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Secondary infections arise as a consequence of previous or concurrent conditions

and occur in the community or in the hospital setting. The events allowing secondary

infections to gain a foothold have been studied for many years and include poor

nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute

inflammation, primary immune deficiencies, and immune suppression by infection or

medication. Children, the elderly and the ill are particularly susceptible. This review

is concerned with secondary bacterial infections of the lung that occur following viral

infection. Using influenza virus infection as an example, with comparisons to rhinovirus

and respiratory syncytial virus infection, we will update and review defective bacterial

innate immunity and also highlight areas for potential new investigation. It is currently

estimated that one in 16 National Health Service (NHS) hospital patients develop an

infection, the most common being pneumonia, lower respiratory tract infections, urinary

tract infections and infection of surgical sites. The continued drive to understand the

mechanisms of why secondary infections arise is therefore of key importance.
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INTRODUCTION

It has been appreciated for a long time that infections following surgical cases are caused by a breach
of skin barrier integrity. This breach of barrier tissue (e.g. the skin or epithelial surfaces lining
the lung, gastro-intestinal or urogenital tract) however, is common during non-surgical infection
and was one of the first causes identified to enhance bacterial outgrowth in the lung, by providing
different substrates for adhesion and access to additional proteins for bacteria to metabolize. In this
review we will discuss the changes in immunity that lead to dysregulation of responses and how
prior viral infection in the lung suppresses cellular innate immunity facilitating bacterial outgrowth
to occur. Though we assume that cellular innate immunity is adequate before viral infection, it is
important to consider that patients most at risk of developing secondary bacterial complications
may have a complex inflammatory history, medications, co-morbidities or mental-health history
that has already influenced innate immunity. We will not cover the more soluble innate elements
such as anti-microbial peptides or surfactant proteins, as these have been covered extensively
elsewhere (1).
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Innate Immunity in the Healthy Lung
Innate immunity in the lung is important since it can facilitate
the elimination of many pathogens in the absence of adaptive
immunity and without immunopathological side effects. The
actual location of some innate immune cell subsets is unclear due
to the changing environment within the branching structure of
the lung. A general rule however is that the density of immune
cells gets lower the further down the respiratory tract you look,
which facilitates optimal gaseous exchange.

As will be described for macrophages later, the immune
components present in a healthy lung are specialized and sparse.
Innate lymphoid cells exist in the naïve mouse lung at a low
frequency of 0.4–1%. Their precise lung location in health
however, has not been determined (2, 3), though they do expand
during lung inflammation [for a review see (4)]. Gamma delta
(γδ) T cells are also present and rare, accounting for ∼1–5%
of blood (5) and 8–10% of lung lymphocytes. They display a
restricted profile of variable genes (Vγ4, Vδ1, and Vδ6) (6)
in their T cell receptor, which changes with age to become
predominantly Vγ4+ (7, 8). NK cells constitute 10% of resident
lymphocytes in the lung (9) and it is thought their survival
depends on IL-15 production by bronchial epithelial cells (10).
NK cells detect an absence of MHC class I molecules using a
variety of cell surface receptors and are induced to kill target cells
by an activating receptor that binds stress ligands (11). In this
way, NK cells present in the interstitial compartment are poised
to recognize abnormality.

Dendritic cells (DCs) are present in the lung interstitial
spaces (12) and the pulmonary epithelium (13), but are absent
from the airspaces. In mice, DCs in the epithelium (CD103+

CD11blo) require Batf3, IRF8, and Flt3 ligand for development,
whereas those in the lung parenchyma require M-CSF (14).
Either population may derive from bone marrow or a local
precursor cell population (15). In the steady state, the DCs
present in the epitheliummay be important for sampling luminal
content and/or clearing apoptotic cell turnover (16). As with
other innate immune cells, the density of dendritic cells will
depend on the position in the respiratory tree with more being
present in bronchi than alveoli. Dendritic cells and follicular
dendritic cells are also located in sparse B cell follicles. Though
typically absent in naïve mice and humans, aggregates of B and
T cells may be located next to the major bronchi and include
follicular dendritic, dendritic, and stromal, cells (17).

Macrophage Subsets in the Lung
Generally, an absence in any of the innate immune cells
described above has little affect in healthy lungs. However,
lung macrophages have a unique role in health by performing
general housekeeping duties, as exemplified by the build-up of
proteinaceous material due to an absence of macrophages inmice
lacking granulocytemacrophage-colony-stimulating factor (GM-
CSF) (18). In rodents and humans, the lungs are home to two
distinct macrophage subsets: airway macrophages and interstitial
macrophages (19). We refer to airway, rather than alveolar
macrophages since bronchoalveolar lavage (BAL) samples
the whole airway. This procedure typically elutes 90–95%
macrophages in health, themajority of which will be derived from

the alveoli, in addition to a small number of lymphocytes (20,
21). Alveolar macrophages are remarkably long-lived and self-
renewing and therefore do not require continuous replenishment
from bone marrow-derived precursors in health (22–24). In
contrast, interstitial macrophages have a higher turnover rate and
are shorter lived in the steady state (25). Interstitial macrophages
are located in the interstitial space between the alveoli and
capillaries and are less abundant than alveolar macrophages (26).

Alveolar macrophages are initially derived from fetal
monocytes and their development is reliant on GM-CSF,
of which there is an abundance of in the airspaces shortly
after birth (27, 28). GM-CSF drives production of alveolar
macrophages through induction of peroxisome proliferator-
activated receptor-γ (PPARγ) expression (27, 29, 30). Mice
lacking GM-CSF (or its receptor), and patients with defects in
GM-CSF signaling, develop pulmonary alveolar proteinosis due
to a build-up of surfactant in the airways because of a lack of
clearance by macrophages (31, 32). Following irradiation (27) or
influenza infection (22) airway macrophages become depleted
and are replenished from the periphery or the interstitial lung
macrophage pool, respectively. On the other hand, interstitial
macrophages originate from bone marrow derived-monocytes
and are preferentially replenished by this population during
inflammation (33). A recent study has identified 3 populations of
interstitial macrophages based on phenotypic and transcriptomic
studies, which are different to airway macrophages (34).

The Function of Airway Macrophages
The mechanisms leading to bacterial outgrowth following lung
viral infection are, to a large extent, driven by the attempt to
return the lung to health. Understanding the role of innate
immune cells in lung health therefore, may provide clues to why
complications can occur. Due to their location, macrophages
in the airways display phenotypic and functional differences to
other macrophage populations. Alveolar macrophages reside in
the alveolar lumen and are surrounded by surfactant, which
contains proteins that dampen macrophage activity (35). This
allows alveolar macrophages to be tolerant to cellular debris and
innocuous antigens, thereby preventing excessive tissue damage,
while setting an activation threshold that needs to be overcome
to efficiently clear more pathogenic microorganisms (21). On
the other hand, interstitial macrophages are in close contact
with the extracellular matrix (ECM) and, as such, have a more
prominent role in modulating tissue fibrosis, as well as being
better equipped for antigen presentation (36, 37). Moreover,
alveolar macrophages have reduced phagocytic activity and
respiratory burst in comparison to interstitial macrophages (38,
39). Both subsets of macrophages inhibit T cell activation and
subsequent onset of adaptive immunity via the suppression of
DC activation; a process dependent on the anti-inflammatory
cytokine interleukin-10 (IL-10), transforming growth factor-β
(TGFβ) and prostaglandins (40, 41). Alveolar macrophages are
poor at presenting antigen to T cells (42), although they are
capable of transporting antigens to the lung-draining lymph
nodes (43). Likewise, human alveolar macrophages induce
T cell antigen-specific unresponsiveness as a result of poor
antigen presentation and a lack of expression of co-stimulatory
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molecules, such as CD86 (44); which in itself promotes tolerance
to innocuous antigens.

Regulation of Alveolar Macrophages by the Airway

Epithelium
With respect to bacterial complications following viral infection,
it is important to appreciate the role of the epithelium in
regulating airway macrophage activity. Due to their direct
exposure to environmental challenges in the alveolar lumen,
strategies need to be in place for alveolar macrophages to discern
a harmless antigen from a serious pathogenic threat. For this
reason, alveolar macrophages are tightly regulated in order to
prevent an inflammatory response against cellular debris and
innocuous antigens, whilst still providing protection against
harmful pathogens by propelling an inflammatory response (35).
For example, alveolar macrophages are hypo-responsive to low
levels of endotoxins, which are present in ambient air (21),
thereby preventing an inappropriate innate immune response
to innocuous antigens. A number of mechanisms are in place
to suppress the activity of alveolar macrophages, including their
interaction with the airway epithelium. The airway epithelium,
through both direct contact and secreted products, negatively
regulates alveolar macrophage activity. These factors include
CD200, TGF-β, IL-10 and surfactant proteins (SP-A and SP-
D), which act to suppress macrophage phagocytic ability and
production of pro-inflammatory cytokines (45–47) (Figure 1).
Though beneficial in some instances, these pathways can slow
immediate immune activity. For example, knockout of IL-10
is beneficial as it allows immediate protection against acute
influenza with better survival at lethal infection levels (48,
49). However, inhibiting IL-10 after acute influenza infection
results in tissue inflammation and damage, with decreased
survival (49, 50), similar to IL-10 knockout S.pneumoniae
bacterial models (51). For an in-depth discussion on this
see (48–51).

In addition, these mechanisms set a threshold of activation
that needs to be overcome in order for an inflammatory response
to be triggered. Activation of toll-like receptor (TLR) signaling,
through recognition of an invading pathogen, elicits a strong
enough immune response to exceed the inhibitory regulation
of alveolar macrophages and causes up-regulation of TLR co-
receptors including CD14 and triggering receptor expressed on
myeloid cells 1 (TREM1) (52). Furthermore, loss of epithelial
integrity during inflammation reduces the level of regulatory
factors, releasing alveolar macrophages from epithelial-induced
inhibition. This increases their phagocytic capabilities and
initiates the production of pro-inflammatory cytokines (37, 53).
The inhibitory factors that are important in maintaining airway
homeostasis are also crucial in resolving inflammation after
elimination of the microbial pathogen. Both CD200 and TGF-β
assist in the suppression of inflammation, promote resolution
and restore homeostasis (47).

Dominant Viral Infections in the Lung
Human respiratory syncytial virus (hRSV), human rhinovirus
(hRV), human parainfluenza virus (hPIV) and human
metapneumovirus (hMPV), are the major types of viruses

FIGURE 1 | Inhibitory regulation of alveolar macrophages by the airway

epithelium. Strict regulation of macrophage activation is required for

homeostatic control of the general lung environment. As alveolar macrophages

are under constant exposure to airborne endotoxins hypo-responsiveness is

required for normal airway macrophage function. This is contributed through a

number of downstream pathways triggered by airway epithelial cells

production of IL-10, TGFβ, CD200, and surfactant proteins (SPA and SPD)

and these reduce pro-inflammatory signaling and phagocytosis in airway

macrophages via their respective cell surface receptors. The cascade of

downstream inhibitory pathways to suppress macrophage activation are

summarized elsewhere. Adapted from (35).

responsible for acute infections of the upper and lower
respiratory tract (54). These respiratory viruses represent a
significant burden on global public health, with acute respiratory
tract infections (ARTIs) being the fourth highest cause of global
mortality (55).

Influenza virus is a member of the orthomyxovirus family
and a negative sense, single stranded RNA virus (56). The viral
envelope of influenza virus is composed of haemagglutinin (HA)
and neuraminidase (NA) (57), which are used as identifiers of
virus subtypes (58, 59). There are four genera of influenza virus;
A, B, C, and D, with the influenza A subtypes H1N1 and H3N2
causing the largest proportion of influenza cases (60). Influenza
virus infection is one of the leading causes of respiratory tract
infections worldwide, with ∼5–20% of the global population
infected and a mortality rate of up to 650,000 patients annually1

(61). The influenza virus predominantly invades human upper
airway epithelial cells by binding to α-2,6 or α-2,3-linked sialy
glycans expressed on their surface (62–64). The influenza virus
can effectively evade detection by the host immune system.
Genetic changes due to the error-prone nature of the viral
RNA polymerase, that result in antigenic drift or recombination
events between influenza viruses, can give rise to new subtypes
of influenza that can lead to epidemic or pandemic outbreaks
(65–67). Currently, our best options to combat influenza are
by prevention using vaccines and treatment with antiviral
medications. However, the variable nature of the virus limits the

1https://www.who.int/influenza/en/
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efficacy of both approaches as they need to be updated annually
to keep up with the evolution of new subtypes (68).

hRSV is the main cause of acute lower respiratory tract
infection (ALTRI) in infants, young children and older adults
(aged ≥65 years) (69). hRSV is an enveloped negative-sense
single-stranded RNA virus belonging to the Pneumoviridae
family, Orthopneumovirus genus (69, 70). There are 2 major
antigenic groups of hRSV, A and B, which can be further
subdivided into 10A genotypes and 13 B genotypes (71). The
highly contagious nature of the virus means nearly all children
will have been infected with hRSV by the age of 2 years old
(72). Bronchiolitis or pneumonia caused by hRSV infection is
the major cause of hospitalisations in children under the age of
2 years old. Additionally, hRSV infection has been implicated in
the development of childhood asthma and recurrent wheezing
(72–75). The global public health burden of hRSV is significant,
with ∼10% of all hospital admissions for severe bronchiolitis
or pneumonia due to the virus, representing an annual cost of
about 394 million USD (76–78). The severity of hRSV infection
and associated clinical symptoms can be controlled by the use of
palivizumab, a neutralizing monoclonal antibody to the fusion
glycoprotein (F protein), which is a transmembrane surface
protein in the viral envelope of hRSV (79–82). However, an
effective vaccine against hRSV has yet to be developed.

The development of childhood asthma and recurrent
wheezing is not only closely linked with infant hRSV-induced
bronchiolitis, but is also associated with wheezing illnesses
due to hRV infection in infancy (83–86). A member of the
Picornaviridae, genus Enterovirus, hRV is a non-enveloped
positive single-stranded virus (87, 88). hRVs can be classified
into three species, with RV-A and RV-C, causing more severe
respiratory illness, when compared to RV-B (88, 89). The species
can be further categorized into genotypes, of which there are over
100 (87, 90). hRVs circulate throughout the year, are transmitted
through direct contact or aerosol particles and are capable of
infecting both the lower and upper respiratory tracts (87, 91,
92). Symptoms following infection are generally that of the
common cold, including sore throat, cough, nasal congestion,
sneezing and rhinorrhoea. However, in infants, the elderly,
immunocompromised adults or those suffering from chronic
respiratory illnesses, infection with hRV can be more severe. For
example, hRV is responsible for 20–40% of all hospitalisations
due to wheezing in infants aged 12 months or less (93, 94).
Development of a vaccine and antivirals against hRV has been
hindered by the vast quantity of genetically distinct genotypes
(90, 95).

hPIV is second most common cause of ALTRI in children,
after hRSV (96). hPIV, like hRSV, is an enveloped negative-
sense single-stranded RNA virus of the Paramyxoviridae family
(97–99). hPIV consists of four major serotypes—hPIV-1 and
hPIV-3, genus Respirovirus and hPIV-2 and hPIV-4, genus
Rubulavirus (100). By the age of 2 years old 60% of children
have been infected by hPIV-3 and at the age of 5 years the
majority have been infected by hPIV-1, hPIV-2 and hPIV-3
(97, 101). Although hPIV has been predominantly viewed
as a cause of respiratory illness in pediatric patients, both
immunocompromised and older adults are also susceptible to

infection (97, 100). Clinical manifestations of infection by hPIV
include the common cold, croup (laryngotracheobronchitis),
tracheobronchitis, bronchiolitis and pneumonia (100). However,
as of yet there is no effective antiviral treatment or vaccine
available for hPIV.

Since its discovery in 2001, hMPV has been identified as one
of the major causes of upper and lower respiratory tract infection
in children, immunocompromised patients and the elderly, being
detected in 4–16% of patients with ARTIs (102–108). hMPV,
a negative-sense single stranded RNA virus, is a member of
the Paramyxoviridae family, genus Metapneumovirus, and is
closely related to hRSV and parainfluenza (108). Most infections
with hMPV elicit mild to moderate clinical symptoms, although
5–10% of cases result in admission to pediatric intensive care
(102, 107, 109).

Bacterial Outgrowths in the Lung
Following Viral Infection
A significant contributor to morbidity and mortality in
respiratory viral infections is bacterial invasion. Given the
colonization of the upper respiratory tract with common
pathogens including Streptococcus (S) pneumoniae, Haemophilus
(H) influenzae and most of the Staphylococcus species, a
shift in immunological balance and the airway environment
can undoubtedly cause severe secondary bacterial infection in
the host. The most famous reports of bacterial colonization
after lung viral infection stem from the 1918 influenza
pandemic where between 20 and 60 million deaths were
due to bacterial co-infection (110). It is estimated that
∼25% of all influenza-related deaths are associated with co-
infections, particularly during seasonal outbreaks (111, 112).
Viral respiratory infections elevate nasopharyngeal bacterial
density (113, 114), which may promote their colonization
in the lower airways, though the precise mechanisms are
unclear.

Bacterial co-infection is not limited to influenza virus. A
retrospective cohort study of 6,000 hospitalized neonates in
China showed that 94% had RSV infection, with the remainder
having parainfluenza, influenza virus or adenovirus. The
dominant co-infections in RSV infected neonates were E. coli,
Klebsiella (K) pneumoniae, S. aureus, and Enterobacter cloacae
(115). The high frequency of RSV and pneumococci co-infection
in hospitalized children is reduced by prior pneumococcal
conjugate vaccination and has led to the suggestion that
treatment for secondary bacterial infections should be considered
for pneumonia cases even if a child tests positive for RSV (116).
The choice of antibacterial strategy may be critical since RSV
can increase S. pneumoniae virulence by binding to penicillin
binding protein 1a (117) and so penicillin derivatives may
be ineffective. Experimental studies on human Rhinovirus 16
infection enhances H. parainfluenzae, Neisseria subflava, and to
a lesser extent S. aureus in throat swabs (118). One study in
adults revealed that rhinovirus was the most common (23.6%),
then parainfluenza virus (20.8%), hMPV (18.1%), influenza
(16.7%), and RSV (13.9%). However, virus strain occurrence
may also be influenced by co-infections as RSV was significantly
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more common in those that also had community-associated
pneumonia (119).

Bacterial and viral infections co-exist, and the post-viral
bacterial outgrowths are often co-infections made up of different
species of bacteria. In a recent meta-analysis, 28–35% of
patients demonstrated positive laboratory culture with the co-
infective species, S. aureus and S. pneumoniae, respectively
(120). S. pneumoniae is the most common pathogen that causes
community-acquired pneumonia and potential overwhelming
sepsis, and is associated with high mortality and morbidity
during influenza epidemics and pandemics (121, 122).

S. aureus, a gram-positive cocci and a common commensal
in the nose and skin, is a major cause of bacteraemia (123).
It is unclear why S. aureus has become a major cause of
concern particularly in the pediatric population, of which
a study of the 2003–4 season in the USA found that this
organism not only dominated influenza-associated childhood
mortalities, but was also found to be the most common causative
bacterial agent in 46% of isolates, whereby more than 50%
were methicillin-resistant strains (111). A rare and severe
complication of community-acquired pneumonia is necrotising
pneumonia, characterized by pulmonary consolidation,
inflammation, necrosis, and ultimately gangrene, which is caused
by methicillin-resistant S. aureus, a major public health concern
due to its resistance to antimicrobials. Prior or co-infection
with influenza infection and the presence of Panton-Valentine
leukocidin (PVL) are both significantly associated with the
necrotising pneumonia (124).

Mechanisms of Bacterial Susceptibility
After Lung Viral Infection
Other than a breach of the epithelial barrier, there are a number
of modifications to cellular innate immunity in the lung that
contribute to secondary bacterial infection.

The Role of Apoptotic Cell Clearance Following Viral

Infection in Susceptibility to Secondary Bacterial

Infections
Cellular turnover by apoptosis features in health and
inflammation. Airway macrophages play an important function
in clearing apoptotic cells, a process known as efferocytosis,
which is essential in maintaining airway homeostasis (125).
Inefficient clearance of apoptotic cells leads to secondary
necrosis and the release of damage associated molecular patterns
(DAMPs) that subsequently promote an inflammatory response
(126). Efferocytosis is mediated by a plethora of receptors that
recognize externalized proteins on the cell surface of apoptotic
cells. One of the most commonly studied proteins mediating
efferocytosis is phosphatidylserine (PtdSer). PtdSer is present on
the inner plasma membrane in living cells, but is externalized
upon induction of apoptosis (127) by caspase inactivation of
flippase (ATP11C) that is required to “flip” PtdSer back into the
plasma membrane (128). Caspases also activate scramblases that
“scramble” phospholipids in the plasma membrane; promoting
exposure of PtdSer on apoptotic cells (129). Other proteins
that flag up the presence of an apoptotic cell include oxidized
low-density lipoprotein, calreticulin, annexin A1, ICAM-3,

C1q, and thrombospondin (130). In parallel there are a number
of receptors that recognize these proteins on apoptotic cells,
including many that bind PtdSer: Triggering receptor expressed
by myeloid cells-2 (TREM2) (131), CD300 (132), receptor for
advanced glycation end products (RAGE) (133), Stabilin-2 (134),
brain-specific angiogenesis inhibitor-1 (BAI1) (135) and TIM
family members (T cell/transmembrane, immunoglobulin, and
mucin) (136, 137) (Figure 2). For a review of other receptors
recognizing externalized molecules on apoptotic cells see (130).

One PtdSer recognizing receptor family pertinent to the
lung and its susceptibility to bacterial complications is the
TAM receptor family (Tyro3, Axl, and Mertk receptors). These
engulfment receptors require bridging molecules to link them to
externalized PtdSer; protein S or growth arrest specific 6 (Gas6)
(138). MerTK is ubiquitously expressed on macrophages, and
even used as a defining marker for them. Axl, however, shows
a more restricted distribution and is constitutively expressed
on airway macrophages driven by GM-CSF and up-regulated
during viral infection (139). Ligation of TAM receptors, in the
presence of type 1 interferons (IFNs) enhances the expression
of suppressor of cytokine signaling (SOCS) 1 and SOCS3,
which reduce TLR and cytokine receptor signaling pathways
(140–142). Furthermore, signaling via TAM receptors also
induces TGFβ, IL-10 and prostaglandin production (143–146).
This anti-inflammatory airway macrophage state is important to
tolerate self-cells (125) but also reduces responses to subsequent
coinfections (see Figure 2). Expression of IL-10 is raised
following secondary bacterial coinfection after influenza virus
exposure (147, 148). This is likely designed to prevent further
tissue damage and to allow a return to homeostasis.

Lung viral infection enhances the apoptotic load due to
cytopathology of infected cells and also the requirement to
clear the large recruited immune cell infiltrate (149, 150). An
absence of the TAM receptor Axl leads to excessive weight loss
upon influenza infection in mice (139) that is likely linked to
heightened secondary necrosis, which liberates DAMPS (151)
recognized by pattern recognition receptors (PRRs), such as
RAGE and ST2 (151–153). Axl knockout mice display increased
nucleosome release in the airways corroborating the idea
of enhanced secondary necrosis. This propagation of severe
inflammation is likely to damage the lungs further and enhance
the likelihood of secondary bacterial infections. Supporting this
idea, prior exposure of mouse airway macrophages to apoptotic
cells results in suppression of FcR-mediated phagocytosis
and killing of bacteria. Furthermore, intrapulmonary
administration of apoptotic cells impairs S. pneumoniae
clearance from the infected lung (154). Also, suppression of
antimicrobial responses of airway macrophages is enhanced by
glucocorticoids, which promote efferocytosis, and treatment
of mice with apoptotic cells in the presence of glucocorticoids
is associated with elevated bacterial burden in the infected
lungs (155).

Therefore, the normal process of clearing dying cells can
have long term consequences and is particularly evident
in chronic lung diseases (156) [for a review see: (157)].
However, further studies are required to determine the
importance of this process, including analysis of the redundancy
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FIGURE 2 | Clearance of apoptotic cells impairs anti-bacterial immunity. Removal of apoptotic cells requires their recognition by specialized receptors on phagocytic

cells, including macrophages. In the presence of healthy cells (top left) Phosphatidylserine (PtdSer) is on the inner leaflet of the membrane. Local macrophages do not

recognize them and therefore are able to signal through Toll-like receptors (TLR) unimpeded, resulting in the proinflammatory cytokine response. This optimal response

is able to contain and clear bacterial infections (shown in red ovals). However, upon programmed cell death, PtdSer and a variety of other proteins are translocated to

the outside of the cell membrane (top right). Macrophages recognize these exposed proteins via specific receptors (bottom right). These receptors facilitate apoptotic

cell recognition and engulfment (known as efferocytosis) however, during efferocytosis macrophages are unable to respond to bacteria leading to their outgrowth

(bottom right).

between apoptotic recognition receptors and the long term
outcome of their manipulation. Efficient clearance of apoptotic
cells may therefore provide an opportunity for therapeutic
manipulation to lessen the severity of lung viral infections
and prevent bacterial complications. In addition to the
clearance of apoptotic cells by phagocytes, the phagocytes
themselves (neutrophils and macrophages) may also undergo
apoptosis.

Reduced Responsiveness of PRRs Following Viral

Infection
Another natural process that occurs following viral infection is
the cessation of inflammation. This is particularly important to
allow efficient repair. Therefore, a prolonged inhibition of innate
immunity is a common occurrence. However, a timely response
to bacterial infection is critical to limit the pathogen load. Any
delay in early immunity results in logarithmically higher bacterial
loads that are difficult to clear and cause extensive bystander
tissue damage. PRRs are important in this regard, but may be
impaired by previous or concurrent inflammatory conditions.
PRRs are widely expressed in the lungs on airway epithelial
cells, alveolar macrophages and DCs and their ligation leads

to the release of cytokines, chemokines, eicosanoids and type I
IFNs into the airspaces (158, 159). The kinetics of this initial
inflammatory wave limits early pathogen replication (159) by
recruitment of monocytes, neutrophils and natural killer (NK)
cells. NK cells target infected airway epithelial cells that have lost
or reduced MHC class I expression (160), whereas monocytes
and neutrophils aid alveolar macrophages in removing infected
dead cells (161) and co-existing bacteria. Furthermore, type I
IFNs stimulate the production of interferon-stimulated genes
(ISGs), leading to cell-intrinsic and extrinsic antiviral activity
(162). However, many studies have observed that subsequent
stimulation via PRRs is defective following lung viral infection.
This effect is not restricted to PRRs as defects in multiple
processes employed by the mononuclear phagocyte system have
been observed (69).

Following an acute viral infection, mouse airwaymacrophages
display a similar phenotype to those in health (CD11c, CD11b,
F4/80, and Siglec F). However, their responsiveness to TLR
agonists is significantly dampened (163). We called this “innate
imprinting” in 2004 (164), which is similar to the concept of
“trained immunity” described by others in which monocytes
acquire a tolerant phenotype after stimulation (165–167). This
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un-responsive state has recently been described as “immune
paralysis” (168). In addition to influenza virus, human rhinovirus
infection also predisposes to bacterial infection via degradation
of IRAK-1 (interleukin 1 receptor associated kinase) leading to
enhanced infection of respiratory epithelial cells by H. influenza
(169). Defective TLR signaling would clearly lead to a reduction
in many aspects of inflammation. With respect to subsequent
bacterial infections, however, the most damaging consequences
are the IFNγ induced impairment of macrophage phagocytosis
(170, 171) and the reduction in neutrophil recruitment due to
suppressed IL-8 production. In addition to reduced recruitment,
neutrophil function also appears impaired following viral
infection with reported reductions in myeloperoxidase, reactive
oxygen species and the bactericidal properties of neutrophil
extracellular traps (NETs) [for a review see (172)]. Reduced
recruitment of neutrophils would also impact on airway
macrophage NLRP3 inflammasome activation that is important
for the production of IL-1β (173–176).

Reduced TLR signaling during viral infection may contribute
to the impairment of the IL-17 response required for bacterial
containment. Th17 cells produce IL-17 and IL-22 and are
regulated by IL-23 (177, 178). These cytokines are crucial for
lung epithelial production of neutrophil recruiting chemokines
and anti-microbial peptides (179). Influenza virus induced type 1
IFNs reduce IL-17, IL-22, and IL-23 and impair the clearance of
S. aureus; an outcome that can be rescued by adenoviral delivery
of IL-23 (180). Type 1 IFNs also impair IL-17 production from γδ

T cells (180).
The anti-inflammatory state that occurs following lung viral

infection creates some confusion as patients and mice that
succumb to secondary bacterial infection ultimately display
enhanced inflammation (147, 181–183). However, a sluggish
immune response will ultimately lead to enhanced inflammation
due to an exponentially higher bacterial load.

The Impact of Viral Infection on Other Airway Innate

Immune Cells
In addition to viral induced modification of airway macrophages,
other innate immune cells are also affected. Type-2 innate
lymphoid cells (ILCs) increase during influenza virus infection
and secrete IL-13 (3), which although important for wound
repair, are not useful during bacterial infection. A similar
population of Lin− CD127+ ST2+ CRTH2+ ILC2s have also
been identified in human lung tissue and BAL and are known
to produce IL-13. In mice, methicillin-resistant Staphylococcus
aureus induces IL-13 up to 3 days after influenza virus infection
and impairs viral clearance. Later infection of MRSA after
influenza however, exacerbates bacterial replication due to
inhibition of IL-13 and an upregulation of IFNγ (184). A
detrimental impact of IL-13 is also evident following chlamydia
(185) and tuberculosis (186). IL-13 also promotes Mycoplasma
pneumoniae and non-typeable H. influenza adhesion in cultured
bronchial epithelial cells by increasing MUC18 (187) and
overcomes the enhanced bactericidal effects on epithelial cells
of beta-2 agonists (188). Collectively, these studies suggest that
ILC2s can be beneficial or harmful depending on their kinetics.

Viral infection induces the early recruitment of NK cells to
the lungs where they promote anti-viral immune cells through
the release of cytokines and limit viral replication by removing
infected cells that have down-regulated MHC class I. If NK
cells are depleted, adaptive immunity is not optimal, which
could lead to prolonged viral infection (189, 190). NK cells also
influence dendritic cells to support Th17 and Th1 cells that
are important in anti-bacterial immunity (191) and NK cell
production of IL-22 is protective against Klebsiella lung infection
(192). However, NK cells appear early in the antiviral response to
lung viral infection and so may not be present during secondary
bacterial infection. Indeed influenza virus is reported to decrease
NK cells, which reduces clearance of S. aureus in a process
dependent on TNF-mediated enhancement of macrophage
phagocytosis (193).

IL-10 is upregulated by viral infection and dampens the
activation of invariant natural killer T (iNKT) cells by inhibiting
the production of IL-12 by lung monocyte-derived dendritic
cells, which contributes to S. pneumoniae outgrowth (194).
IFNγ increases susceptibility to secondary bacterial infection by
promoting inflammation and damage in the upper respiratory
tract through both the ligand IFNγ and IFNγ receptor (245).
Though IFNγ stimulates a pro-inflammatory phenotype in
alveolar macrophages, it inhibits bacterial phagocytosis (49)

Neutrophils are critical components of anti-bacterial
immunity. In addition to their reduced recruitment due to
impaired chemokine production, influenza virus also inhibits
their activity by inhibiting Th17 cell induction of anti-microbial
peptides (195). Viral induction of Setdb2 (a protein lysine
methyltransferase) also represses the expression of the CXCL1
gene that recruits neutrophils (196) and defective G-CSF
production impairs neutrophil digestion and/or killing of
phagocytized bacteria via myeloperoxidase (MPO) activity (197).

γδ T cells are also important in susceptibility to secondary
bacterial infections. These rare T cells directly recognize
pathogen-associated molecular patterns (PAMPs), express a
range of cytokine receptors that modulate their function, mediate
cell cytolysis via FAS and TRAIL and release anti-microbial
peptides and cytotoxic molecules. They also produce IFN-γ,
TNF-α, and IL-17. γδ T cell IL-17 production is impaired during
influenza infection by type I IFNs causing susceptibility to S.
pneumoniae infection (198). The role of γδ T cells in the extent of
lung inflammation during viral infection depends, however, on
whether other underlying conditions are present. For example,
γδ T cell depletion in murine models of rhinovirus infection in
asthmatic mice enhances airway hyper-reactivity (199).

Mucosal-associated invariant T (MAIT) cells (200, 201) are a
recently studied population that are important in mucosal tissues
for anti-bacterial immunity. They express cytotoxic markers such
as CD107a and granzyme B via synergistic actions of IL-12 and
IL-7 (202) and produce IFN-γ, TNF-α, and IL-17A (203). Their
role in the lung is beginning to emerge. Lower numbers of
peripheral blood CD161(+)Vα7.2(+) MAIT cells are associated
with fatality in hospitalized patients with avian H7N9 influenza
(204). However, it is not currently known whether defects in this
population may predispose to bacteria following virus infections
in the lung.
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Wound Repair and Bacterial Susceptibility
in the Airways
In addition to reduced neutrophil chemoattractants, the post-
viral lung may be skewed toward wound repair that will not be
conducive for bacterial recognition and clearance. The molecules
mediating wound repair are often immune suppressive. IL-10 is
enhanced following influenza infection and promotes bacterial
replication in the post-influenza virus infected lung (148) by
inhibiting multiple facets of immunity; a process that may
be driven by the upregulation of indoleamine 2,3-dioxygenase
(IDO) (205). Furthermore, regulatory T cells and TGFβ are
raised post-viral infection to dampen inflammation and facilitate
processes of wound repair; for example by inducing the synthesis
of collagen (206). However, TGFβ is also anti-inflammatory and
is required to limit the activity of dendritic cells (168). A recent
study by the Schulz-Cherry group showed that knockout of the
β6 integrin prevents the activation of latent TGFβ leading to the
presence of constitutively activated airway macrophages (207).
Wound repair therefore represents a double edged sword where
anti-inflammatory components limit inflammation and promote
repair, but at the same time leave hosts susceptible to bacterial
infection.

A few studies have described that epithelial cell proliferation
and the expression of lung repair genes are reduced following
respiratory viral infection (208, 209). This implies that barrier
repair is delayed, which may prolong the access to alternative
adhesion and nutrition sources for bacteria.

The importance of the repair process in the outcome
of viral and bacterial infection of the respiratory tract is
elegantly illustrated by the administration of amphiregulin,
which decreases inflammation and lung damage to influenza
virus (3) and prevents mortality to a secondary bacterial infection
in the absence of any discernible influence on bacterial load (208).

Matrix, Innate Immunity, and Bacterial
Adhesion in the Lung
Extracellular matrix is a highly organized structure containing
precise patterning of 43 different types of collagen, 200
glycoproteins and 40 proteoglycans (210). These components
combine to form the interstitial matrix and the basement
membrane. Alterations in both of these impacts on the cellular
content of the lung and airways, and the adhesion, growth and
location of bacterial species.

The basement membrane contributes to tissue architecture
and is a highly organized structure made up of collagen
IV, laminins, proteoglycans (decorin, biglycan, aggrecan and
versican), heparan sulfate proteoglycans (perlecan and agrin),
and nidogen (211). Some of these components can bind to other
proteins that have immune modulatory properties. Decorin and
biglycan for example, bind TGF-β1 (212) and so any alteration
of their density or position will impact on lung inflammation
and tissue repair. Similarly, fibrillar collagens type I and III of
the interstitial matrix, in addition to binding other collagens
and ECM components, also interact with inflammatory cell
surface receptors particularly integrins. VLA-1, for example, is
expressed on influenza-specific lung CD8+ T cells and binds

α1β1 on interstitial matrix facilitating retention of memory
CD8+ T cells in the lung (213). It is not hard to imagine that
matrix re-modeling due to viral infection will have numerous
consequences, such as the retention of a higher immune cell
burden (214). Those retained immune cells, however, may not be
optimal for subsequent bacterial infections and may even hinder
the early migration of anti-bacterial immunity. For a recent
review on immune cell:matrix interactions in the lung see (215).

The degradation of matrix can also liberate bioactive
fragments now called matrikines which have immune
modulatory properties. For example, the proteolytic processing
by matrix metalloproteinases, MMP8 and MMP9, of interstitial
collagens liberates the bioactive fragment, acetylated tripeptide
Pro-Gly-Pro (acetyl-PGP) which promotes lung neutrophil
recruitment (216, 217).

Accumulation of extracellular matrix components requires
additional effort from interstitial and alveolar macrophages to
clear them. This renders them hypo-responsive to subsequent
bacteria. Recently we have found that excess hyaluronan
induces adverse events in this way (218). Hyaluronan is a
glycosaminoglycan that is abundant in the lung interstitial
matrix. It is extruded from cells by hyaluronan synthases
forming long cable-like polysaccharide structures. Degradation
of hyaluronan is mediated by hyaluronidases. High- and -low
molecular weight hyaluronan is reported to be anti-inflammatory
and pro-inflammatory, respectively (219). Furthermore,
hyaluronan can be sampled in sputum and by bronchoalveolar
lavage, suggesting accumulation in the airways (220, 221). We
have recently reported that hyauronan continues to accumulate
in the lung and airway long after resolution of acute influenza
virus infection in mice due to excess production via HA synthase
2. Furthermore, this excess hyaluronan is cross-linked with
inter-α-inhibitor heavy chains due to elevated TNF-stimulated
gene 6 expression. IαI is a proteoglycan containing two heavy
chains of ∼80 kDa, and a light chain (bikunin) of ∼25 kDa that
confers protease inhibitory properties (222, 223). Circulating
IαI leaks into tissues during inflammation. Its synthesis has also
been described in lung epithelia where it mediates repair after
lung injury (224). In our study, administration of intranasal
hyaluronidase completely restored lung function without any
deleterious side effects (218).

There are other examples of matrix alterations contributing
to the pathogenesis of lung viral infections (225). Influenza
infection induces the recruitment of myeloid cells expressing
membrane type I matrix metalloprotease (MT1-MMP/MMP-
14) that is important in lung development and homeostasis
(226). MT1-MMP inhibition rescues tissue damage andmortality
in influenza-infected mice and combined with the anti-viral,
oseltamivir, affords complete recovery. Furthermore, MT1-MMP
inhibition also prevents outgrowth of S. pneumoniae following
influenza infection (227). The modulation of extracellular matrix
may depend on the viral strain. Analysis of RNA datasets
from patients infected with pandemic associated influenza
strains shows that H5N1 and H7N9 infection are enriched
for genes involved with the extracellular matrix pathway
(228). The importance of lung recovery and resilience is
also demonstrated in mice lacking endophilin B2 that display
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improved mechanosensing and collagen and elastin ECM
remodeling compared to wild-type mice (229). There are many
other examples where matrix and associated components impact
on lung immunity, which have been comprehensively reviewed
elsewhere (230).

In addition to viruses directly promoting bacterial adherence
(e.g., the neuraminidase in influenza virus exposes bacterial
attachment sites by cleaving sialic acids, which are also
metabolized by bacteria as a food source (231)), viral induced
changes in extracellular matrix will change the lung microbiome.
Dysbiosis of microbial commensalism can significantly impact
on the overall health and progression of disease. Bacteria and
bacterial products induce phenotypic and functional changes in
immune pro-inflammatory gene expression, cellular adhesion
and migration, and cell death (232). Binding to the ECM allows
bacteria to adhere to, and colonize, host tissue. In addition,
bacteria demonstrate affinity for different matrix substrates
and changes in ECM components may increase host-pathogen
accessibility and increase of bacterial virulence (233).

A number of microbes have elastase activity and/or express
binding proteins for elastin that aid their pathogenicity (234). S
aureus binds to elastin rich sites and expresses elastin binding
proteins (EbpS) which bind to soluble, but not structurally intact
chains of elastin (234). The expression of EbpS is also associated
with greater bacterial cell growth, promoting cell proliferation
and colonization (234, 235) and evasion of phagocytosis (234). In
addition, elastin proteolytic products induce MMP activity and a
number of bacteria express elastases (234, 235) further promoting
elastin availability and consequently bacterial binding.

S. aureus encodes the fibronectin binding proteins (FnBPs),
MSCRAMM (microbial surface component recognizing adhesive
matrix molecule) that adhere to fibronectin and fibrinogen
(236). Since components of fibronectin influence TLR4 receptor
signaling, FnBPs may also promote immune regulation (237).
Bacteria express collagen receptors and their binding appears
to depend on collagen fiber tensile strength, conformation
and structural dynamics. In an in vitro model, applying
increasing high tensile forces to collagen peptides restricts
receptor binding, suggesting that structurally normal collagen
fibers decrease available sites for bacterial adhesion. Injured
states, where collagen fibers are cleaved by high MMP activity,
may increase susceptibility toward bacterial colonization with
reduced structural strength and increased accessibility for more
bacterial binding capacity (238).

Von Willebrand factor (vWF) is a large multimeric adhesion
molecule and stimulates adhesion of bacteria. In bacteria such as
S aureus, adherence to host can also be mediated via vWF and
bacterial binding protein staphylococcal protein A (SPA). SPA
binds to soluble and insoluble forms of vWF, promoting bacterial
attachment and enhancing virulence in the absence of immune
cell detection and clearance (239).

Glycosaminoglycan (GAG) interactions are ubiquitously used
for cellular and extracellular signaling in all biological processes.
Microbes utilize this universal process of the host for binding,
and colonization of the host environment. Bacteria express GAG
species and different binding domains across their entire surface.
Studies blocking, removing or decreasing expression of these

GAG binding domains decrease bacterial virulence (attachment,
colonization and infection) in a number of bacterial strains
(240). Bacterial communities have different affinities for GAG
species (240). A large study manipulating GAG binding domains
showed that the removal of heparin sulfate in S. aureus and
S. pneumoniae decreases bacterial attachment to lung epithelial
cells and fibroblasts and the inhibition of synthesis produced
the same effect (240). The normal GAG interactions of the host
are also used by microbes to prevent immune detection and
clearance. Bacteria such as Streptococcus coat their surface with
soluble high molecular weight hyaluronan, inhibiting detection
and clearance by macrophages (241). Degradation of hyaluronan
from the host tissues or bacteria into the low molecular
weight protein stimulates phagocytosis, demonstrating bacterial
colonization and infection can be influenced by the processing of
GAGs from both the bacterium and host (241).

Fast Inflammation Is Good
Interestingly, a time limited burst of inflammation from the
outset is beneficial during influenza infection in mice, which
results in faster clearance and less collateral damage (Figure 3).
The evidence to support this comes from detailed studies on
IL-10 knockout mice and the response to pathogen clearance
discussed earlier, and our studies with CD200 or CD200R
knockout mice. CD200R signaling on myeloid cells limits
inflammatory activity (242). Mice lacking CD200 or CD200R
show heightened weight loss during influenza infection due to
raised levels of inflammation (47). However, when these mice are
next exposed to S. pneumoniae, they do not show susceptibility,
because the first inflammatory event to influenza was quicker,
thus causing less collateral damage (243). The benefit of a short

FIGURE 3 | Fast and limited immunity is good. A time limited burst of

inflammation limits bystander tissue damage, which in turn limits the extent of

tissue repair. This leads to less impairment of anti-bacterial immunity and so a

secondary bacterial infection is cleared. A virulent pathogen, or one that isn’t

cleared quickly, causes prolonged bystander tissue damage leading to a

lengthy period of repair; the processes of which are anti-inflammatory. A

subsequent bacterial infection is ignored and grows exponentially. Ultimately,

innate immunity is activated when the bacterial load is excessive causing

deleterious consequences.
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burst of inflammation has recently been supported by data from
the Metzger group where mice lacking SOCS-1 or IFNγ cleared
influenza virus faster than littermate controls due to a rapid
induction of immunity. By contrast, in the presence of SOCS-1,
inflammation was prolonged and collateral damage increased
(171). It would be interesting to test the impact of subsequent
respiratory bacterial infection in the SOCS1 and IFNγ deficient
model. Such studies might suggest that patients experiencing
severe disease do so because their immune system is too sluggish.
However, upon presentation at care facilities it would be too late
to consider boosting immunity. The speed of immunity could
possibly be specifically tackled in patients with other underlying
conditions that render their innate immune system suppressed,
as in the case of chronic obstructive pulmonary disease, or of
the wrong phenotype to limit viral replication, as in the case of
asthma. These patient groups are known to be at risk of severe
viral infections [for example see (244, 245)].

The benefits of rapid induction of immunity to viral infection
are also supported by research on IL-22. IL-22 is an interesting
cytokine that is produced by innate immune cells and is critical
for host protective immunity to lung K. pneumoniae (246), and
S. aureus (183), but not to Mycobacterium tuberculosis or M.
avium infection (164). IL-22 is upregulated during lung infection,
but its neutralization has no effect on the kinetics of the disease
or viral clearance. Rather it seems to function by promoting
epithelial integrity and limiting lung damage (3, 247–249), which
in turn prevents secondary lung infections by S. pneumoniae
in mice (250). Interestingly, progesterone treatment of female
mice also induces heightened IL-22 (and TGFβ and IL-6) and
promotes faster recovery from influenza infection in female
mice via epithelial production of amphiregulin. The resultant
improvement of pulmonary function and reduced protein
leakage is likely to diminish the risk of bacterial outgrowth,
though this was not tested (251). In murine models of influenza
infection, administration of GM-CSF promotes resistance to S.
pneumoniae by promoting neutrophil recruitment and reactive
oxygen species production from macrophages (252).

Another study that supports stimulation of immunity to
prevent bacterial super-infections showed that the TLR-2
agonist, macrophage-activating lipopeptide 2 (MALP-2), reduces
pneumococcal outgrowth in influenza virus infected mice
(253). Also administration of nanoparticles containing the coat
protein of a plant virus (papaya mosaic virus) and a single-
stranded RNA causes the rapid recruitment of neutrophils,
monocytes/macrophages and lymphocytes with beneficial effects
on influenza virus and subsequent S. pneumoniae infection (254).

Creating a Debate in Matrix Modulation
Matrix modulation research is a field with great potential in
restoring immune function via alternative key mechanisms.
Extracellular matrix production is elevated following severe acute
viral infection, which could have consequences on cell retention,
immune paralysis of phagocytic cells and the physical properties
of the airspaces into which it leaks. Respiratory fluids from
COPD patients for example, contain higher levels of hyaluronan
(HA) than healthy controls (59, 218) and we have recently
shown this is exacerbated further by viral infection in COPD

patients. Hyaluronidase treatment of mice after resolution of
influenza virus infection restores lung function suggesting that
the consequences of increased airway and lung hyaluronan is
an impaired lung physiology (218). Airway hyper-reactivity is
also improved during ozone-induced airway disease in CD44
or IαI deficient mice (60, 255) that bind HA or cross-link it,
respectively. TNF-stimulated gene 6 catalyzes the transfer of IαI
heavy chains onto HA (256) and TSG-6 null mice are resistant
to airway hyporesponsiveness (257). Also TSG-6 promotes
anti-inflammatory macrophages, (258) and inhibits neutrophil
recruitment (259–262) and NFκB nuclear translocation. Just
considering one matrix protein such as hyaluronan, the method
of its production and degradation and the proteins that cross
link it, provides multiple avenues for modulation. Therapeutic
development in this area, to our knowledge, is poor with most
focus on neutralizing enzymes that degrade matrix to prevent
the liberation of small chemotactic matrix products. However,
recombinant human hyaluronidase is licensed for therapeutic
use in humans to increase barrier permeability, and although
it is currently approved to enhance delivery and absorption
of subcutaneous anesthetics, increase uptake of fluids, and to
improve resorption of radiopaque agents (263, 264), it has
the potential to be used to improve inflammatory diseases by
immune-matrix modulation.

CONCLUSION

Bacterial susceptibility following lung viral infection has been
recognized for over a century and yet treatment options have
not really altered since the introduction of antibiotics. It is now
clear that long term suppression of innate immune mechanisms
occurs following severe acute or chronic inflammation. In
contrast to the clinical susceptibility toward bacterial infection
that can occur in the 7 days following a viral infection, there
are multiple long term modifications in immune mechanisms
long after severe viral infections. These changes re-set the
inflammatory tone of various immune cells by processes now
known as trained immunity, innate imprinting or immune
paralysis (164–166, 168). These molecular changes are evident
during peak infection, but not in naïve un-infected lungs. This
modified, tardy innate immunity immune response contributes
to dysregulation of immune mechanisms to secondary bacterial
exposure, rather than the clearance of the initial pathogen,
and hence may explain the higher risk of long term bacterial
outgrowth and chronic infection that cumulatively leads to
excessive inflammatory disease. Themajority of pathways leading
to bacterial complications following viral infection have been
discovered in single mouse strain studies. A recent report from
the Metzger group shows that different mouse strains (BALB/C
and C57BL/6) react differently to alveolar macrophage depletion
following acute influenza infection. BALB/c mice respond to an
acute influenza insult via IFNγ dependent alveolar macrophage
depletion, whereas C57BL/6 mice do not. However, both are
susceptible to post-viral bacterial coinfection (265). The precise
combination of changes leading to bacterial super-infection may
therefore be slightly different depending on genetic background.
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Another area that requires development is that the known
“at risk” patient groups currently identified for priority
influenza vaccination (the elderly, asthmatic, pregnant etc.)
do not account for the vast hospitalization numbers over the
winter seasons. This suggests there may be other “at risk”
groups.

This as exemplified by the rise of bacterial pneumonias in
those experiencing low mood, stress, anxiety or mental health
issues (266, 267). A mucosal barrier breach cannot explain
all infectious complications. A population-based Danish study
of 976,398 individuals, including 142,169 with a history of
depression, onset of depression was associated with increased
respiratory viral or bacterial complications (IRR = 1.58; CI =

1.36–1.85; p = 0.000) (268). Depression and stress are linked to
suppression of multiple arms of innate and adaptive immunity
[see (269) and references within], including a reduction of
neutrophils (270) that are important for bacterial clearance. The
link between mental health and infection is an area that will gain
momentum in the next few years. Another area of concern that
will likely garner research effort in the future is the influence of
polypharmacy on respiratory infectious risk. In elderly patients
hospitalized for pneumonia in Canada, 45% were taking 5 or
more medications prior to hospital admission (271). A number
of these medications may also modulate the immune system,
though research in this area is sparse.

There is a window of opportunity between recovery from
viral infection and the onset of bacterial outgrowth where innate
immunity could be primed to react quicker. This may involve
removal of immune suppressive pathways (CD200R, IL-10, and
TGFβ), facilitation of apoptotic cell clearance (as apoptotic cell
recognition receptors switch off innate immunity) or timely
removal of high molecular weight matrix components from the
airways. To identify these, studies are required that take into
account other comorbidities, mental health status and the impact
of polypharmacy on outcome.
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