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Generalized linear mixed-effects
models for studies using
different sets of stimuli across
conditions
ShunCheng He and Wooyeol Lee*

Department of Psychology, Chungbuk National University, Cheongju, South Korea

A non-repeated item (NRI) design refers to an experimental design in which

items used in one level of experimental conditions are not repeatedly used

at other levels. Recent literature has suggested the use of generalized linear

mixed-effects models (GLMMs) for experimental data analysis, but the existing

specification of GLMMs does not account for all possible dependencies

among the outcomes in NRI designs. Therefore, the current study proposed

a GLMM with a level-specific item random effect for NRI designs. The

hypothesis testing performance of the newly proposed model was evaluated

via a simulation study to detect the experimental condition effect. The

model with a level-specific item random effect performed better than the

existing model in terms of power when the variance of the item effect

was heterogeneous. Based on these results, we suggest that experimental

researchers using NRI designs consider setting a level-specific item random

effect in the model.

KEYWORDS

generalized linear mixed-effects model (GLMM), experimental data analysis, non-
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Introduction

Generalized linear mixed-effects models (GLMMs; Stroup, 2012) have been widely
applied in various contexts in psychology (Judd et al., 2012; Moscatelli et al., 2012;
Trippas et al., 2017). The use of GLMMs for experimental data analysis was proposed a
decade ago (Baayen et al., 2008; Barr, 2008; Quené and Van den Bergh, 2008) and is now
widely accepted (Goldhammer et al., 2017; Cho et al., 2018; Singmann and Kellen, 2019).
GLMMs are useful for experimental data because they can include all sources affecting
the responses in a model with fixed or random effects, and the distribution of responses
is not limited to a normal distribution. For example, this model can include the effects of
the experimental condition as a fixed effect while the variability of participants or items
as a random effect. Additionally, binary dependent variables are explained as the sum of
the effects on the logit scale.

In within-participant experimental designs, the dependent variable is measured in a
group of participants at every level of an independent variable of interest. This type of
design can be considered a hierarchical data structure where the repeatedly measured
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responses are nested within participants. In psychological
experiments, however, the dependent variable is often measured
using several items from each participant in each level of
experimental condition. In this case, the data structure is no
longer hierarchical, but the responses are cross-classified by the
participants and items.

In a cross-classified design, items can also be included as a
component of the experimental design. For example, between-
items design refers to an experimental design in which items
are not repeatedly presented between levels of an experimental
condition (Barr et al., 2013). This design can be used to
avoid learning effects or mere-exposure effects (Gordon and
Holyoak, 1983). The present study defines the experimental
design combining within-participant design and between-items
design as a non-repeated item (NRI) design. Table 1A depicts
an example dataset of an NRI design in long format. In this
example, the participants are exposed to the bug and fruit levels
of an experimental condition (i.e., category). At each level, the
dependent variable is measured using multiple items. The items
used at the two levels are samples from different populations, so
items are not repeated over the levels.

NRI design is commonly used in psychological research.
A literature survey was conducted to provide evidence for the
claim. All papers published in 2021 were reviewed in the 150th
volume of the Journal of Experimental Psychology: General, one
of the APA journals for experimental psychology research. The
survey results showed that 25 out of the 145 papers (17%) were
based on the NRI design. Seven papers included at least one
binary dependent variable out of the 25 papers where the NRI
design was used. Sixteen papers used repeated measures analysis
of variance (RM-ANOVA) only and one paper reported Bayes
factors in addition to RM-ANOVA results. Nine papers used the
GLMM framework, but no study considered the item variance
heterogeneity in the model.

However, NRI designs have rarely been mentioned in the
relevant literature. One reason may be the widespread practice
that the RM-ANOVA has been the primary analysis method
used for NRI designs. As shown in Table 1B, in the ANOVA
framework, the dependent variable is redefined as the mean
response across items for each participant in each level of the
experimental condition, and subsequent analyses are performed
with the newly defined dependent variable. This practice is
based on two assumptions. First, the variability of the item
effects does not differ between the levels of the experimental
condition. Second, the measurement error of the mean response
as an estimate becomes negligible as the number of the items
increases (Luck, 2005). However, if the variance of the item effect
varies for each level and is ignored, the RM-ANOVA cannot
handle this item effect heterogeneity. In psycholinguistics, by-
participant and by-item tests (called F1/F2 tests, respectively)
have been conventionally reported (Clark, 1973; Raaijmakers
et al., 1999; Raaijmakers, 2003). According to this approach, the
mean difference between levels is considered significant only

when both F1 and F2 tests reveal a significant result. However,
this convention cannot avoid inflated Type I and Type II errors
related to the effect of experimental conditions (Raaijmakers
et al., 1999; Baayen et al., 2008; Barr et al., 2013).

Among current GLMMs being employed for experimental
data analysis, the fullest model specifies a random intercept and
a random slope for both participants and items (Barr et al., 2013;
Matuschek et al., 2017). However, this model is unsuitable for
NRI design datasets because, unlike the participants, the items
do not overlap across the levels. On the other hand, a model in
which a random intercept is specified for the random effect of
all items cannot cope with the heterogeneity of item effects. As
in the RM-ANOVA, if the random effect structure is not well
established in the GLMM, the inference about the fixed effect
will be inaccurate (Verbeke and Lesaffre, 1997; Litière et al.,
2007). Therefore, it is necessary to specify a level-specific item
random effect for NRI designs.

TABLE 1 Example dataset (A) and its mean response (B) for
non-repeated item (NRI) design.

(A)

Participant ID Item Category Response

P1 Ants Bug 0

P1 Cricket Bug 1

P1 Bees Bug 0

P1 Grape Fruit 1

P1 Melon Fruit 1

P1 Apple Fruit 0

P2 Ants Bug 0

P2 Cricket Bug 0

P2 Bees Bug 0

P2 Grape Fruit 1

P2 Melon Fruit 1

P2 Apple Fruit 0

P3 Ants Bug 0

P3 Cricket Bug 1

P3 Bees Bug 0

P3 Grape Fruit 1

P3 Melon Fruit 1

P3 Apple Fruit 1

(B)

Participant ID Category Mean response

P1 Bug 0.33

P1 Fruit 0.67

P2 Bug 0.00

P2 Fruit 0.67

P3 Bug 0.33

P3 Fruit 1.00
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GLMMs are estimated using maximum likelihood (ML)
or Bayesian approaches, which can now be easily estimated
in R (Lee and Grimm, 2018). Several hypothesis testing
methods are used for fixed effects when ML is chosen as an
estimation method. Both likelihood ratio (LR) and Wald tests
use a theoretical distribution such as the standard normal
(Z) or chi-square (χ2) as a reference distribution, but the
logic for calculating these statistics is different (Molenberghs
and Verbeke, 2007). While both are assumed to follow the
theoretical distribution asymptotically, the sample size of the
experimental data is relatively small. Accordingly, we examined
the performance of the LR and Wald tests in GLMMs for
experimental data.

The primary purpose of this study is to investigate the
consequences of misspecifying item random effects in NRI
designs. The remainder of this paper is organized as follows.
First, two GLMMs are introduced that can be used for NRI
designs. Second, an illustrative example of using a GLMM
for an NRI design is provided. Third, the performance of the
hypothesis testing of the two GLMMs is examined through a
simulation study. Finally, a discussion is presented.

Generalized linear mixed-effects
models for non-repeated item
designs

In this study, NRI designs are explained using the following
situation. A binary dependent variable is measured at each level
k of an experimental condition with two levels (K = 2), and J
participants are exposed to both levels. The dependent variable
is measured with I items at each level, and the items do not
overlap between the levels. Thus, the total number of items is
2 × I. Two GLMMs in the mathematical form are presented
below, and the lme4 (Bates et al., 2015) syntax corresponding
to each is shown in Table 2. The first model is the common item
random effect model. This model is equivalent to the participant
random slope model in the previous literature (Barr et al., 2013).
The effect of all items is assumed to follow a single distribution.
The second model is the level-specific item random effect model,
which adds complexity to the first model. This model includes
the variance parameters of the item random effect for each level
of the experimental conditions in the NRI design.

TABLE 2 lme4 specification of GLMMs in this study.

Model lme4 specification

M1 y∼ x+ (1+x| participant)+ (1| item)

M2 y∼ x+ (1+x| participant)+ (−1+c1| item)+ (−1+c2| item)

M1, Common item random effect model; M2, Level-specific item random effect model.
“c1” and “c2” represent indicator variables for each level of the experimental conditions.

Model specification

Common item random effect model (M1)
Let yjik be the response from participant j (j = 1, . . ., J)

on item i (i = 1, . . ., 2I) in the kth level (k = 1 and 2) of the
experimental condition. The equation for the common item
random effect model (M1) for an NRI design can be written as:

logit
[
P
(
yjik = 1

)]
= β0 + β1xk + s0j + s1jxk + wi (1)

The response yjik is explained on the logit scale using the
right term of the equation. xk is the experimental condition
with dummy coding. That is, the first and second levels are
coded as 0 and 1, respectively. β0 and β1 are the fixed effects
for the intercept and the slope, respectively. The fixed effect
refers to the effect of the experimental condition on average
participants and items. The expressions intercept and slope are
taken from multilevel modeling (Snijders and Bosker, 2012).
Since the experimental condition is a categorical independent
variable, the intercept refers to the mean at the first level, the
slope refers to the mean difference between the first and second
levels of the experimental condition.

s0j and s1j are the participant random intercept and the
participant random slope of participant j, respectively; and wi

is the item random effect of item i. The random effect refers
to the unique effect of an individual participant or item. Since
individual responses are cross-classified by both the participant
and the item simultaneously, the participant random effect can
be seen as the average effect of individual participant across
items within the experimental condition, and the item random
effect as the average effect of the items across participants.

The participant and item random effects are assumed to be
distributed as in (2) and (3), respectively:[

s0j

s1j

]
∼ MVN

([
0
0

]
,

[
τ 2

0 τ01

τ10 τ
2
1

])
and (2)

wi ∼ N
(
0,ω2) (3)

Level-specific item random effect model (M2)
The equation for the level-specific item random effect model

(M2) is:

logit
[
P
(
yjik = 1

)]
= β0 + β1xk + s0j + s1jxk + wik (4)

The model specification for M2 is identical to that for M1,
except that the item random effect wik has an additional subscript
k, indicating it is a level-specific item random effect. This effect
follows a normal distribution for each level, as shown in (5):

wi1 ∼ N
(
0,ω2

1
)

and wi2 ∼ N
(
0,ω2

2
)

(5)

M1 and M2 are nested models. M1 can be considered a
particular case when the variance of level-specific item random
effect of M2 is equal between the levels (i.e., ω2

1 = ω2
2). Logically,
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M2 is the most complex model for NRI design. One might
consider the model having a random slope for item effect as a
more complex model. However, in the NRI design, the random
slope cannot be specified in the model, unlike the participants,
because the items are not used repeatedly between the levels of
the experimental condition.

Estimation and hypothesis testing
methods

In this study, the model is estimated using the glmer
function in R’s lme4 package (Bates et al., 2015), which uses
an ML estimation. This function has been suggested in several
previous studies for GLMMs for experimental data analysis (e.g.,
Bolker et al., 2009; Lee and Grimm, 2018). The ML estimation
for binary dependent variables requires an approximation
method because there is no closed-form solution that calculates
the marginal likelihood (McCulloch, 1994, 1997). The glmer
function relies on the ML estimation, implementing Laplace
approximation as the default setting.

Researchers in experimental psychology are mainly
interested in hypothesis testing for their experimental condition
effect, which is expressed as the fixed effect in GLMMs. As
mentioned above, the Wald and LR tests are commonly used
for hypothesis testing. The Wald test is commonly used for
hypothesis testing of the fixed effect because it is convenient
to obtain the result based on the model being evaluated
(e.g., Baayen et al., 2008). The following null and alternative
hypotheses regarding the experimental condition β1 can be
tested using the Wald test:

H0 : β1 = 0 versus H1 : β1 6=0 (6)

The test statistic is TWald =
β̂1

SE(β1)
, where β̂1 is the

estimate and SE(β1) is the standard error of the estimate.
The test statistic is assumed to follow a standard normal
distribution asymptotically. Thus, the experimental condition
effect is determined to be significant if the test statistic is
greater than 1.96.

The LR test compares the change in deviance (i.e., −2 times
the maximum log-likelihood) between the null and alternative
models. Here, the null model has the same random effect
structure as the alternative model but does not include β1xk
term. The test statistic is expressed as follows:

TLR = −2[l(θ̂0)− l(θ̂1)], (7)

where θ0 is the parameter set of the null model, θ1 is
the parameter set of the alternative model, l(θ̂0) is the
maximum log-likelihood of the null model, and l(θ̂1) is the
maximum log-likelihood of the alternative model. In general,
the reference distribution for the LR test is a chi-square
distribution with the degree of freedom of the difference

in the number of parameters. Since there are two levels
in an experimental condition in the design of the current
study, χ2(1) is used as a reference distribution and the test
statistic is compared to it, the experimental condition effect is
determined to be significant if the test statistic is greater than
3.84.

Illustrative example

Background

The implicit association test (IAT) was developed to
measure automatic cognition toward a target category (Nosek
and Banaji, 2001). In Experiment 2A of Nosek and Banaji’s
(2001) study, 26 participants observed a target word selected
from either the bug or fruit categories on a screen. The target
word was presented simultaneously with one of the adjectives
“good” or “bad.” The participants were asked to determine
whether the target word matched the valence of the adjective.
For illustrative purposes, we used a subset of the original dataset.
Only trials where the target word was from either the bug or
fruit categories (i.e., the distractor items, such as table, potato,
and car were excluded) and the adjective was “good” were
included in the dataset. The mismatch response to the target
words from the bug category and the match response to the
target words from the fruit category were coded as correct
responses, and the opposite responses were coded as incorrect
responses. As a result, the responses from 20 trials were included
at each level in the analysis per participant. Therefore, our final
dataset consisted of 1,040 data points (20 trials × 2 levels ×
26 participants).

The data structure of the study is presented in Table 3. The
stimuli category was used as an independent variable, and the
accuracy was compared between the two levels of the category
condition. All participants were exposed to both categories.
There were 24 target items at each category level. Twenty items
were randomly presented to each participant in each category
without replacement.

Descriptive statistics

The mean responses were computed across participants
within a level per item to illustrate item effects. A total of 48
responses were obtained from the 26 participants. The mean
proportion was 0.778 (SD = 0.105) at the bug level and 0.923
(SD = 0.089) at the fruit level. As shown in Figure 1, the items
at the bug level were distributed over a wide range in terms of
accuracy (from 0.563 to 0.917). On the other hand, of the 24
items at the fruit level, 18 items showed an accuracy of over 0.90,
ranging from 0.667 to 1.
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TABLE 3 Structure of the presented stimuli (A), responses (B), and item lists (C) of Nosek and Banaji (2001).

(A)

Bug level Fruit level

Trial 1 Trial 2 Trial 3 . . . Trial 20 Trial 21 Trial 22 Trial 23 . . . Trial 40

1 Bug 14 Bug 13 Bug 20 . . . Bug 7 Fruit 10 Fruit 15 Fruit 19 . . . Fruit 1

2 Bug 23 Bug 16 Bug 10 . . . Bug 19 Fruit 1 Fruit 2 Fruit 13 . . . Fruit 14
.
.
.

.

.

.
.
.
.

.

.

.

26 Bug 19 Bug 6 Bug 13 . . . Bug 17 Fruit 6 Fruit 16 Fruit 13 . . . Fruit 3

(B)

Bug level Fruit level

j Trial 1 Trial 2 Trial 3 . . . Trial 20 Trial 21 Trial 22 Trial 23 . . . Trial 40

1 NM NM NM . . . NM M NM M . . . M

2 NM NM NM . . . NM M M M . . . M
.
.
.

.

.

.
.
.
.

.

.

.

26 NM NM NM . . . NM M M M . . . M

(C)

Category Item ID Item

Bug Bug 1 Aphid

Bug Bug 2 Ants
.
.
.

.

.

.
.
.
.

Bug Bug 24 Wasp

Fruit Fruit 1 Apple

Fruit Fruit 2 Apricot
.
.
.

.

.

.
.
.
.

Fruit Fruit 24 Watermelon

j, participant ID.
M, match; NM, non-match.

FIGURE 1

Histogram of mean proportion of the bug (A) and fruit (B) items for by-item analysis.
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Generalized linear mixed-effects
models results

Table 4 shows the estimates for M1 and M2, which differ
noticeably in terms of the variance of the item random effect.
The variance of the common item random effect in M1 was
0.219, while the variance of the level-specific item effect in M2
was 0.047 and 0.745 at the bug and fruit levels, respectively. The
variance of the participant random effects and the estimate of the
fixed effects were slightly larger in M2 than in M1. Furthermore,
the standard error of the fixed effect was also larger in M2 than
in M1.

The Wald test showed the experimental condition effect to
be statistically significant in both models, Zs = 4.723 and 4.572
for M1 and M2, respectively; ps< 0.001. An LR test also showed
convergent results with the Wald test, χ2(1)s = 21.045 and
23.590 for M1 and M2, respectively; ps< 0.001.

Discussion

The case outlined above shows an example of an NRI design.
The items could not be repeated between the levels because
of the nature of the stimuli. Both descriptive statistics and
GLMM estimates showed the heterogeneity of the item effects
between the levels of the experimental conditions. However,
the common item random effect model did not model such
heterogeneity, and the estimate for the variance of the item
random effect had a middle value of the variances between the
two levels. Nevertheless, the consequence of the misspecification
of the random effects structure on hypothesis testing of fixed
effects was not critical because the effect size was considerable.
In the following simulation study, we captured the number
of participants, the number of items, and the random effect
structure from the example above. However, we reduced the
magnitude of the fixed effect.

Simulation study

A simulation study was designed to investigate the
inferential qualities (Type I error rate and power) of the two
GLMMs in an NRI design. The R script used in this simulation
study was uploaded to the OSF repository (see section “Data
availability statement”). Thus the entire study is repeatable.

Study design

The common item random effect model (M1) and level-
specific item random effect model (M2) were used to generate
data. For fixed conditions, the magnitude of β0 was set to 1,
indicating that the mean response was 0.731 on the proportion
scale at the first level of the experimental condition. The

TABLE 4 Estimates of the fixed and random effects of the GLMMs.

M1 M2

Estimate SE Estimate SE

Fixed effect

Intercept [β0] 1.405 0.197 1.368 0.175

Slope [β1] 1.443 0.306 1.671 0.365

Random effect

Participant

Var (intercept) [τ 2
0 ] 0.219 0.361

Var (slope) [τ 2
1 ] 0.370 0.254

Corr (s0j , s1j ) −0.15 −0.11

Item

Var (item) [ω2 ] 0.219 NA

Var (item1) [ω2
1 ] NA 0.047

Var (item2) [ω2
2 ] NA 0.745

M1, Common item random effect model; M2, Level-specific item random effect model;
NA, not applicable.

parameters for the person random effects were τ 2
0 = 0.40, τ 2

1
= 0.25, and Corr (s0j, s1j ) =−0.30.

Four varying conditions were fully crossed, yielding 48
(=2 × 2 × 4 × 3) conditions. The number of participants
(J) was selected as 25 and 50, and the number of items at
each level (I) was 12 and 24. The numbers of participants
and items were chosen from a simulation study in Barr et al.
(2013). Four magnitude levels of β1 were chosen: 0, 0.2, 0.5,
and 0.8. The value of 0 meant there was no effect, and the
values of 0.2, 0.5, and 0.8 reflected small, medium, and large
effect sizes, respectively.1 These parameters indicate that the
mean proportions were 0.731, 0.769, 0.818, and 0.858 at the
second level of the experimental condition. The variance of
the item random effect had three levels: homogenous, [ω2

1, ω2
2

] = [0.2, 0.2], and two heterogeneous levels, [ω2
1, ω2

2 ] = [0.2,
0.4], [0.05, 0.75]. That is, the data generating model was M1 at
the homogenous level and M2 at the heterogeneous level.

Five thousand replications were simulated for each
condition. We performed a total of six tests for each replication
and compared the results. Hypothesis testing was performed
by Wald and LR tests were performed on β1 in M1 and M2,
respectively. Additionally, two F-tests were performed using
the ANOVA framework. We reported the results of the by-
participant (F1) and F1/F2 tests. The nominal significance level
for all tests was 0.05.

Evaluation measures

We evaluated the Type I error rate and power. The Type
I error rate was defined as the proportion of the fixed effect

1 The effect size is not consistent with the guideline of Cohen (1988).

The logit difference is transformed to Cohen’s d using d = logit ×
√

3
π

.
The effect sizes manipulated in our experiment correspond to [0, 0.110,
0.276, 0.441] in the unit of Cohen’s d.
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incorrectly identified by the Wald and LR tests in the β1 = 0
condition. Power was defined as the proportion of the fixed
effect correctly identified by the hypothesis testing method in
the β1 = 0.2, 0.5, and 0.8 conditions. As indicators of a good
statistical test, the values for the Type I error rate should be close
to α = 0.05 and the values for power should be close to 1. As a
rule of thumb, a Type I error rate of 0.08 or lower and power of
0.80 or higher are considered satisfactory.

Results

In Table 5, the Type I error rate and power according to
the simulation conditions are reported. The results are reported
separately for M1 and M2 as the true data-generating model.

When the item effect is homogenous in the
true model
Type I error rate

In Figure 2, the Type I error rate results are presented when
M1 is the true data-generating model. M1 and M2 showed an
appropriate Type I error rate at all participant (J) levels and
numbers of items (I) in our simulation conditions. In addition,
both models showed an error rate of less than 0.08 in the null
hypothesis test using the Wald and LR tests. The performance
of the F1/F2 test was comparable to that of the GLMMs. In
contrast, the F1 test showed a high Type I error rate under all
simulation conditions. The error rate always exceeded 0.1, and
it increased to 0.2 when J = 50 and I = 12.

Power

In Figure 3, the power results are shown when M1 is the
true model. M1 and M2 detected more than 80% of β1 of 0.8,
except for the simulation conditions where J = 25 and I = 12.
When β1 = 0.5, both M1 and M2 showed power close to 0.8
only under the maximal number of participants (50) and items
(24). When β1 = 0.2, the power was less than 0.222 under our
simulation conditions. M1 showed higher power than M2 when
the number of items and participants were small. In addition,
the Wald test showed higher power than the LR test when the
number of items was small within the same model. For example,
under the condition that J = 25, I = 12, and β1 = 0.5, the power
of Wald and LR tests in M1 and the power of Wald and LR
tests in M2 were 0.411, 0.387, 0.392, and 0.366, respectively. The
difference in power between the models and tests decreased as
the number of participants and items increased. The F1/F2 test
yielded lower power than the GLMMs when I = 12. The power
of F1 was always higher than that of the other tests.

When the item effect is heterogenous in the
true model
Type I error rate

Figure 4 presents the Type I error rate in the condition
where M2 is the true model. M2 showed an appropriate Type

TABLE 5 Type I error rate (β1 = 0) and power (β1 > 0).

ANOVA M1 M2

β1 J I [ω2
1, ω2

2 ] F1 F1/F2 Wald LR Wald LR

0 25 12 [0.2, 0.2] 0.130 0.059 0.067 0.060 0.063 0.056

0 25 12 [0.2, 0.4] 0.173 0.063 0.070 0.064 0.066 0.060

0 25 12 [0.05, 0.75] 0.213 0.067 0.078 0.070 0.064 0.058

0 25 24 [0.2, 0.2] 0.110 0.069 0.061 0.055 0.061 0.055

0 25 24 [0.2, 0.4] 0.161 0.079 0.068 0.061 0.063 0.057

0 25 24 [0.05, 0.75] 0.206 0.087 0.070 0.062 0.054 0.048

0 50 12 [0.2, 0.2] 0.201 0.054 0.067 0.059 0.063 0.057

0 50 12 [0.2, 0.4] 0.264 0.057 0.071 0.062 0.068 0.061

0 50 12 [0.05, 0.75] 0.323 0.067 0.085 0.074 0.071 0.060

0 50 24 [0.2, 0.2] 0.187 0.077 0.064 0.059 0.065 0.059

0 50 24 [0.2, 0.4] 0.229 0.068 0.062 0.057 0.059 0.054

0 50 24 [0.05, 0.75] 0.323 0.092 0.072 0.067 0.063 0.057

0.2 25 12 [0.2, 0.2] 0.202 0.099 0.118 0.107 0.109 0.099

0.2 25 12 [0.2, 0.4] 0.210 0.090 0.107 0.096 0.111 0.100

0.2 25 12 [0.05, 0.75] 0.202 0.071 0.084 0.077 0.096 0.087

0.2 25 24 [0.2, 0.2] 0.243 0.180 0.169 0.161 0.168 0.160

0.2 25 24 [0.2, 0.4] 0.225 0.140 0.135 0.127 0.150 0.144

0.2 25 24 [0.05, 0.75] 0.187 0.093 0.095 0.088 0.137 0.134

0.2 50 12 [0.2, 0.2] 0.327 0.135 0.167 0.150 0.161 0.144

0.2 50 12 [0.2, 0.4] 0.341 0.109 0.138 0.128 0.145 0.131

0.2 50 12 [0.05, 0.75] 0.318 0.080 0.109 0.100 0.126 0.115

0.2 50 24 [0.2, 0.2] 0.398 0.230 0.225 0.213 0.220 0.208

0.2 50 24 [0.2, 0.4] 0.359 0.152 0.164 0.158 0.187 0.179

0.2 50 24 [0.05, 0.75] 0.290 0.096 0.116 0.114 0.158 0.153

0.5 25 12 [0.2, 0.2] 0.532 0.383 0.411 0.387 0.393 0.366

0.5 25 12 [0.2, 0.4] 0.482 0.304 0.330 0.306 0.339 0.320

0.5 25 12 [0.05, 0.75] 0.392 0.232 0.259 0.245 0.300 0.291

0.5 25 24 [0.2, 0.2] 0.724 0.656 0.635 0.616 0.621 0.604

0.5 25 24 [0.2, 0.4] 0.644 0.531 0.518 0.503 0.556 0.543

0.5 25 24 [0.05, 0.75] 0.494 0.358 0.367 0.360 0.489 0.484

0.5 50 12 [0.2, 0.2] 0.752 0.519 0.556 0.529 0.547 0.519

0.5 50 12 [0.2, 0.4] 0.687 0.384 0.438 0.415 0.460 0.435

0.5 50 12 [0.05, 0.75] 0.566 0.266 0.333 0.317 0.387 0.367

0.5 50 24 [0.2, 0.2] 0.911 0.808 0.799 0.786 0.794 0.778

0.5 50 24 [0.2, 0.4] 0.843 0.651 0.670 0.660 0.700 0.689

0.5 50 24 [0.05, 0.75] 0.691 0.436 0.515 0.508 0.618 0.604

0.8 25 12 [0.2, 0.2] 0.847 0.736 0.757 0.730 0.734 0.705

0.8 25 12 [0.2, 0.4] 0.787 0.629 0.650 0.628 0.659 0.641

0.8 25 12 [0.05, 0.75] 0.696 0.518 0.544 0.526 0.612 0.605

0.8 25 24 [0.2, 0.2] 0.969 0.954 0.944 0.937 0.939 0.931

0.8 25 24 [0.2, 0.4] 0.934 0.890 0.882 0.871 0.894 0.885

0.8 25 24 [0.05, 0.75] 0.855 0.760 0.772 0.763 0.858 0.858

0.8 50 12 [0.2, 0.2] 0.971 0.879 0.899 0.888 0.896 0.880

0.8 50 12 [0.2, 0.4] 0.935 0.759 0.803 0.783 0.817 0.799

0.8 50 12 [0.05, 0.75] 0.861 0.615 0.689 0.677 0.745 0.728

0.8 50 24 [0.2, 0.2] 0.998 0.993 0.991 0.990 0.991 0.988

0.8 50 24 [0.2, 0.4] 0.994 0.956 0.963 0.959 0.969 0.967

0.8 50 24 [0.05, 0.75] 0.963 0.858 0.909 0.906 0.948 0.941

M1, common item random effect model; M2, level-specific item random effect model;
β1 , magnitude of experimental condition; J, number of participants; I, number of items;
[ω2

1, ω
2
2 ], variances of item random effects.
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FIGURE 2

Type I error rate in the conditions where [ω2
1 , ω2

2 ] = [0.2, 0.2]. The two auxiliary lines indicate 0.05 and 0.08.

FIGURE 3

Power in the conditions where [ω2
1 , ω2

2 ] = [0.2, 0.2]. The auxiliary line indicates 0.80.

I error rate for all numbers of participants and items. When
[ω2

1, ω2
2 ] = [0.05, 0.75] the Type I error rate of M1 exceeded

0.08 only when the Wald test was used under the condition with

J = 50, I = 12. The F1/F2 test showed an error rate of over 0.08
under the condition where I = 24 and [ω2

1, ω2
2 ] = [0.05, 0.75].

The F1 test showed an error rate exceeding 0.15 in all conditions.
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FIGURE 4

Type I error rate in the conditions where [ω2
1 , ω2

2 ] = [0.2, 0.4] and [0.05, 0.75]. The two auxiliary lines indicate 0.05 and 0.08.

Power

Figure 5 shows the power results for the conditions in which
M2 is the true model. When [ω2

1, ω2
2 ] = [0.2, 0.4], the GLMMs

successfully detected more than 80% of β1 of 0.8 when I = 24.
At I = 12, only exceeded 80% when J = 50 and using the Wald
test. When [ω2

1, ω2
2 ] = [0.05, 0.75] and I = 24, M2 showed

higher than 80% power to detect the β1 of 0.8, regardless of
the number of participants. M1 failed to reach 80% power to
detect the same magnitude of β1 when J = 25 and I = 24.
The difference in power between GLMMs with common item
effect and level-specific item effect was larger when I = 24
than when I = 12, and this difference is more pronounced
with a larger heterogeneity in item effect. For example, under
the condition that J = 25, I = 24, and β1 = 0.5, the power
difference was 0.256 while the difference in power was 0.041
under the condition where J = 25, I = 12, and β1 = 0.5.
When [ω2

1, ω2
2 ] = [0.2, 0.4], the performance of the F1/F2 test

was comparable to that of the GLMMs. Under the conditions
where [ω2

1, ω2
2 ] = [0.05, 0.75], the F1/F2 test performance

was comparable to M1 when J = 25 but showed lower power
than M1 when J = 50. Finally, F1 showed higher power than
the other tests.

Discussion

The following conclusions were drawn based on the
simulation results. First, when the item effects are heterogeneous
in NRI design data, fitting a model with the common item
random effect causes a reduction in power, which is more

pronounced when the number of items is large. However, no
evidence of an increase in the Type I error rate was found in
our simulation conditions.

Second, if the variance of the item effects of the two levels of
an experimental condition is equivalent, the decrease in power
due to over-specification is not that severe. Two approaches
have been proposed for model selection in linear mixed-effects
models (LMMs) for analyzing experimental data. Barr et al.
(2013) suggested using the most complex model possible in
the study design. The rationale behind the “maximal model”
approach is that hypothesis testing from an experimental
design can be seen as a kind of confirmatory data analysis.
Using a maximal model corresponds to the practice of model
specification in the analysis of variance framework. In contrast,
Matuschek et al. (2017) suggested that experimental researchers
select a model to analyze their data through comparing models
in terms of the structure of the random effects. In the worst-
case scenario of their simulation study, the power of the
maximal model (i.e., a model with random slopes for both
participants and items) was lower than that of the random
intercept-only model by 0.089. This result is inconsistent with
our simulation result, where the maximum difference in power
at the homogenous level between M1 and M2 was 0.034 (LR test;
J = 25, I = 12, and β1 = 0.8). However, the current study’s
GLMM-based simulation results cannot be directly compared
with Matuschek et al. (2017), who studied LMMs.

Third, we found that Wald and LR tests performed equally
for hypothesis testing in GLMMs for experimental data analysis.
The differences in Type I error rate and power were not
significant between the tests in our simulation conditions,
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FIGURE 5

Power in the conditions where [ω2
1 , ω2

2 ] = [0.2, 0.4] and [0.05, 0.75]. The auxiliary line indicates 0.80.

and the effect of the random effect’s misspecification on these
measures was also similar. The Wald test showed a higher
power than the LR test in the small sample size. However,
this difference should be interpreted with caution because our
experimental conditions were limited.

Lastly, the most problematic point when using ANOVA
in NRI designs is the highly inflated Type I error rates.
Regardless of the homogeneity of the item effects, the by-
participant analysis revealed unsatisfactory Type I error rates.
On the other hand, F1/F2 analysis showed lower power than
M1 when the variance of the item random effect between levels
was not equivalent.

General discussion

In the current study, we drew attention to a type of
experimental design (NRI) frequently used by researchers in
experimental psychology and proposed a model that considers
the characteristics of the data obtained from this type of design.
The necessity of this model was demonstrated through an
empirical dataset, and the performance of hypothesis testing
was compared between the proposed and existing models via
a simulation study. The implications and limitations of this
study are as follows.

Implications

The current study showed that NRI designs are not
uncommon using a literature survey and an illustrative dataset

example. The NRI design is an experimental design that can
be considered when there is no overlap of features between
the levels of experimental conditions. It can be used in various
subfields such as perception (e.g., category, color, and the
number of objects), social cognition (e.g., vignettes or scenarios
from different contexts), and learning and memory (e.g., items
selected from item pools) in experimental psychology.

This study pointed out the shortcomings of the existing
methods for analyzing NRI design data and showed that the
newly proposed model could overcome this shortcoming. For
example, existing methods cannot capture the heterogeneity of
the dependent variable originating from the item effect. On
the other hand, the level-specific item random effects model
considers all effects that may affect the dependent variable.

The simulation study confirmed that the proposed model
performed better than other methods, given the heterogeneity
of item effects. In addition, this paper provides information on
the number of items and the participants for successful effect
detection. For example, in the NRI design, if the size of the item
effect differs between levels, 25 participants and 24 items are
required to detect a large effect size successfully. On the other
hand, we suggest that sample sizes be larger than those used in
our study to detect a medium effect size successfully.

Limitations and future directions

This study proposes a new model specification that
overcomes the limitations of the current GLMMs due to the NRI
design. In line with the illustrative example dataset and previous
simulation studies (Baayen et al., 2008; Barr et al., 2013;

Frontiers in Psychology 10 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.955722
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-955722 August 27, 2022 Time: 16:2 # 11

He and Lee 10.3389/fpsyg.2022.955722

Luke, 2017; Matuschek et al., 2017), we limited the experimental
design to a within-participant design with a single factor
of two levels. However, the design in the current study is
too simple to apply to psychological research in practice,
although the proposed model is logically applicable for complex
experimental designs. The performance of GLMMs in more
complex experimental designs should be examined in future
studies. One issue in applying GLMMs in complex experimental
designs is the problem of establishing a random effect structure.
The number of parameters of GLMMs with full participant
random effect structures increases rapidly as the number of
responses from one participant increases. For example, the
number of parameters is 18 (4 for β s, 10 for τ s, and 4 for
ω s) when M2 is applied to datasets from a 2-by-2 within-
participant design. In contrast, the total number of parameters
was 7 (2 for β s, 3 for τ s, and 2 for ω s) in the current study
context. The more complex the model, the larger the sample
size required for a reliable estimation. To cope with model
complexity, experimental researchers may refer to options for
covariance structures designed for longitudinal studies [e.g.,
compound symmetry (CS) and first-order autoregressive (AR1);
Littell et al., 2000]. Therefore, it is necessary for experimental
researchers to study how to specify the model, select the random
effect structure, and set the appropriate number of participants
and items in various experimental designs.

All simulation studies make assumptions regarding true
models. A normal or multivariate normal distribution was
assumed for the random effects in this study. In GLMMs,
the fixed effect estimate is biased when the random effect
distribution is incorrectly specified (Verbeke and Lesaffre, 1997;
Litière et al., 2007). Further research is required to investigate
the robustness of GLMMs for NRI designs in the case of non-
normality for random effects.

Finally, studies on alternative estimation and hypothesis
testing methods are needed. Only ML estimation and the null-
hypothesis significance testing (NHST) approach were dealt
with in this study. However, in psychology, interest in Bayesian
modeling is increasing, as shown in the 2018 special issue of the
Psychonomic Bulletin and Review (Vandekerckhove et al., 2018).
GLMMs can be well estimated using the Bayesian approach, in
which a random effect is regarded as a type of prior distribution
(Gelman and Hill, 2007). In addition, an increasing number of
statistical software packages include Bayesian estimation as an
option [e.g., the MCMCglmm package in R (Hadfield, 2010)
and Mplus (Muthén and Muthén, 2017)]. In a study, several
software packages for GLMMs were fitted to one experimental
dataset, and the results were compared (Lee and Grimm, 2018).
The software packages relying on ML and Bayesian estimations

produced comparable results regarding the estimates of the fixed
and random effects and their standard errors. However, for NRI
designs, performance evaluation of GLMMs according to the
estimation method has not yet been investigated. Therefore,
GLMMs for NRI designs also need to be discussed from a
Bayesian perspective.
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