatitis B virus that cause ~600,000 and ~400,000 cases of new
cancers each year respectively (10, 150). An EBV prophylactic
vaccine would also be the most cost-effective approach for the
management of infectious mononucleosis as well as EBV
associated autoimmune disease such as MS (Table 1). A
prophylactic EBV vaccine uses the strategies to induce
antibody response mainly neutralizing antibodies to block EBV
infection of its target cells, whereas non-neutralizing antibodies
as well as cell mediated immune response further improve
prophylactic efficacy. The target cells of EBV are mainly B cells
and epithelial cells, and EBV requires multiple envelope proteins
for cell entry. EBV infection of B cells requires envelope proteins
gp350, gH, gL, gB and gp42, whereas EBV infection of epithelial
cells requires envelope proteins BMFR2, gH, gL and gB, therefore
these envelope proteins could be excellent EBV prophylactic
vaccine candidates [(7, 25–27, 33), Table 1].

Recombinant EBV Envelope
Protein Vaccines
Early efforts in EBV vaccine development were focused on gp350
(Table 1). EBV gp350 is the most abundant EBV envelope
protein, and about half of the EBV neutralizing activity in EBV
seropositive human sera is against gp350 (7, 161). Purified or
recombinant gp350 was shown to protect cotton top tamarins
from lymphoma caused by EBV infection, and similar results
were reported with adenovirus or vaccinia virus expressing
gp350 (69–76). Phase I and II studies of a recombinant gp350
produced in Chinese hamster ovary cells showed that the
recombinant gp350 induced neutralizing antibodies in humans
in 70% of the subjects, and reduced the rate of infectious
mononucleosis by 78% in the vaccinated subjects but did not
prevent EBV infection (156, 167). This is most likely because
gp350 is not strictly essential for EBV virus infection of B cells
but only important for efficient infection, as well as the inability
of gp350 induced antibodies to protect against EBV infection of
epithelial cells (24, 25, 28, 33, 168).

Our group was the first to report in 2016 that recombinant
EBV gH/gL and gB proteins induced markedly higher EBV
neutralizing antibodies compared to gp350, where a trimeric
form of gH/gL and a tetrameric form of gp350 elicited
significantly higher EBV neutralizing activities compared to
their monomeric counterparts (159). This was confirmed by
the recently published study by Bu et al. that EBV gH/gL or gH/
October 2021 | Volume 12 | Article 734471
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gL/gp42 nanoparticles induced potent neutralizing antibody
responses in mice and non-human primates, which blocked
EBV-target cell fusion and prevented EBV infection of B cells
and epithelial cells (161). Though these nanoparticle EBV
vaccine candidates induced 10- to 1000-fold higher titers of
neutralizing antibodies compared to that of soluble proteins, as
the gH, gL and/or gp42 proteins were highly packed into the
nanoparticles, the expression of native conformational epitopes
of these EBV envelope proteins could be prevented (161). It was
reported that virus like particles and nanoparticles could induce
quantitatively high antibody responses whereas recombinant
proteins expressing native epitopes could elicit antibody
responses that are high both quantitatively and qualitatively
(169–172). This has been confirmed with the herpes virus
Frontiers in Immunology | www.frontiersin.org 6
recombinant envelope protein vaccine candidates produced in
our laboratory including EBV gH/gL and EBV trimeric gB (159,
173, 174).

EBV gH/gL and gB constitute the core fusion machinery,
which play the critical roles for EBV fusion and entry into all
target cells, thus making the inclusion of EBV gH/gL and gB
more promising as prophylactic EBV vaccine candidates than the
use of gp350 alone (24, 25, 28). As EBV gH/gL and gB could both
elicit neutralizing antibodies, the presence of gH/gL neutralizing
antibodies and gB neutralizing antibodies simultaneously would
most likely exhibit synergistic effects (7, 24, 33). In this regard, we
recently demonstrated that mixing EBV gH/gL anti-sera with
EBV gB anti-sera resulted in strong synergistic neutralizing
activity for both B cells and epithelial cells. This may have
TABLE 1 | Summary of prophylactic EBV vaccines.

Platform/Antigen/Adjuvant Animal/
Clinical
trial

Published
year

Results

1. EBV envelope protein vaccines
Subunit vaccine, purified full length gp340 from virus, with liposome,
Freund’s adjuvant, lipid A

Mice, 1984 Antibody responses were induced (70).
Cottontop
tamarins

Subunit vaccine, Purified full length gp340 from virus Cottontop 1985 Protection against malignant lymphoma (151).
tamarins

Subunit vaccine, purified gp350/gp220 from yeast and mammalian cells Rabbits 1988 EBV-specific neutralizing antibodies were induced (152).
Subunit vaccine, purified gp340, incorporated into immune-stimulating
complexes

Cottontop 1988 Protection against malignant lymphoma (153).
tamarins

Subunit vaccine, recombinant gp340 adjuvanted with Alum Cottontop 1994 Protection of 3/5 cottontop tamarins against malignant
lymphoma (154).tamarins

Subunit vaccine, recombinant single chain gp350 with Freund’s adjuvant
versus Alum

Rabbits 1999 High titers of neutralizing antibody elicited (155).

Subunit vaccine, recombinant single chain gp350 with AS04 versus alum Phase II 2007 Induced neutralizing antibodies in 70% of human subjects,
and decreased IM by 78% (156).

Subunit vaccine, recombinant tetrameric versus monomeric gp3501-470

adjuvanted with alum/CpG-ODN
Mice 2013 Tetrameric gp350 induced ∼20- fold higher titers of IgG and

>19-fold higher neutralizing titers at the highest dose (157).
Subunit vaccine, self- assembling nanoparticles expressing gp3501-123 Mice 2015 gp350-nanoparticle elicited 10- to 100-fold higher neutralizing

titers compared to soluble gp350 (158).
Subunit vaccine, recombinant monomeric gH/gL, trimeric gH/gL and
trimeric gB, adjuvanted with alum/CpG-ODN

Rabbits 2016 Trimeric and monomeric gH/gL, trimeric gB, and tetrameric
gp350 induced EBV-neutralizing titers >100-, 20-, 18-, and 4-
fold higher, respectively, than monomeric gp350 (159).

Subunit vaccine, Fc-fused gp350 dimer with Alum Mice 2018 Elicited significantly higher neutralizing titers than gp350
monomer (160).

Subunit vaccine, self-assembling nanoparticles expressing gH/gL or gH/gL/
gp42 with SAS adjuvant

Mice,
cynomolgus
macaques

2019 gH/gL and gH/gL/gp42-ferritin nanoparticles elicited >40- and
~4-fold higher neutralization titers for B cells in monkeys
compared with soluble proteins; for epithelial cells, >25- and
~4-fold higher neutralizing titers were elicited. (161).

Subunit vaccine, recombinant trimeric gB, monomeric gH/gL and their
combination, adjuvanted with alum/CpG-ODN

Rabbits,
humanized
mice

2021 Sera from rabbits immunized trimeric gB or monomeric gH/gL
protected humanized mice from lethal dose EBV challenge
and markedly decreased EBV loads. Immunization with the
combination of gB and gH/gL elicited strong synergistic
neutralizing activity (162).

2. EBV Virus-Like particle (VLP) vaccines
EBV-derived VLP, produced via the deletion of the EBV terminal repeats,
EBNA2, EBNA 3A, 3B and 3C, LMP1 and BZLF1

Mice 2011 EBV-specific humoral and cellular immune responses were
induced (163).

EBV-derived VLP, produced by fusing EBNA1 and EBNA3C to the major
tegument protein BNRF1

Humanized
mice

2018 Potent CD4+ T cell responses elicited, and EBV loads were
reduced (164).

Newcastle disease virus (NDV) VLP, expressing gp350/220 Ectodomain Mice 2015 Elicited neutralizing antibody responses, but not higher than
that of soluble gp350/220 (165).

NDV VLP, expressing gH/gL-EBNA1 or gB-LMP2 Mice 2017 Elicited EBV-specific T-cell responses and higher EBV
neutralizing titers (166).

3. Synthesized mRNA EBV vaccines
Synthesized mRNA encoding gp350, gB, gH/gL and gp42 Mice 2021 Elicited ~20- and ~100-fold higher neutralizing activities for B

cells and epithelial cells respectively compared to human sera.
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been due to the ability of gH/gL and gB antibodies to block
different steps in EBV infection of target cells (162).
Immunization with the combination of EBV gH/gL and
trimeric gB also elicited markedly higher EBV neutralizing
activities for both B cells and epithelial cells as compared to
that induced by immunization with EBV gH/gL or trimeric gB
alone, demonstrating strong synergistic effects of EBV core
fusion envelope proteins in elicitation of neutralizing
antibodies (162). The strong synergistic effects are most likely
due to the sequential coordination of these envelope proteins in
mediating EBV entry and infection of target cells, suggesting that
the combination of EBV core fusion machinery envelope
proteins gH/gL and trimeric gB could be a highly effective EBV
prophylactic vaccine. Recombinant gp350 also demonstrated
synergistic EBV neutralizing activities when used with EBV
gH/gL and/or gB (175). Further, we recently reported that the
immune sera from rabbits immunized with EBV gH/gL or
trimeric gB protected humanized mice from death after lethal
dose EBV challenge and markedly decreased the EBV in
peripheral blood (162). Collectively, these data strongly suggest
that the combination of EBV gH/gL, gB and gp350 could be an
ideal EBV prophylactic vaccine that can elicit markedly high
synergistic EBV neutralizing activity with the potential to induce
sterilizing immunity. EBV gp350, gH, gL, and gB can also induce
CD4+ and CD8+ T cell immune responses, and have
demonstrated to inhibit proliferation of EBV-infected primary
B cells in vitro before latency was established (40, 176, 177). The
T cell immune responses induced by EBV gp350, gH, gL, and gB
could further increase the efficacy of a prophylactic vaccine by
promoting the killing of recently infected epithelial cells and B
cells and stopping B-cell transformation if the EBV is not
blocked by neutralizing antibodies.

Virus-Like Particle EBV Vaccines
Virus-Like particle (VLP) vaccines have been successfully
developed for hepatitis B virus and human papilloma virus,
but the development of VLP vaccines for EBV has met
challenges. The first successful EBV VLPs were created by the
deletion of the EBV terminal repeats, and potential oncogenes
namely EBNA2, 3A, 3B and 3C, LMP1 and BZLF1 (163). These
EBV VLPs were shown to elicit EBV-specific humoral and
cellular immune responses after immunization in mice (163).
Later, the viral packaging and nuclear egress proteins BFLF1/
BFRF1A were further deleted to improve safety, and the EBV
VLPs produced could induce comparable CD4+ T cell responses
as that of wildtype EBV, but the responses against structural
proteins were reduced. More immunogenic EBV VLPs were
made by fusing latent antigens EBNA1 and EBNA3C to the
major tegument protein BNRF1 of EBV. The EBV VLPs
produced were able to stimulate potent CD4+ T cell responses
against structural as well as latent EBV protein epitopes, and
reduced EBV loads in the peripheral blood of humanized mice
after immunization (164). However, the possibility of repacking
of EBV DNA remains a safety concern for the EBV-derived
VLPs. Another approach used a novel Newcastle disease virus
(NDV) VLP platform displaying the EBV gp350/220
ectodomain, but the EBV neutralizing titers elicited in mice
Frontiers in Immunology | www.frontiersin.org 7
were not significantly higher than that induced by soluble gp350/
220 (165). The NDV VLP platform was subsequently used to
produce gH/gL-EBNA1 VLPs and gB/LMP2 VLPs. Both elicited
higher EBV neutralizing titers in mice, but not comparable to
that elicited by UV-inactivated EBV, suggesting potency
concerns with the NDV VLP EBV vaccines (166).

Synthesized mRNA EBV Vaccines
The rapid and successful development of synthesized mRNA
vaccines against SARS-CoV2 for the COVID-19 pandemic has
encouraged the development of synthesized mRNA EBV
vaccines (178, 179). After demonstrating its mRNA vaccine
candidate encoding gp350, gB, gH/gL and gp42 induced
significantly higher EBV neutralizing titers in mice compared
to human sera, Moderna has initiated phase I clinical trial of its
mRNA EBV vaccine. However, there are potential challenges
with this approach. First, whether mRNA vaccines could induce
long-term memory responses in humans remains to be
determined, and may require repeated booster immunizations
to maintain high titers of neutralizing antibodies and potent T
cell immune responses. This would be unacceptable for
pathogens such as EBV that rarely cause a medical emergency.
Second, mRNA is an intrinsic adjuvant that may limit multi-
component formulations because of unacceptable side effects.
Currently it has been reported that mRNA vaccines against
SARS-CoV2 may have caused myocarditis and pericarditis in a
small number of subjects. Long-term adverse effects as well as
adverse effects after multiple repeated immunizations are
still unknown.

Viral Vector EBV Vaccines
The viral vector vaccine platform has mainly been used for the
development of therapeutic EBV vaccines, which are discussed in
detail later in the therapeutic EBV vaccine section.
THERAPEUTIC EBV VACCINE

The immune system plays a critical role in the control of tumors,
and the immune-based tumor-specific therapeutic approaches
could be highly effective with limited adverse effects (21).
Therapeutic EBV vaccines aim at boosting the existing or
inducing novel antiviral adaptive immune responses in patients
with EBV-associated cancers (21). The targets of EBV
therapeutic vaccines are focused on EBNA1, LMP2 and/or
LMP1, as these proteins are involved in the modulation of key
factors that contribute to the transformation of normal cells into
tumors [(180–185), Table 2]. Most therapeutic EBV vaccination
approaches have focused on patients with NPC, and early clinical
trials were done with dendritic cells (DCs)-based EBV vaccines
(21). Autologous monocyte-derived dendritic cells (DCs) from
NPC patients pulsed with HLA-A11-, -A24-, or -B4-restricted
LMP2 epitopes boosted EBV-specific CD8+ T-cell responses in
nine of 16 patients, and induced partial tumor regression in two
patients (191). In another phase I clinical trial where 16 HLA-A2+
NPC patients were vaccinated with autologous DCs pulsed with
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HLA-A2-restricted LMP2A peptides, the LMP2-specific T-cell
response was improved in 9 of 16 patients, which correlated
with a modest decrease in serum EBV DNA levels (187).

Recombinant viral vector vaccines were later developed to
present a wide range of epitopes to improve efficacy. One of the
approaches used a recombinant adenoviral vector to deliver
LMP2 antigen, and demonstrated a dose dependent increase in
the proportion of LMP2-specific CD3+ CD4+ cells in the
peripheral blood of immunized NPC patients in a clinical trial
(188). A modified vaccinia ankara (MVA) expressing the
carboxyl terminus of EBNA1 and full-length LMP2 as a fusion
protein (MVA-EL) was shown to efficiently expand the EBNA1-
and LMP2-specific CD4+ and CD8+ T cells from the peripheral
blood lymphocytes of seropositive healthy donors in vitro (192).
A phase I clinical trial of the MVA-EL vaccine carried out in
Hong Kong where NPC patients in remission received three
intradermal MVA-EL immunizations at 3-weekly intervals, and
demonstrated a two-fold increase in the T-cell response to one or
both vaccine antigens in 15 of 18 treated patients (189). Further,
these T-cell responses were mapped to known CD4+ and CD8+
T-cell epitopes of EBNA1 and/or LMP2 (189). A second phase I
clinical trial of the MVA-EL vaccine conducted in UK showed an
increase in CD4+ and CD8+ T-cell responses to one or both of
the antigens in 8 of the 14 NPC patients tested, as well as
increased differentiation and functional diversification in the
EBNA1- and LMP2-specific CD4+ and CD8+ cells (190).

Though the EBV therapeutic vaccine clinical trials have shown
many potential clinical benefits, further remains to be done. The DC
vaccines can only deliver limited antigen epitopes and are expensive
to prepare (21). Recombinant viral vector vaccines can deliver a
wide range of epitopes, but the anti-viral vector immune responses
elicited after repeated immunizations are a big obstacle, which could
markedly decrease the efficacy of viral vector vaccines. Different
vaccine platforms should be explored for the development of EBV
therapeutic vaccines. Although T-cell responses were believed to be
critical in controlling EBV-associated cancers, high levels of
neutralizing antibodies are associated with a lower risk of NPC,
and NPC progression has been shown to correlate with active EBV
replication and high titers of EBV in the peripheral blood, thus a
vaccine inducing potent EBV neutralizing antibodies may reduce
the risk of EBV-related cancers (21, 193). The role of the
neutralizing antibody response in EBV-associated malignancies
Frontiers in Immunology | www.frontiersin.org 8
needs to be explored further. A vaccine platform delivering
EBNA1, LMP1/LMP2, gp350, gH/gL and gB simultaneously may
significantly increase the efficacy of a therapeutic vaccine against
EBV associated cancers.
IMMUNOTHERAPY AGAINST EBV
ASSOCIATED CANCER

Adoptive T-Cell Therapy
Adoptive T-cell therapy (ACT) has been successfully used for the
treatment of PTLD, and the reconstitution of cellular immunity
provides a powerful mechanism to control EBV-associated PTLD
[(21), Table 3]. The first ACT clinical trial demonstrated that
infusion of donor-derived EBV-specific T lymphocytes into
allogeneic hematopoietic stem cell transplantation (HSCT)
patients with donor-derived EBV-associated immunoblastic
lymphoma induced a complete regression in 5/5 patients, but
graft-versus-host disease (GvHD) was developed due to the
alloreactive T cells (194). Later EBV-specific cytotoxic T
lymphocytes (CTLs) were obtained by in vitro stimulation with
EBV-transformed B lymphoblastoid cell lines (LCLs), synthetic
peptides or recombinant viral vectors, and followed by selection
with TCR tetramer binding or IFN-g capture. Clinical trials
demonstrated that these in vitro-expanded donor-derived EBV-
specific CTLs could be used effectively for the prevention and
treatment of PTLD in HSCT patients with minimal alloreactivity
(64–66). Similar strategies were also used to expand in vitro the
autologous EBV-specific CTLs from highly immunosuppressed
solid organ transplantation (SOT) patients and successfully
controlled EBV-associated PTLD (195–197). Encouraged by the
excellent results of treatment of PTLD with ACT, ACTs have been
developed for NPC and HL using in vitro expanded CTLs targeting
type II latency antigens EBNA1, LMP1 and LMP2 [(198, 199, 206–
208),Table 3]. Clinical trials with these expanded CTLs significantly
increased response rates as well as overall survival in both NPC and
HL patients (186, 200, 201).

EBV Specific T Cell Receptor Engineered
T Cell Therapy
T cell receptor (TCR) engineered T cell therapy is a promising
approach to cancer treatment, and has been used in the
TABLE 2 | Summary of therapeutic EBV vaccines.

Platform/Antigen Disease Clinical
trial

Published
year

Results

1. Dendritic cells (DCs)-based EBV vaccines
Autologous monocyte-derived DCs pulsed with LMP2 peptides NPC Phase I 2002 EBV-specific CD8+ T-cell responses boosted in 9/16 patients,

and partial tumor regression induced in 2/16 patients (186).
Autologous DCs pulsed with LMP2A peptides NPC Phase I 2013 LMP2-specific T-cell response improved in 9/16 patients, with

decreased serum EBV load (187).
2. Recombinant viral vector vaccines
Adenoviral vector expressing LMP2 NPC Phase I 2016 LMP2-specific CD3+ CD4+ cells increased (188).
Modified vaccinia ankara (MVA) expressing EBNA1 and LMP2 as
a fusion protein (MVA-EL)

NPC Phase I 2013 Two-fold increase in the T-cell response to EBNA1 and/or LMP2
in 15/18 patients treated (189).

MVA-EL NPC Phase I Increased numbers and differentiationof CD4+ and CD8+ T-cells
to EBNA1 and LMP2 in 4/8 patients (190).
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treatment of HPV associated cancer targeting E7 antigen with
impressive results (209–211). TCRs that recognize EBNA3A,
EBNA3B, LMP1, LMP2, BRLF1 and BMLF1 have been generated
from specific CD8+ T cell clones, and tested their effectiveness in
eliminating EBV transformed B cells (212–214). It was reported
that the T cells transduced with these T cell receptors recognized
autologous LCLs weakly, partially due to limited latent EBV
antigen expression in LCLs. However, the tumor progression of a
NPC cell line expressing LMP2 implanted into nude mice was
significantly attenuated by LMP2 TCR transduced T cells (215).
It was hypothesized that some of the transduced TCR a and b
chains might pair with the endogenous TCR b and a chains of
the T cells, which reduce the number of transduced TCR and
thereby prevented efficient LCL recognition (216). To improve
correct pairing of transduced TCR a and b chains, chimeric
TCRs were generated, where the variable domains of TCR a and
b chains from EBV specific T cell clones were fused to the
corresponding mouse TCR constant regions (217). The stability
of chimeric TCRs was further improved by introducing an
additional disulfide bond between the a and b chain of the
murine TCR constant regions (202, 218). As a result, T cells
transduced with a chimeric TCR recognizing LMP2 were able to
kill up to half of co-incubated LMP2 positive cells in vitro and to
suppress LMP2 expressing tumor cell growth in immune
compromised mice [(202), Table 3]. Similar results were
observed with a TCR recognizing EBV LMP1, and T cells
transduced with LMP1 specific TCR doubled the survival of
Frontiers in Immunology | www.frontiersin.org 9
immune compromised mice challenged with LMP1 expressing
tumor cells (203).

EBV Specific Chimeric Antigen Receptor T
Cell Therapy
T cells expressing chimeric antigen receptors (CARs) targeting
CD19, CD20, CD22 and CD30 were able to kill around 50% of
different B cell lymphomas in cell culture, and have provided
spectacular results in clinical trials, with 60% of B cell lymphoma
and leukemia patients in complete remission after treatment
(219–223). However, significant adverse effects of cytokine
release syndrome and neurotoxicity have also been observed
due to the abundance of target cells, including both normal and
malignant B cells after infusion of CAR-T cells (123). Further,
deficiencies in humoral immune responses could be induced due
to the persistent non-specific killing of B cells and predispose the
patients for respiratory and gastrointestinal infections (224). To
avoid the adverse effects of B cell antigen specific CAR-Ts, EBV
specific CAR-Ts have been explored for treatment of NPC.
LMP1 specific CAR-T cells could kill up to 70% of LMP1
overexpressing NPC cells in vitro, and intratumoral injection
of anti-LMP1 CAR-T cells significantly reduced the growth of
NPC tumor overexpressing LMP1 in immune compromised
mice [(204, 205), Table 3]. Though it is questionable whether
the LMP1 specific CAR-T cells could target the tumor cells in
NPC patients where LMP1 expression is usually much lower, the
results are encouraging. Clinical trials using LMP1 specific
TABLE 3 | Summary of EBV immune cell therapies.

Platform Disease, clinical
trial/Animal

model

Published
year

Results

1. Adoptive T-cell therapy
Donor-derived EBV-specific T lymphocytes PTLD I 1994 Complete regression in 5/5 patients, but graft-versus-host disease

developed (194).
EBV-specific cytotoxic T-lymphocyte (CTL) lines from donor PTLD, HSCT I 1995 Complete regression of immunoblastic lymphoma in 1/1 patients,

EBV reactivation controlled in 3/3 patients without lymphoma (64).
Donor-derived polyclonal CD4+ and CD8+ T-cell lines PTLD, HSCT I 1998 Complete regression of immunoblastic lymphoma in 2/2 patients,

EBV reactivation controlled in 6/6 patients without lymphoma (65).
Autologous EBV-specific CTL lines PTLD, SOT I 1999 Significant regression of the PTLD in 1/1 patient (195).
Autologous EBV-specific CD8 and CD4 lymphocytes PTLD, SOT I 2006 Complete regression of liver PTLD in 1/1 patient, prevention of

PTLD in 12/12 patients (196).
Autologous EBV-specificcytotoxic T lymphocytes SOT I 2002 Decrease EBV load, prevention of PTLD in 7/7 patients (197).
Autologous EBV-specific cytotoxic T lymphocytes NPC I 2005 Complete response in 4/10 patients and partial response in 2/10

patients (198).
Autologous EBV-specific cytotoxic T lymphocytes NPC I/II 2010 Complete response in 7/15 patients and partial response in 3/15

patients (199).
Autologous EBV-specific cytotoxic T lymphocytes NPC II 2014 Complete response in 3/35 patients and partial response 22/35

patients (200).
Autologous EBV-specific cytotoxic T lymphocytes targeting LMP2 Lymphoma II 2014 Complete response in 11/21 patients and partial response 2/21

patients (201).
2. EBV Specific T Cell Receptor (TCR) engineered T cell therapy
Autologous CD8 and CD4 Lymphocytes expressing LMP2
specific TCR

NSG mouse 2015 Lysed LMP2+ NPC cells and inhibited tumor growth in a mouse
model (202).NPC model

Autologous CD8 and CD4 Lymphocytes expressing LMP1
specific TCR

NSG mouse
tumor model

2018 Doubled the survival time of mice bearing tumor (203).

3. EBV Specific Chimeric Antigen Receptor (CAR) T cell therapy
CD8 and CD4 Lymphocytes Expressing LMP1 specific CAR NSG mouse 2014 Killed 70% of LMP1 overexpressing NPC cells in vitro, and

significantly reduced the growth of NPC tumor overexpressing
LMP1 (204, 205).

tumor model 2019
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CAR-T cells for the treatment of NPC are underway, but no
results have yet reported. EBV LMP2 is another promising target
for treatment of EBV associated cancers.
CONCLUSION

EBV infects more than 95% of the human population, causes IM
in 70% of adolescents and young adults in developed countries,
accounts for 1.5% of all cancers worldwide and represent 1.8% of
all cancer deaths. An EBV prophylactic vaccine holds great
promise for prevention of EBV associated cancers such as BL,
HL, PTLD, NPC, and GC, and would also be the most cost-
effective approach for the management of IM as well as EBV
associated autoimmune disease such as MS. Though VLP, viral
vector and mRNA platforms have been used for the development
of an EBV prophylactic vaccine, the approach using recombinant
EBV envelope proteins has made advancement the most. EBV
envelope proteins including gH/gL, gB, gp350 play key roles in
EBV entry and infection of its target cells, and neutralizing
antibodies elicited by each of these proteins have shown to
prevent EBV infection of target cells, markedly decrease EBV
titers in the blood of humanized mice, and prevent their death
after challenge with lethal dose EBV. Recent studies
demonstrated that immunization with the combination of
recombinant EBV gH/gL and gB proteins markedly increased
the EBV neutralizing activity compared to immunization with
individual protein. These data suggest that the combination of
EBV gH/gL, gB and gp350 could be an ideal EBV prophylactic
vaccine that can elicit markedly high EBV neutralizing activity
with the potential to induce sterilizing immunization, prevent
primary EBV infection and therefore prevent EBV associated
cancers as well IM and MS.

For patients with EBV-associated cancers, therapeutic EBV
vaccines targeting latent proteins EBNA1, LMP2 and/or LMP1
are promising treatments. Though the current DC-based and
viral vector EBV therapeutic vaccines have shown significant
Frontiers in Immunology | www.frontiersin.org 10
limitations, different vaccine platforms targeting both latent and
lytic envelope proteins including EBNA1, LMP1/LMP2, gp350,
gH/gL and gB simultaneously can be explored to improve
efficacy. Immune cell therapies for EBV-associated cancers
have emerged as another highly promising treatment. ACT has
demonstrated to cure and prevent PTLD, and has shown to be
highly effective in the treatment of NPC and HL by targeting
latent proteins EBNA1, LMP1/LMP2. To further improve
efficacy and minimize adverse effects, EBV specific CAR-T and
TCR engineered T cell therapies targeting EBV latent protein
LMP1, LMP2 and/or EBNA1 have been developed, with the goal
of specific killing of EBV+ cancer cells highly efficiently.
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