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Abstract: The expression and activity of different channel types mark and regulate specific 
stages of cancer establishment and progression. Blocking channel activity impairs the 
growth of some tumors, both in vitro and in vivo, which opens a new field for 
pharmaceutical research. However, ion channel blockers may produce serious side effects, 
such as cardiac arrhythmias. For instance, Kv11.1 (hERG1) channels are aberrantly 
expressed in several human cancers, in which they control different aspects of the 
neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they 
also retard the cardiac repolarization, thus lengthening the electrocardiographic QT 
interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities 
exist to produce less harmful compounds, such as developing specific drugs that bind 
hERG1 channels in the open state or disassemble the ion channel/integrin complex which 
appears to be crucial in certain stages of neoplastic progression. The potential approaches 
to improve the efficacy and safety of ion channel targeting in oncology include: (1) 
targeting specific conformational channel states; (2) finding ever more specific inhibitors, 
including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; 
(3) using specific ligands to convey traceable or cytotoxic compounds; (4) developing 
channel blocking antibodies; (5) designing new molecular tools to decrease channel 
expression in selected cancer types. Similar concepts apply to ion transporters such as the 
Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is 
also currently being considered in anti-neoplastic therapy. 
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1. Introduction 

Evidence tracing back to the seventies indicates that ion channel blockers, especially for K+ and 
Cl−channels, impair neoplastic cell proliferation. These observations were subsequently extended, thus 
opening a wide field of research on the functional implications of ion channels in the biology of cancer 
cells [1–2]. Prominent alterations in the expression and activity of ion channels and transporters occur 
in neoplastic cells. These changes, besides contributing to the promotion of tumorigenesis overall, may 
mark and stimulate specific progression stages [3]. In agreement with the many observations carried 
out in vitro, recent studies indicate that blocking the activity of certain voltage-gated channels impairs 
the growth of some tumours in vivo [4–7]. Encouraging results have also been obtained with inhibitors 
of the Na+/K+ pump in glioblastoma cells grafted in mice [8]. Analogous approaches are currently 
under test in rodent models that may have relevance for cancerogenesis, such as chronic inflammatory 
autoimmune diseases [9]. 

These studies open new vistas for pharmaceutical research. In principle, targeting ion channels 
presents considerable advantages for cancer treatment, such as the possibility of convenient (and 
potentially less toxic) extracellular access. However, ion channels normally exert disparate 
physiological roles in excitable as well as non-excitable cells. Therefore, channel targeting may 
produce serious side effects. A clear example, fully discussed below, is provided by Kv11.1 (hERG1) 
channels. These normally contribute to the repolarization phase of the cardiac action potential and 
blocking them may lead to fatal arrhythmias, usually caused by lengthening of the QT interval. 
However, Kv11.1 is also frequently expressed in cancer cells [10] and treatment with hERG1 blockers 
in vivo appears to have therapeutic effects for leukemias [6–7]. It is thus clear that proper calibration of 
therapy or, even better, production of compounds that preferentially target the channels expressed by 
tumour cells are experimental tasks that merit further study. 

Recently, we have extensively reviewed the manifold aspects of ion channel expression and 
function in different tumours [3]. In the following paragraph, we provide a brief update of the field. A 
rough synopsis of ion channels and transporters involved in oncology is shown in Table 1. Next, we 
focus on the main pharmacological issues, by devoting special attention to the possible strategies for 
targeting ion channels in cancer and circumventing the side effects. 

2. Channel Expression in Tumour Cells: An Update 

K+ channels have attracted most of the work in the field since the early discovery that they often 
control the proliferation of non-excitable cells. These observations were accompanied by many studies 
on the expression and function of K+ channels in different tumours, and particularly hematologic 
malignancies. Further investigations have aimed at understanding the contribution of specific channel 
types to the neoplastic progression. The control of cancer cell proliferation in different experimental 
models is often modulated by voltage gated K+ channels (VGKCs; in particular Kv1.3, Kv10.1 and 
Kv11.1), Ca2+-dependent K+ (KCa) channels (especially KCa1.1 and KCa3.1) and two-pore (K2p) 
channels (in particular K2p2.1). At least in the case of VGKCs and KCa, such control can occur through 
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the modulation of membrane potential (Vm), which in turn regulates transmembrane Ca2+ flow. This 
mechanism has been proven in breast, prostate and colon cancers and in melanoma, and it may have 
general importance [1–3]. The phenotype of different cell types is characterized by a specific “calcium 
signature” dependent on the kinetics, the magnitude and the sub-cellular localization of calcium 
signals. In turn, intracellular Ca2+ levels participate to the control of cell cycle checkpoints, in normal 
and neoplastic proliferation [11–13]. It has been repeatedly observed that a dysregulation of the 
calcium signature in cancer can be mainly attributed to Transient Receptor Potential channels (TRP 
channels), whose role in tumor progression is increasingly recognized [14,15]. In prostate cancer, for 
example, classic (TRPC), vanilloid (TRPV) and melastatin (TRPM) TRP channels are all involved, 
through different mechanisms, in the development of androgen independence. This leads to apoptosis 
resistance and hence treatment failure [16]. Besides the roles in volume control and cell motility that 
will be described below, TRP channels’ expression could also represent a useful prognostic marker, at 
least in prostate cancer [17]. Finally, TRP channels are involved in vascular permeability and 
angiogenesis, with clear implications for tumour growth and metastasis formation [18,19].  

Another mechanism by which K+ channels control tumor progression is the regulation of cell 
volume, which requires interplay with Ca2+ and Cl− channels. At least three types of swelling-activated 
channels are implicated in cancer cell physiology: the volume-regulated anion channels (VRAC), the 
swelling-activated K+ channels TASK-2 and KCa1.1, and the volume sensitive TRP Ca2+ channels, 
such as TRPV4 and TRPM4 [20]. Cell volume control plays a central role in three crucial aspects of 
cancer cell biology: cell proliferation, apoptosis and migration. Activation of volume-sensitive K+ and 
Cl− channels underlies the volume decrease which is an early and necessary part of the apoptotic 
response. Moreover, pioneering work carried out in H. Sontheimer’s laboratory determined the role of 
KCa1.1 (hsloBK) channels, which operate in a finely coordinated manner with Cl−channels to regulate 
glioma cell invasiveness and metastasis [21]. In particular, ClC-3 is crucially involved in the invasive 
process [22]. This channel type is inhibited indirectly, but specifically, by a scorpion toxin, chlorotoxin 
(Cltx), which suggested a pharmacological approach that exploits a radiolabelled Cltx compound 
(I131-Cltx; [23]), as is illustrated in more detail later. The important contribution of KCa3.1 channels to 
the regulation of cell migration has also been pointed out. To accomplish this function, KCa3.1 operates 
in concert with other channels and transporters. The current model envisions ion transport proteins as 
supporting migration by inducing localized cell volume changes, swelling at the front and shrinkage at 
the rear. Volume changes at the rear end were proposed to be mediated by KCa3.1 and volume-
regulated anion channels (VRAC) [24,25]. In addition, transport proteins like the Na+/H+ exchanger 
NHE1 generate a characteristic pH nanomilieu at the cell surface that promotes the formation and 
release of cell-matrix contacts at the front and rear part of the cell, respectively [26,27]. Ion 
transporters like NHE1 are also required for persistent directional migration. Finally, TRPC1 channels 
play an important role in directed cell migration by regulating Ca2+ signaling events within the 
lamellipodium (reviewed in [24]). 

Kv11.1 also is implicated in motility and cancer invasion [28–30], besides the contribution it gives 
to regulate proliferation in leukemia [31,32], neuroblastoma [32] and melanoma cells [30]. The 
mechanism, however, appears to be different from that operated by KCa3.1. Kv11.1 coassembles with 
the β1 subunit of integrin receptors, thus forming a macromolecular complex that modulates 
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downstream signalling pathways, such as tyrosine kinases and GTPases [33]. In this way, Kv11.1 
controls several aspects of cell physiology, such as migration and survival. 

VGKCs often affect also the very first steps of tumor development, as is proven by the frequent up-
regulation of VGKC transcripts following treatment with chemical carcinogens [34]. Hence, the 
expression of VGKCs and other structurally related K+ channels can be exploited for prognostic 
purposes in human cancers. For instance, Ousingsawat et al. [34] reported that VGKCs are associated 
with a poor prognosis in colorectal cancer, whereas KIR4.1, KIR3.1 and K2p2.1 correlate with tumor 
grade in gliomas, breast and prostate cancers, respectively [3]. 

The expression of voltage-gated sodium channels (VGSCs) has also been observed to increase in 
many cancer types, including breast, prostate, lung (both small-cell, SCLC, and non-small-cell, 
NSCLC), cervical cancer, leukaemia (reviewed in [3]) and mesothelioma cells [35]. Neoplastic cells 
mainly express the embryonic forms of VGSC (Nav 1.5 in breast and Nav1.7 in prostate). In general, 
VGSCs stimulate some of the cell processes necessary for the metastatic cascade to proceed, although 
the precise mechanisms are still unclear [36]. In breast, prostate, and NSCLC tumor cells, VGSC 
activity increases invasiveness by stimulating cysteine cathepsin activity [37]. Non-conductive roles of 
VGSCs, with possible oncological relevance, such as direct involvement in cell adhesion, are also 
emerging [38]. As is the case of K+ channels, determining VGSC expression (particularly of Nav1.7) is 
also useful for prognostic purposes, particularly in prostate cancer [39]. 

Recent evidence shows that ligand-gated channels are also implicated in neoplastic progression. In 
particular, the nicotinic acetylcholine receptors (nAChRs) are ionotropic receptors typically activated 
by acetylcholine and nicotine at concentrations between 100 nM and 1 mM. NAChRs regulate cell 
proliferation, apoptosis and angiogenesis in several tumours, including lung  
cancers [40–44]. This is suggestive because smoke is an established risk factor for cancer, and 
particularly lung cancer. Activation of nAChRs stimulates (directly and indirectly) Ca2+ influx, which 
triggers the release of growth factors and other transmitter molecules. These produce autocrine and 
paracrine effects that promote proliferation, inhibit apoptosis and stimulate angiogenesis. Moreover, 
nicotine confers resistance to the chemotherapeutic-induced apoptosis. These effects occur in both 
SCLC and NSCLC cells, although the intracellular signalling cascades and the nAChR types involved 
are different. Hence, the molecular network centered on nAChRs is currently considered a promising 
target for the tobacco-related cancer therapy [45]. Interestingly, from the present perspective, 
radioligand competition data suggest that several carcinogens produced by tobacco inhalation, namely 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN) and 
diethylnitrosamine (DEN), bind with high affinity to nAChRs [46]. It has thus been proposed that 
some of the oncogenic effects of these compounds depend on specific activation of nAChRs, which 
may supplement the well-known effects caused by DNA targeting of several nitrosamine metabolites. 
Most data concern NSCLC cells, in which nAChRs not only exhibit an altered expression [42], but 
have been shown to stimulate cell proliferation through up-regulation of signalling pathways 
downstream to integrins [47].  

Finally aquaporins (AQPs) have been recently studied in relation to cancer. AQPs are water channel 
proteins that facilitate transmembrane water flux. Ectopic AQP expression seems associated with 
several human cancers [48–50]. Molecular and biochemical studies have begun to clarify the role of 
AQPs in carcinogenesis. For example, AQP1 is implicated in both angiogenesis and cell cycle control 
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[51–53], whereas AQP5 induces many phenotypic changes characteristic of cell transformation in 
fibroblasts in which it is ectopically expressed [54,55]. The effects of AQPs appear to be mediated by 
the signalling pathways that include Ras, which is induced by phosphorylation of the PKA consensus 
site of AQP5. In colon cancer cells, for instance, AQP5 regulates Ras, ERK and RB [55]. Therefore, 
the general intracellular mechanisms seem similar to those frequently associated to the function of ion 
channels. Finally, AQP5 promotes epithelial-mesenchymal transition in bronchial epithelial cells, and, 
consistently, shows a significant association with disease progression in NSCLC [50]. 

Ion pumps constitute other active players in the neoplastic cell physiology, potentially useful for 
therapeutic targeting. Thorough work has been carried out by R. Kiss’s group on the Na+/K+ ATPase, 
which turns out to be a potentially useful target for oncologic therapy. The pump’s α1 subunit is 
overexpressed in some cancers [56], such as NSCLC [57] and glioblastomas [58,59]. In the latter, the 
Na+ pump is directly involved in the control of cell migration, thus cooperating with Cl−channels and 
aquaporins [60]. What is relevant, from the clinical point of view, is that inhibiting migration of highly 
migrating/invading glioma cells significantly increases their sensitivity to pro-apoptotic drugs. In other 
words, a potential way to overcome apoptosis resistance is decreasing glioma cell  
invasiveness [59–61]. Current therapeutic approaches based on these notions are discussed later. 
 
Ion transporters and the control of pH 
 

Since Warburg’s classic work [62], potent control of intra- and extracellular pH has been known to 
be a major feature of cancer cells, so much so that it can be considered as one of the cancer hallmarks 
[63]. Since the late eighties, work from Serrano and co-workers in fibroblasts showed that proton 
pumps confer increased proliferation rate and resistance to acidic environment. Maintenance of a 
relatively alkaline cytosol, through active proton extrusion, is thought to produce a permissive state for 
proliferation [64]. In general, cytoplasmic pH (pHi) is a most potent modulator of cell function. 
Displacements of pHi from resting levels (7.0–7.5) can arrest cell growth and induce apoptosis [63–
65]. It has been proposed that tumor cells may have a dual benefit from increased proton extrusion. 
First, pHi is maintained within proliferation-permissive values irrespective of intense glycolysis. 
Second, extracellular acidification facilitates the activity of the matrix proteases that promote cell 
migration and invasiveness [63]. Recent work from S. Reshkin’s research group contributed to 
highlight the fundamental role played by the tumor extracellular metabolic microenvironment during 
malignant invasion. Extracellular environment is mainly acidified by the Na+/H+ exchanger NHE1 and 
the H+/lactate cotransporter that are typically active in cancer cells. What is more, NHE1 also regulates 
formation of invadopodia—cell structures that mediate tumor cell migration and invasion. The NHE1 
located at invadopodia acidifies the local extracellular nanoenvironment in order to drive protease-
dependent and -independent proteolysis of the extracellular matrix (ECM) proteins, thus permitting 
invasion to occur. The invadopodial ECM digestion modulated by extracellular pH is also stimulated 
by serum deprivation, by hypoxia and EGF. The latter stimulates invadopodial digestion and 
particularly the NHE1-dependent acidification of the peri-invadopodial nanospace. These observations 
provide a starting place to figure out the mechanisms by which the tumor microenvironment and 
growth factors interact to drive tumor progression [27,63,65–70]. 
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Not surprisingly, considering the above evidence, carbonic anhydrase (CA) has also attracted 
increasing work in cancer biology, particularly the membrane-bound CA forms [65]. Special attention 
has been devoted to CA-IX, a hypoxia-inducible, tumor-associated extracellular-facing CA implicated 
in pH control of colon, bladder and breast cancer [71–73]. It has been proposed that CA-IX activity 
helps to vent CO2 from respiring cells, by hydrating extracellular CO2 to HCO3

- and H+. Such a 
facilitated CO2 diffusion maintains a steep outward CO2 gradient, with alkaline pHi and acidic pHe. 
Such an environment may contribute to stimulate tumor growth and invasiveness. Tumors that do not 
express CA-IX or other extracellular-facing isoforms (e.g. CA-XII) may resort to different transport 
mechanisms for proton extrusion, such as lactic acid efflux through monocarboxylic acid transporters 
(e.g. MCT4, a hypoxia-induced gene-product). The expression and hypoxia-inducibility of CA-IX of 
different cancer cell lines may provide information about their specific pH regulation strategies. 

3. Possible Approaches for Ion Channel Targeting in Oncology 

In principle, drugs can affect ion channels through several different mechanisms [74,75]. They can 
produce direct channel inhibition by blocking the pore or by obstructing the agonist binding site. 
Moreover, they can modify the channel residence in the different conformational states, by interacting 
with allosteric sites. Channel proteins are also affected by the composition and physical state of the 
plasma membrane, which can be also modified by several drugs. Finally, it is increasingly recognized 
that ion channels form complexes with a variety of membrane proteins, which suggests other possible 
ways for altering channel function. Many channel inhibitors exert their effects on the extracellular side, 
which usually makes the treatment is easier to calibrate and decreases aspecific metabolic effects. 

Choosing an oncologic therapeutic strategy requires considering the balance between two 
sometimes conflicting issues. A drug must produce potent and specific inhibition of a given channel 
type, in order to damage the targeted cell type, without causing important toxic effects in other tissues 
expressing the same or related channels. Several ways to obtain this goal are possible. In the case of 
voltage-gated channels, different cell types may express different proportions of channels in the 
different conformational states, because of their different Vm dynamics. Therefore, tissue specificity 
can be obtained by using compounds that preferentially bind these states, even when they poorly 
discriminate between channel subtypes. Such an approach has been considered for treating neuropathic 
pain by selectively blocking the VGSCs expressed in depolarized cells, a high proportion of which 
resides in the inactive state [76]. This requires detailed understanding of the mechanism of drug action, 
which is however relatively easy to obtain with the modern methods of cell physiology, especially 
patch-clamp. The latter technique is also invaluable for testing the mechanism of action of newly 
synthesized compounds, whose design [77,78] should be considerably facilitated by the rapid advances 
in the determination of the three-dimensional structures of ion channels [79-80]. The details of drug 
action are more easily carried out on ion channels expressed in heterologous systems. The relevant 
results can be next confirmed in more physiological preparations, such as primary cultures or brain 
slices. In this way, detailed mechanistic insight as well as evaluation of the drug’s effects on cell 
processes such as action potential firing, muscle contraction and secretion can be obtained, which is 
necessary to assess the possible side effects. The possibility of combining biophysical and 
pathophysiological studies in intact cells makes ion channels very appealing for rational drug 
development and screening. Nonetheless, targeting ion channels is still an under-exploited therapeutic 



Pharmaceuticals 2010, 3                            
 

 

1208

strategy. The recent development of high-throughput automated electrophysiological methods should 
give considerable impulse to the field. In fact, new compounds with channel-modulating activity have 
been recently used to treat a variety of disorders (e.g. [81]). However, the side effect issue remains a 
general problem. Below, we discuss a few exemplary cases regarding both ion channels and ATPase 
transporters. 

Table 1. Some ion channels and transporters relevant in oncology. 

Channel type             Function             References 
K+ channels: 
KV 
 
 
 
KCa 
 
 
KIR 
K2p 
Ca2+ channels: 
CaV 
SOC  
Na+ channels: 
NaV 
TRP channels 
 
 
 
Cl- channels 
 
nAChR 
 
 
 
Aquaporins 
 
Sodium pump 
 
 
Na+/H+ exchanger 
(NHE1) 
 
Carbonic Anhydrases 
(CA-IX, CA-XII) 
 

Cell proliferation 
Cell invasiveness 
Chemoresistance 
Angiogenesis 
Chemical cancerogenesis 
Cell proliferation 
Cell volume 
Cell migration 
Cell proliferation  
Cell proliferation 
Cell proliferation 
Cell proliferation 
Apoptosis 
Cell migration 
Cell invasiveness 
Cell proliferation 
Apoptosis  
Cell volume 
Angiogenesis 
Cell volume 
Cell migration 
Cell proliferation 
Apoptosis 
Angiogenesis 
Cell invasiveness 
Cell cycle control 
Angiogenesis 
Cell migration 
Cell invasiveness 
Chemoresistance 
Tumor cell metabolism 
Cell invasiveness 
Chemoresistance 
Tumor cell metabolism 
Cell growth  
Cell invasiveness 

 [1-3,28-32,34]           
 
 
 
 
 
 
 
 
 

[3,11-13] 
 
 

[3,35-39] 
 

[3,14-19] 
 
 
 

[3,20-25] 
 

[40-47] 
 
 
 

[48-55] 
 

[56-61] 
 
 

[26-27,63,66-68] 
 
 

[65,71-73] 

The listed examples refer, with no pretension of exhaustiveness, to the proteins under active study 
in the field and mentioned in the main text. Table also includes the membrane-bound carbonic 
anhydrases, which are also mentioned in the text. In addition, the references include a few recent 
reviews expanding on themes only cursorily treated here (e.g. [3] and [63]). 
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4. The Case of Kv11.1 (hERG1 or KCNH2): Specificity and Side Effects 

Kv11 (also known as ERG, from Ether-à-go-go Related Gene, hERG in humans) is a family of 
voltage-gated channels that comprises three main subtypes (Kv11.1, Kv11.2 and Kv11.3). The broad 
physiological properties of these subtypes are similar, although the specific expression and role in 
different tissues is debated. Because of their voltage dependent properties, Kv11 channels can exert 
different physiological functions. First, they contribute to shape the action potential repolarization, as 
is typically the case in heart myocytes. These channels activate/inactivate during the long depolarized 
plateau. Subsequently, during the repolarization phase, they quickly recover from inactivation, thus 
transiently opening before they close again (deactivate, more precisely) at negative Vm. Second, the 
steady state properties of Kv11 are such that a significant fraction of these channels is open at Vm’s 

around −40 mV. These channels can thus modulate excitability and contribute to the resting Vm of 
non-excitable cells, although the precise kinetic features varies between Kv11 subtypes [82]. In 
endocrine cells, these channels control the firing frequency, and thus hormone release, as has been 
shown in pituitary lactotroph [83], β-pancreatic [84] and chromaffin cells [85]. In general, Kv11 is 
widely expressed in the mammalian central nervous system (CNS, [86,87]) and its role in the 
regulation of neuronal excitability has been demonstrated in a variety of adult and developing rodent 
preparations [88–92]. Moreover, recent work has revealed a primate-specific cerebral Kv11.1 isoform 
(KCNH2-3.1) that controls neuronal excitability and seems to be implicated in neurological  
disorders [93].  

However, current evidence indicates that the most serious side effects observed when administering 
hERG inhibitors to patients are not caused by endocrine or neurological alterations, but by cardiac 
arrhythmias. In humans, hERG channels are thought to be the molecular correlate of the pore-forming 
subunit of the cardiac IKr current, which contributes to the action potential repolarization phase, for the 
biophysical reasons illustrated above [94]. Blocking Kv11.1 retards the cardiac repolarization, which is 
reflected in prolongation of the electrocardiographic QT interval. Uncontrolled QT interval 
lenghtening can result in torsade de points (TdP), a life-threatening ventricular arrhythmia that may 
lead to ventricular fibrillation [95]. In fact, hERG mutations can cause the long QT syndrome [96]. 
Many Kv11.1 blockers, such as E4031, Way 123,398, dofetilide and others belong to the class III 
antiarrhythmic drugs, which can lead to fatal arrhythmias. During the last eighteen years, reports of QT 
prolongation (associated with hepatotoxicity) have in fact determined more than 60% of drug 
withdrawals [97]. In addition, the cardiac side effecs presented by many hERG1 blockers in humans 
are often accompanied by an unwieldy blocking mechanism, since they bind the intracellular  
channel face. 

These features of Kv11.1 inhibitors are unfortunate, because ample evidence indicates that hERG 
expression/activity is implicated in neoplastic progression. In fact, studies in vitro as well as in vivo 
suggest that hERG1 blockers are worth considering for oncological therapy. Blocking Kv11.1 tends to 
arrest cell proliferation in a variety of cultured neoplastic cells [29;31,32;98–100], blocks the 
invasiveness of colorectal cancer cells [28] and the VEGF-A secretion from cultured glioma  
cells [101] and myeloid leukaemia cells [29]. What is more, very recent evidence indicates that similar 
effects are obtained in vivo, as treatment of immunodeficient mice with E4031 decreases (i) the growth 
of exogenous human gastric and colon cancer cells and (ii) the bone marrow engraftment and 
peripheral blood invasion of myeloid or lymphoblastic leukaemia cells [6,7]. In the following 
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paragraphs, we discuss possible ways to circumvent the problems that therapeutic use of Kv11.1 
blockers may cause. 

4.1. Not all Kv11.1 blockers produce arrhythmias 

Apart from class III anthyarrhythmics, Kv11.1 is blocked by many other compounds, such as some 
antihistaminics (e.g., terfenadine), prokinetics (e.g., cisapride), antipsychotics (e.g., sertindole) and 
antibiotics (e.g., erythromycin). This molecular ‘promiscuity’ resides in the structural features of the 
intracellular channel cavity, to which most of these drugs bind [97,102–104]. What is interesting from 
our perspective is that not all of these compounds produce arrhythmogenicity [105]. Verapamil, for 
example, produces strong hERG inhibition without prolonging the QT interval in both animals and 
humans. Probably, the effect caused by hERG block is balanced by a concomitant reduction of action 
potential duration produced by the blockade produced by verapamil on voltage-dependent Ca2+ 
channels [106]. Other drugs, such as the antipsychotic sertindole, inhibit Kv11.1 and prolong QT, 
without inducing torsadogenic effects [102]. The torsadogenic potential of channel blockers is 
generally unknown, because of the limited knowledge we have about the precise mechanistic 
relationship between QT prolongation and arrhythmia. Because sertindole has very high affinity for 
Kv11.1 [107], it is possible that the higher torsadogenicity of other hERG blockers depends on their 
lower specificity, which may cause supplementary effects on other ion channels. Therefore, blocking 
hERG does not necessarily produce fatal arrhythmias and the structure of sertindole may suggest how 
to synthesize even more specific compounds. This example shows the necessity of obtaining a 
complete profile of the effects of the most promising drugs on different ion channels. This problem 
often arises when targeting ion channels. For example, antiepileptic drugs usually exert their action by 
modulating ion channels. Nevertheless, the mechanism of action is often poorly understood, because 
the full spectrum of molecular targets of these compounds is generally unknown [108]. To plan 
rational pharmacological strategies, mechanistic studies should be followed by further tests of the 
physiological effects on tumor as well as other cell types. 

4.2. Compounds that bind different conformational states or different channel regions 

The ion channel function is characterized by continuous transitions between a few relatively stable 
conformational states, such as open (active), closed (deactivated) and inactivated (or desensitized, in 
ligand-gated channels). Therefore, when different cell types have distinct Vm dynamics, the same 
channel isoform may present a very different distribution of conformational states. Because many 
drugs bind conformational states with different efficacy, they may selectively target certain cell types 
simply because they tend to bind different channel states. This strategy is currently considered in 
treatment of neuropathic pain [76]. Compounds such as lamotrigine and lidocaine preferentially target 
open and inactivated voltage-gated Na+ channels, without distinguishing the different subunits. The 
damaged neurons responsible for neuropathic pain are abnormally depolarized, so that the time spent 
by Na+ channels in the open or inactive state is much longer than it normally is in excitable cells. 
Therefore, cumulative channel inhibition is considerably more effective in damaged neurons. 

Similar methods could be applied to cancer therapy. Neoplastic cells are often rather depolarized 
and their changes in Vm are usually slow, even when these changes oscillate in phase with the cell 
cycle stages. Therefore, the proportion of time spent by a voltage-gated channel in a given state can be 
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very different in tumors and excitable cells. A recent example that points to the feasibility of this 
approach is offered R-roscovitine [109]. Roscovitine is a cyclin-dependent kinase inhibitor currently 
tested in phase II clinical trials as an anticancer agent. R-roscovitine quickly and reversibly blocks 
hERG at clinically relevant concentrations. Data suggest that this drugs blocks the open channel, 
which may explain why it does not produce arrhythmic effects (see Figure 1). HERG is usually open 
for only a transient phase during the cardiac action potential repolarization, whereas during most of the 
cardiac lifetime, Kv11.1 is either deactivated (at negative Vm) or inactivated (during the depolarized 
plateau). Thus, not enough time is available to open channel blockers, at appropriate concentrations, to 
produce significant hERG block in cardiac cells. On the other hand, a significant fraction of open 
Kv11.1 channels should be present in proliferating cells, with typical resting Vm around −40 mV. 
Hence, inhibitors that preferentially bind the open channel might produce significant cumulative 
effects on Kv11.1-expressing tumor cells, without causing significant side effects on cardiac myocytes. 
Roscovitine, in particular, also provides the possibility of simultaneous targeting cyclin-dependent 
kinases and hERG, with potentially cumulative effects. Recent studies have also addressed the 
frequency-dependence of hERG1 blockade for different compounds, which offers further insight on 
the possible effects on excitable cells [110]. The notions illustrated above can be extended to the other 
VGKCs for which drugs addressing specific conformational states are known [111,112]. 

Figure 1. Differences in the state-dependent block of hERG1 channels by R-roscovitine 
and class III anthyarrhythmic drugs (E 4031). 

 
 
4.3. Peptide toxins: accessibility from the extracellular side 

A supplementary problem presented by many of the Kv11-targeting inhibitors is that they often bind 
to the intracellular side of the channel protein. To develop more convenient drugs a possible starting 
point is the structure of the several peptide toxins recently found to bind different extracellular channel 
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portions, with high specificity. For example, the scorpion toxins BeKm-1 and CnErg1 (ErgTx1) bind 
the external vestibule when the channel is closed. In this way, they shift the ERG activation curve to 
the right (more positive). When the channel is open, these peptides also obstruct the channel pore, to 
different extent, with BeKm-1 probably targeting a deeper pore region [113,114]. Contrary to the 
above peptides, the sea anemone toxin APETx1 is specific for Kv11.1 [115]. It alters gating by 
interacting with the S3b helix, instead of the channel vestibule [116]. Further studies on these peptides 
could suggest how to develop state-specific drugs fit for therapeutic use. For review about ERG toxins 
and their mechanisms of action see Wanke and Restano-Cassulini [117]. Supplementary isoform-
specific scorpion toxins have been discovered recently [118,119]. For example, five peptides were 
purified from the venom of Grammostola rosea tarantula. These toxins exhibit different degrees of 
specificity for tetrodotoxin-sensitive Na+ channels and the three main isoforms of Kv11, but do not 
block Shaker-related K+ channels. Interestingly, these peptides produced both open channel blockade 
and gating modifications at different concentration ranges. Therefore, it is possible in principle to 
calibrate a blocker’s concentration to obtain the most useful effect. 

5. Recent Oncological Applications of Ion Channel and Transporter Blockade 

We recently reviewed the full spectrum of potential methods to obtain channel inhibition in a way 
applicable to cancer therapy [3]. In the following paragraphs, we briefly illustrate a few approaches 
that have already achieved some success (see also Table 2). 

5.1. Specific targeting of ion channels with different methods 

Because in some cases individual channel types can be assigned to specific cancer types [3], it is 
now possible to seek highly specific blockers to target specific tumor tissues. In effector/memory T 
(TEM) cells, Kv1.3 function is implicated in inflammatory autoimmune diseases such as multiple 
sclerosis and rheumatoid arthritis [120,121]. Chandy and coworkers recently obtained highly specific 
targeting of Kv1.3 with a modified sea anemone toxin (ShK-186). This treatment produces long-term 
loss of TEM cells in mice, with ensuing improvement of autoimmune disease symptoms. Moreover, the 
toxin spares the T-cell population that confers protection against infection and cancers [122]. 
However, TEM cells exert protective effects only in some cancer types, but not others [123–125]. 
Therefore, prolonged treatment with Kv1.3 blockers must be carefully evaluated in each case. 

A recent example of the potential usefulness of specific channel-targeting peptide toxins as anti-
cancer compounds is offered by studies in lung cancers. α-Cobratoxin specifically inhibits α7 nAChRs, 
those more involved in uncontrolled proliferation. This toxin was found to exert antitumor effects after 
xenografting either pleural mesothelioma cells [126] or NSCLC cell lines [127] into  
immunodeficient mice. 

In metastatic prostate cancer, promising results have been obtained by using novel blockers for 
VGNCs with high potency and minimal acute toxicity. These compounds have been used  
in vitro [128,129] and in human prostate cancer xenografts [130].  

Specific ion channel targeting can also be obtained by developing monoclonal blocking antibodies. 
Although several such tools have been recently produced [131,132], this approach is still in its infancy, 
as far as cancer therapy is concerned. Use of a monoclonal antibody against Kv10.1 (EAG-1) channels 
is described is the next paragraph. 
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Finally, specific inhibition can be obtained by using antisense oligonucleotides and small interfering 
RNAs. Concrete suggestion that this method could be useful in oncology comes from work on the 
intracellular Cl−channel CLIC4, whose expression increases in keratinocytes after exposure to DNA-
damaging compounds. Expressing inducible antisense nucleotides against CLIC4 has been shown to 
stimulate apoptosis in a squamous cancer cell line. When these cells are transplanted into nude mice, 
when the CLIC4 level is reduced by expressing an inducible CLIC4 antisense oligonucleotide, cells 
undergo apoptosis. In tumors derived from transplanting these cells into nude mice, application of the 
antisense oligonucleotide inhibits tumor growth by increasing apoptosis and reducing proliferation, an 
effect potentiated by TNFα [133]. 

Table 2. Possible approaches to target ion channels and transporters in oncology. 

          Approach            Examples             References 
 
 
Specific non-peptide 
inhibitors 
 
 
 
Targeting channel 
states 
 
 
Use of peptide toxins 
 
 
 
 
Blocking antibodies 
 
 
Antisense 
oligonucleotides / 
siRNAs 
 
Delivering cytotoxic 
compounds 
 

 
 
             Kv11.1       
            VGNCs     
      Na+ /K+ ATPase  
     
        
            VGNCs 
             Kv11.1  
 
         
             Kv11.1 
             Kv1.3  
           nAChRs  
 
 
             Kv10.1  
  
 
             CLIC4 
            nAChRs  
 
 
             Kv10.1   
              ClC-3  

 
 
                [6-7]  
            [128-130] 
            [134-135], 
 
 
                 [76] 
                [109] 
 
 
                [119] 
                [122] 
            [126,127] 
 
 
                [136] 
 
 
                [133] 
                [127] 
 
 
                [136] 
                [137] 

Table summarizes the main possible approaches for targeting ion channels and 
transporters, with possible oncological relevance. The listed examples specifically 
refer to some channel and transporter types under active study in the field and 
mentioned in the main text. The references include a few recent reviews expanding 
on themes only cursorily treated here (e.g. [119]). 

5.2. Using channel-specific toxins and antibodies to deliver cytotoxic compounds 

Kv10.1 channels are significantly expressed outside the central nervous system only during the 
progression of particular tumors. No specific inhibitor is known against these channels. Therefore, 
monoclonal antibodies have been generated, which offer the advantage of being highly specific for 
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Kv10.1 and being unable to cross the blood-brain barrier. Although these antibodies display moderate 
anti-tumor efficacy, they can be very useful for diagnostic purposes and for local delivery of cytotoxic 
drugs [136]. A complementary approach is using monoclonal antibodies against tumor-specific 
membrane proteins to deliver ion channel blockers on a given neoplastic tissue. This method avoids 
widespread effects of the blocker on other tissues [138-139]. A successful example is targeting of the 
ClC-3 channels that are implicated in human glioma spread. These channels can be indirectly inhibited 
by chlorotoxin (Cltx), a scorpion toxin that binds a membrane-bound metalloproteinase. This latter can 
move within the plasma membrane and thus inhibition of ClC-3 is produced indirectly [137]. A 
synthetic Cltx derivative labelled with I131 has recently completed phase I clinical trials for patients 
with high-grade gliomas [23] and a multi-centre phase II trial is currently in progress. 

5.3. Na+/K+ ATPase 

Cardiotonic steroids (cardenolides) are typical natural inhibitors of the Na+/K+ ATPase. Their anti-
cancer effects are usually too weak to allow them to be used clinically at reasonable doses. However, a 
recently developed hemisynthetic derivative of the cardenolide 2”-oxovoruscharin (UNBS1450) binds 
to the pump’s α1 subunit with 1 to 2 orders of magnitude higher affinity than that displayed by the 
classical cardenolides. Treatment with UNBS1450 leads to cell death in gliomas overexpressing the 
Na+ pump and, in vivo, prolongs the survival of mice orthotopically grafted with glioblastoma  
cells [60,61]. This compound also produces a marked inhibition of NSCLC cell growth in vitro [57]. 
Its efficacy in vivo is presently under study in preclinical trials [56]. The probable mechanism of action 
on glioblastomas is inhibition of cell migration through disorganization of the actin cytoskeleton and 
stimulation of proautophagic effects. Very recent results indicate that UNBS1450 also exerts anti-
tumor effects on melanoma cells both in vitro and in vivo [134] and seems also very effective on multi-
drug-resistant cancer cells, generally refractory to chemotherapy [135]. 

6. Conclusions 

Ion channels are still somewhat neglected as therapeutic targets, except in typical diseases of 
excitability processes, such as epilepsy and cardiac arrhythmias. This is somewhat unfortunate because 
ion channels may offer considerable advantages in terms of mechanistic understanding and clinical 
potential. A growing body of evidence is determining the specific channel expression and roles in 
many tumor types [1-3,140]. As a consequence, several clinical trials are already in progress for a few 
channel-targeting compounds. We believe the evidence reviewed here indicates that more widespread 
efforts should bring interesting pharmacological applications of ion channel (or transporter) inhibitors 
in oncology. 
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