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The functions of long
noncoding RNAs on regulation
of F-box proteins in
tumorigenesis and progression

Lu Xia, Jingyun Chen, Min Huang, Jie Mei and Min Lin*

Center for Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of
Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University,
Wenzhou, China
Accumulated evidence has revealed that F-box protein, a subunit of SCF E3

ubiquitin ligase complexes, participates in carcinogenesis and tumor progression

via targeting its substrates for ubiquitination and degradation. F-box proteins could

be regulated by cellular signaling pathways and noncoding RNAs in tumorigenesis.

Long noncoding RNA (lncRNA), one type of noncoding RNAs, has been identified

to modulate the expression of F-box proteins and contribute to oncogenesis. In

this review, we summarize the role and mechanisms of multiple lncRNAs in

regulating F-box proteins in tumorigenesis, including lncRNAs SLC7A11-AS1,

MT1JP, TUG1, FER1L4, TTN-AS1, CASC2, MALAT1, TINCR, PCGEM1, linc01436,

linc00494, GATA6-AS1, and ODIR1. Moreover, we discuss that targeting these

lncRNAs could be helpful for treating cancer via modulating F-box protein

expression. We hope our review can stimulate the research on exploration of

molecular insight into how F-box proteins are governed in carcinogenesis.

Therefore, modulation of lncRNAs is a potential therapeutic strategy for cancer

therapy via regulation of F-box proteins.
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Introduction

F-box protein is a subunit in Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase

complexes (1). It has been well documented that F-box proteins target their substrates via

ubiquitination and proteasome degradation (2). It has been accepted that F-box proteins

have 69 members in human genome (3). According to specific motifs in F-box proteins,

these proteins are classified into three types: 10 FBXW proteins (WD40 repeat domains),

and 22 FBXL proteins (leucine-rich repeat motifs), 37 FBXO proteins (other motifs) (4).

Accumulated evidence demonstrated that F-box proteins participate in cancer initiation

and progression via regulation of cell proliferation (5–7), apoptosis (8), motility and
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metastasis (9), cell cycle (10), EMT (11), cancer stem cells (12,

13), drug resistance (14, 15) and autophagy (16).

Noncoding RNAs have little or no protein coding capacity to

encode proteins (17). Based on the lengths of nucleotides, noncoding

RNAs are classified multiple types: long noncoding RNA (lncRNA,

high than 200 bp), short noncoding RNA (17-30 bp) and mid-size

noncodingRNA(31-200bp) (18). IthasbeenknownthatmicroRNA

(miRNA) has approximately 22 nucleotides and targets gene

expression via regulation of post-transcription (19, 20). Now,

noncoding RNAs have been validated to critically participate in

oncogenesis in various types of cancers (21–25). Not surprisingly,

noncoding RNAs regulated numerous cellular biological processes

anddysregulatednoncodingRNAs lead tovariousdiseases, including

cancer (26–29). In recent years, accumulated evidence suggests that

noncodingRNAs targets the expression of F-box proteins, leading to

carcinogenesis and malignant progression. One review has well

summarized the role of noncoding RNAs in regulation of F-box

proteins in carcinogenesis (30). However, this review mainly

described the role of microRNAs in governing the expression of F-

boxproteins.Here,we summarized the functionsandmechanismsof

lncRNAs in controlling F-box protein expression, leading to tumor

development and progression.
LncRNAs regulate the expression of
F-BOX proteins

Targeting FBXW family by lncRNAs

LncRNA SLC7A11-AS1 regulates b-TrCP1
SLC7A11-AS1 was downregulated in tumor tissues in

patients with gastric cancer, and correlated with poor

prognosis in these patients (31). Depletion of SLC7A11-AS1

contributed to tumor growth in cells and in mice via controlling

the ASK1/p38/JNK signaling pathway in gastric cancer (31). In

lung cancer cells, SLC7A11-AS1 facilitated tumor progression

via suppressing miR-4775 and increasing the expression of

TRAIP (32). SLC7A11-AS1 has been revealed to play a key

role in chemoresistance in various types of cancers (33). Luo
Abbreviations: CASC2, Cancer Susceptibility 2; FER1L4, Fer-1 Like Family

Member 4; GATA6-AS1, GATA6 Antisense RNA 1; HCC, Hepatocellular

carcinoma; LncRNA, Long noncoding RNA; MALAT1, Metastasis-associated

lung adenocarcinoma transcript 1; MT1JP, Metallothionein 1J, pseudogene;

NRF2, Nuclear factor erythroid-2-related factor 2; ODIR1, osteogenic

differentiation inhibitory regulator 1; PCGEM1, Prostate cancer gene

expression marker 1; PDAC, Pancreatic ductal adenocarcinoma; ROS,

Reactive oxygen species; SLC7A11-AS1, Solute carrier family 7 member 11

antisense RNA 1; SCF, Skp1-Cullin1-F-box protein; STAT3, Signal

transducer and activator of transcription 3; TCPTP, T-cell protein tyrosine

phosphatase; TINCR, Terminal differentiation-induced non-coding RNA;

TUG1, Taurine up-regulated 1; TTN-AS1, TTN Antisense RNA 1.

Frontiers in Oncology 02
et al. found that SLC7A11-AS1 targeted miR-33a-5p and

changed the expression of xCT, weakened cell growth,

promoted ROS levels, and regulated cisplatin resistance in

gastric cancer (34).

SLC7A11-AS1 was found to be significantly increased in PDAC

tissues (35). PDAC cells with gemcitabine resistance have a high

expression of SLC7A11-AS1, indicating that SLC7A11-AS1 could

play an essential role in regulation of drug resistance. In fact,

downregulation of SLC7A11-AS1 potentiated gemcitabine

sensitivity in resistant PDAC cells and inhibited the PDAC

stemness. In line with this, overexpression of SLC7A11-AS1

increased gemcitabine resistance via suppressing intracellular ROS

levels by maintaining NRF2 stability (35). Mechanically, SLC7A11-

AS1 can bind to the F-box motif of b-TrCP1 (also known as

FBXW1), which blocks the ubiquitination and degradation of

NRF2. Therefore, SLC7A11-AS1 attenuated b-TrCP-mediated

degradation of NRF2, reduced ROS levels, and increased cancer

stemness, which promoted gemcitabine resistance in PDAC (35).

Hence, targeting SLC7A11-AS1 could overcome gemcitabine

resistance to improve treatment benefits in PDAC patients.
LncRNA PCGEM1 regulates b-TrcP2
b-TrcP2, also known as FBXW11, has been characterized to

take part in tumorigenesis (36). FBXW11 activated the b-catenin/
TCF and NF-kappa B pathways and increased cell proliferation in

lymphocytic leukemia (37). FBXW11 maintained stem-cell-like

characters and enhanced liver metastasis via governing SIRT1

transcription in colorectal cancer (38). LncRNA PCGEM1 has

been found to participate in the initiation and development of a

variety of cancers via regulating several signaling pathways (39).

LncRNA PCGEM1 expression was remarkably increased in cervical

cancer specimens, which was associated with FIGO stage, lymph

node metastasis, poor survival and distant metastasis in cervical

cancer patients (40). PCGEM1 upregulation stimulated

proliferation, invasion, migration, and cell cycle process and

reduced apoptosis in cervical cancer cells (40). PCGEM1 can

work as a ceRNA to sponge miR-182 and suppress its expression,

leading to upregulation of FBXW11. Moreover, PCGEM1 can

activate the NF-kappa B and b-catenin/TCF pathways, and this

activation by PCGEM1 can be abrogated by knockdown of

FBXW11 (40). Altogether, PCGEM1 exerted cervical cancer

progression via modulation of miR-182 and FBXW11.
Several lncRNAs regulates
FBXW7 expression

F-box and WD repeat domain containing 7 (FBXW7) is well

studied and acts as one tumor suppressor gene in human

carcinogenesis and tumor progression (41–43). One study

identified that several lncRNAs are correlated with Fbxw7

deficiency in radiation-mediated thymic lymphoma (44). In
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mice with Fbxw7 deficiency, microarray dada from radiation-

induced thymic lymphomas revealed that 372 lncRNAs are

differentially expressed in tumor tissues. Among these

lncRNAs, 170 lncRNAs were decreased, while 202 lncRNAs

were increased in thymic lymphomas (44). Moreover, these

FBXW7-associated lncRNAs were found to participate in

DNA repair, cell cycle processes, lymphocyte activation and

cell differentiation. Two lncRNAs (lncRNA position: 5119300,

5162836) were observed to be linked to Anxa2, Cecr2, Zeb1 and

Zfp438 expressions, whereas one lncRNA (position: 182808654)

was decreased and associated with Ampd1, Cd6, Clip1, Dap,

Eda r add and Ptk2b (44 ) . Fu r the rmore , l n cRNA

A_30_P01032978 is correlated with poor disease free survival

in patients with breast cancer (44). In this section, we will discuss

how the several lncRNAs regulated the expression of FBXW7

in carcinogenesis.

LncRNA MT1JP regulates FBXW7
LncRNA MT1JP has been reported to be a tumor suppressor

via promotion of the translation of p53 by interaction with TIAR

(45). In retinoblastoma, MT1JP plays a tumor suppressive role via

targeting Wnt/b-catenin signaling pathway (46). In breast cancer

cells, MT1JP repressed oncogenesis and reversed cisplatin resistance

through sponging miR-24-3p and inhibiting the Wnt/b-catenin
(47). Consistently, MT1JP exhibited tumor suppressive functions

via sponging miR-92-3p and targeting miR-214/RUNX3 axis in

breast cancer cells (48, 49). In lung cancer cells, MT1JP blocked cell

proliferation, migration and invasion through modulation of miR-

423-3p/Bim axis (50). In glioma, MT1JP retarded tumor

progression via competitively binding with miR-24 (51). In

osteosarcoma cells, MT1JP was reported to increase the inhibitory

function of miR-646 on FGF2 expression (52). In HCC cells,

upregulation of MT1JP modulated cell apoptosis and migratory

abilities via targeting miR-24-3p and regulating AKT, RUNX3 and

p21 (53–55). Furthermore, MT1JP regulated miR-24-3p/Bcl2L2

signaling pathway and reduced lenvatinib sensitivity via

suppression of apoptosis in HCC (56). Moreover, MT1JP

upregulation abrogated the PTEN inactivation via miR-32

reduction in HCC cells (57).

In intrahepatic cholangiocarcinoma, MT1JP acted as a

protective lncRNA via regulation of miR-18a-5p and FBP1 (58).

MT1JP regulated miR-214-3p/RUNX3 signaling pathway and

subsequently inhibited proliferation and migration of gastric

cancer (59). Notably, low expression of MT1JP was related with

poor prognosis in patients with gastric cancer (60). LncRNA

MT1JP was downregulated in gastric cancer tissues compared

with adjacent normal tissues (61). Gastric cancer patients had a

better prognosis, who often have higher expression of MT1JP. In

vitro experiment data showed that lncRNA MT1JP upregulation

suppressed proliferation, invasion and migration and enhanced

apoptosis of gastric cancer cells (61). In vivo data revealed that

lncRNA MT1JP reduced tumor sizes and tumor metastasis.
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Mechanistical analysis demonstrated that lncRNA MT1JP

sponged miR-92a-3p and upregulated FBXW7 in gastric cancer

(61). Rescue experiments exhibited that downregulation of

FBXW7 reversed MT1JP-induced inhibition of proliferation,

invasion and migration in gastric cancer (61).

LncRNA TUG1 regulates FBXW7
Numerous studies have demonstrated the critical role of

lncRNA Taurine upregulated gene 1 (TUG1) in cancer initiation

and progression. LncRNA TUG1 underlined a tumor promotive

property via impairing miR-421-mediated suppression of KDM2A

and activating the ERK signaling in colorectal cancer cells (62).

TUG1 suppressed cancer progression via targeting Siglec-15-

mediated anti-immune activity in HCC (63). Moreover, TUG1

was reported to sponge miR-328-3p and increase the SRSF9mRNA

expression in HCC cells, leading to promotion of proliferation,

invasion and migration (64). Xiu et al. found that TUG1 enhanced

tumor malignant progression via binding with miR-516b-5p and

increasing H6PD expression (65). Xia et al. reported that TUG1

stabilization by IGF2BP2 increased cisplatin resistance via targeting

autophagy in colorectal cancer (66). One group identified that

TUG1 governed the miR-320a/FOXQ1 axis and caused promotion

of bladder tumor malignant phenotypes (67).

Sun et al. discovered that TUG1 increased chemoresistance

and enhanced cancer stem cell behaviors via stabilizing GATA6

protein in colorectal cancer (68). TUG1 targeted AKT/mTOR

signaling pathway via sponging miR-582-3p, which promoted

ovarian cancer malignant behaviors (69). TUG1 sponged miR-

29c-3p and upregulated the expression of VEGFA, which

facilitated malignant phenotypes in stomach cancer (70). In

addition, TUG1 competitively interacted with miR-29a and

triggered the expression of IFITM3 in HCC cells (71). TUG1

promoted tumor progression and metastasis via modulating

miR-140-3p and Annexin A8 axis in bladder cancer cells (72).

Zhang et al. reported that TUG1 targeted miR-187-3p and TESC

and modulated the NF-kappa B signaling pathway, which

governed progression of pituitary adenoma (73). Li group

reported that miR-199a-3p/MSI2 signaling pathway was

involved in TUG1-mediated promotion of cell migration,

invasion and proliferation in Ewing’s sarcoma (74). TUG1

upregulated the expression of XBP1 by sponging miR-498 in

ESCC cells, which enhanced tumor metastasis and growth (75).

One study revealed that TUG1 upregulated the expression of

FBXW7 and induced FBXW7-triggered SIRT1 ubiquitination

and degradation (76). Moreover, TUG1 compromised neuronal

mitophagy via targeting TUG1/FBXW7 axis in cerebral ischemia

and reperfusion injury (76). It is necessary to explore whether

TUG1 regulates the expression of FBXW7 in carcinogenesis.

LncRNA FER1L4 regulates FBXW7
LncRNA Fer-1-like protein 4 (FER1L4) has been discovered to

be involved in development of human cancer (77). Xia and
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colleagues found that FER1L4 knockdown suppressed cell growth

and cell cycle progression via interacting with miR-372 and

upregulating E2F1 expression in gliomas (78). In lung cancer

cells, FER1L4 suppressed metastasis and growth and enhanced

apoptosis via control of PI3K/AKT and p53 signaling pathways (79,

80). In osteosarcoma cells, FER1L4 regulated cell apoptosis and

EMT via suppression of miR-18a-5p and promotion of SOCS5 and

activation of PI3K/AKT pathway (81). In clear cell renal cell

carcinoma (ccRCC) tissues, FER1L4 expression is higher than

that in adjacent normal tissues (82). High expression of FER1L4

was linked to tumor grade, stage, metastasis and tumor

aggressiveness and patient survival (82). In oral squamous cell

carcinoma, FER1L4 facilitated tumor progression through

regulation of miR-133a-5p/Prx1 axis (83). In colorectal cancer

patients, FER1L4 expression levels were downregulated, while

RB1 expression was upregulated. FER1L4 expression was

associated with RB1 expression in colorectal cancer patients (84).

FER1L4 sponged miR-1273g-3p and increased the expression

of PTEN and led to cell cycle arrest and metastasis suppression in

colorectal cancer (85). One study showed that downregulation of

FER1L4 inhibited the mRNA levels of RB1 in gastric cancer (86).

Moreover, FER1L4 reduced cell growth via binding with miR-106a-

5p and increased the expression of PTEN at both mRNA and

protein levels in gastric cancer (87). Similarly, FER1L4 reduced

growth, invasion, migration and metastasis by suppressing the

Hippo-YAP signaling pathway in gastric cancer (88). Qiao et al.

found that FER1L4 repressed cell proliferation and blocked cell

cycle at G0/G1 phase as well as enhanced apoptosis via upregulation

of PTEN in endometrial carcinoma (89). Furthermore, FER1L4

overexpression was correlated with favorable survival outcome in

endometrial carcinoma patients (90). Ma et al. reported that

FER1L4 decreased cell invasion and growth and promoted cell

apoptosis and cell cycle arrest at G0/G1 phase in ESCC cells (91). In

HCC cells, overexpression of FER1L4 attenuated cell migration and

proliferation, increased apoptosis through targeting PI3K/AKT

signaling pathway (92).

In ovarian cancer cells, FER1L4 upregulation reduced paclitaxel

tolerance viamodulation of the MAPK signaling pathway (93). The

lower expression of lncRNA FER1L4 was observed in prostate

cancer samples compared with normal prostate tissues (94). Early

stage of prostate cancer patients had the higher expression of

FER1L4 in prostate cancer specimens. Upregulation of FER1L4

decreased proliferation and increased apoptosis in prostate cancer

cells via sponging miR-92a-3p and upregulating FBXW7 (94).

Depletion of FBXW7 abrogated inhibition of cell proliferation

caused by upregulation of FER1L4 in prostate cancer cells,

indicating that FER1L4 exerted antitumor activities via miR-92a-

3p/FBXW7 axis (94).

LncRNA TTN-AS1 targets FBXW7
LncRNATitin-antisense RNA1 (TTN-AS1) has been reported

to be involved in tumorigenesis in various type cancers, including
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esophageal squamous cell carcinoma (ESCC), cervical cancer,

gastric cancer and lung cancer (95–98). Lin et al. reported that

TTN-AS1 worked as an oncogene and was highly expressed in

ESCC cells and tumor specimens, and overexpression of TTN-

AS1 enhanced ESCC proliferation and metastasis (95).

Mechanistically, TTN-AS1 competitively interacted with miR-

133b and increased the expression of Snail1, leading to EMT

cascade in ESCC cells (95). In addition, TTN-AS1 sponged miR-

133b and increased the expression level of FSCN1 and resulted in

invasion cascades in ESCC cells (95). Chen et al. reported that

TTN-AS1 enhanced growth and metastasis of cervical cancer cells

via regulation of miR-573/E2F3 axis (96). Dong et al. revealed that

TTN-AS1 stimulated gastric cancer development via interacting

with miR-376b-3p and KLF12 (97). Luo et al. observed that TTN-

AS1 contributed to tumor progression via modulating PTEN/

PI3K/AKT signaling pathway in lung adenocarcinoma (98).

Similarly, TTN-AS1 activated cell invasion and migration via

governing miR-4677-3p/ZEB1 axis in lung adenocarcinoma (99).

In prostate cancer cells, TTN-AS1 reduced cell apoptosis and

facilitated cell proliferation via binding with miR-193a-5p (100).

LncRNA TTN-AS1 sponged miR-134-5p and increased the

expression of malignant brain tumor domain containing 1

(MBTD1), contributing to promotion of viability and drug

resistance, inhibition of apoptosis in osteosarcoma cells (101).

TTN-AS1 interacted with miR-376a-3p and subsequently

upregulated KLF15, resulting in promotion of colorectal

cancer progression (102). Cui et al. also reported that TTN-

AS1 facilitated the cell invasion and growth through activation

of miR-497-induced PI3K/AKT/mTOR pathway in colorectal

cancer (103). Fang et al. found that TTN-AS1 enhanced

invasion, EMT and cell growth via governing miR-139-5p/

ZEB1 axis and miR-524-5p/RRM2 axis in breast cancer cells

(104, 105). One group studied the role of TTN-AS1 in clear cell

renal cell carcinoma and found that TTN-AS1 acted as a

sponging RNA of miR-195 to increase the expression of cyclin

D1 and promote tumor progression (106). It has been reported

that lncRNA TTN-AS1 can sponge miR-15b-5p and regulate the

expression of FBXW7 in ovarian cancer (107). The low

expression of TTN-AS1 was found in ovarian cancer cells and

tumor tissues. Upregulation of TTN-AS1 reduced proliferation

and colony formation and stimulated apoptosis in ovarian

cancer cells (107). Moreover, knockdown of FBXW7

attenuated the functions of TTN-AS1 upregulation on cell

behaviors, suggesting that TTN-AS1 exerts its biological

behaviors via upregulating FBXW7 in ovarian cancer cells (107).

LncRNA CASC2 targets FBXW7
LncRNA cancer susceptibility candidate 2 (CASC2) has been

reported to serve as a tumor suppressor in carcinogenesis by

sponging several miRNAs (108, 109). Upregulation of lncRNA

CASC2 attenuated cell viability, induced apoptosis and affected

autophagy via regulation of miR-19a and NF-kappa B signaling
frontiersin.org
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pathway in colon cancer (108). In line with this finding, lncRNA

CASC2 enhance apoptosis and autophagy through targeting

TRIM16 expression in colon cancer cells (110). CASC2

promoted berberine-mediated cytotoxicity via inhibition of

Bcl2 in colorectal cancer (111). One group showed that

CASC2 overexpression exhibited antitumor activities through

sponging miR-24-3p in thyroid cancer (109). Another group

reported that CASC2 increased radiotherapy sensitivity via

sponging miR-155 in papillary thyroid cancer (112). Similarly,

lncRNA CASC2 increased irradiation-triggered endoplasmic

reticulum stress via regulation of PERK signaling pathway in

NSCLC cells (113). In pancreatic cancer cells, lncRNA CASC2

increased the expression of PTEN and retarded cell metastasis

via sponging miR-21 (114).

LncRNA CASC2 overexpression suppressed cel l

proliferation and tumor growth in mice in hepatocellular

carcinoma (HCC) (115, 116). LncRNA CASC2 enhanced

apoptosis and suppressed viability via targeting miR-24-3p in

HCC cells (116). In TNF-related apoptosis-inducing ligand

(TRAIL)-resistant HCC cells, CASC2 targeted miR-18a/

receptor-interacting serine/threonine-protein kinase 1 (RIPK1)

axis and the NF-kappa B pathway, whereas in TRAIL-sensitive

cells, CASC2 affected miR-221/caspase-3 and miR-24/caspase-8

(115). In clinical tissues, HCC patients have lower expression of

CASC2, which is associated with a poor overall survival rate

(115, 117). Sun et al. observed that lncRNA CAS2 reduced cell

viability, invasion and migratory activities via directly inhibiting

miR-183 in HCC cells (118). Wang et al. reported that lncRNA

CASC2 inhibited epithelial-mesenchymal transition (EMT) via

targeting miR-367 and FBXW7 in HCC cells (117).

Overexpression of lncRNA CASC2 repressed invasion and

migration of HCC cells and suppressed EMT and blocked

metastasis via sponging miR-367. In addition, FBXW7 was

found to be a downstream target of miR-367 in HCC cells

(117). Therefore, CASC2 regulates the expression of FBXW7 via

regulation of miR-367 in HCC cells.
LncRNA MALAT1 targets FBXW7
LncRNA metastasis associated lung adenocarcinoma

transcript 1 (MALAT1) has been known to be correlated with

tumor metastasis in human cancer (119). MALAT1 expression

was linked to the WHO grade, tumor size and poor survival in

glioma patients (120). MALAT1 depletion increased

proliferation of glioma stem cells and inhibited the expression

of Nestin and Sox2, two stemness markers (121). MALAT1-

mediated cell proliferation promotion was due to activation of

ERK/MAPK signaling pathway in glioma cells (121). Han et al.

found that MALAT1 downregulated MMP2 and blocked ERK/

MAPK signaling pathway as well as exhibited tumor suppressive

behaviors in glioma cells (122). Xiang et al. reported that

knockdown of MALAT1 induced apoptosis via reduction of

Cyclin D1 and Myc in U87 and U251 glioma cells (123). Studies
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showed that MALAT1 inhibited cell apoptosis and increased cell

growth and activated autophagy via targeting miR-101 and

derepressing Rap1B, RAB5A, ATG4D and STMN1 expression

in glioma (124, 125).

MALAT1 was identified to recruit FBXW7 to stimulate the

degradation of CRY2 and regulate trophoblast invasion and

migration (126). MALAT1 was significantly downregulated in

glioma samples and associated with tumor grade, tumor size and

Karnofsky Performance status in glioma patients (127).

MALAT1 repressed viability of glioma cells via suppressing

miR-155 in vitro. Moreover, FBXW7 was identified as a key

downstream molecule of miR-155 in glioma cells. Notably,

FBXW7 mediated miR-155-triggered oncogenesis in U87 and

SHG139 glioma cells. Strikingly, MALAT1 reduced cell viability

by upregulation of FBXW7 expression due to downregulation of

miR-155 (127). Hence, MALAT1 might be a potential

therapeutic target for glioma.

LncRNA TINCR targets FBXW7
LncRNA terminal differentiation-induced lncRNA (TINCR)

have been implicated in carcinogenesis and tumor progression

(128). TINCR can reduce cell invasion and growth, and induce

apoptosis through controlling the expression of miR-424-5p and

LATS1 in cutaneous malignant melanoma (129). TINCR

attenuated cell invasion and growth via targeting miR-210 and

BTG in laryngeal squamous cell carcinoma (130). In HCC cells,

TINCR enhanced cell invasion and growth via regulation of

STAT3 pathway by binding to TCPTP (131). In breast cancer,

TINCR governed cell metastatic ability and cell growth via

regulating miR-761 and targeting OAS1 and EGFR (132–134).

In lung cancer tissues, TINCR expression levels were

downregulated (135). In lung cancer cel ls , TINCR

upregulation retarded cell invasion and proliferation via acting

as a sponge of miR-544a. Moreover, FBXW7 was validated as a

downstream target of miR-544a in lung cancer cells. In a rescue

experiment, depletion of FBXW7 abrogated the suppression of

TINCR on invasion and proliferation (135). Altogether, lncRNA

TINCR performed anti-proliferative and invasive abilities in

lung cancer cells through modulating miR-544a/FBXW7 axis.

However, one study found that TINCR promoted tumor

progression by BRAF-induced MAPK pathway in NSCLC

(136). Therefore, further investigation is essential to determine

the role of TINCR in lung cancer progression.

LncRNA MALAT1 targets FBXW8
MALAT1 has been validated to have a role in cancer

diagnosis, prognosis and therapy (137). Emerging study has

shown that MALAT1 can regulate the expression of FBXW8 in

human cancer (138). FBXW8 has been reported to involve in cell

growth and cell cycle progression in choriocarcinoma (139).

Depletion of FBXW8 by siRNA transfection suppressed cell

growth and induced cell cycle arrest at G2/M phase in
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choriocarcinoma JEG-3 cells (139). Overexpression of FBXW8

exhibited the opposite functions on cell growth and cell cycle.

FBXW8 can regulate the expression of CDK1, CDK2, p27,

Cyclin A and Cyclin B1 in choriocarcinoma cells (139). One

study reported that miR-218 suppressed the cell proliferation via

inhibition of FBXW8 in choriocarcinoma JEG-3 cells (140).

In choriocarcinoma cells, MALAT1 upregulation increased

cell proliferation, while depletion of MALAT1 hindered cell

growth (138). Moreover, MALAT1 exerted its biological

behaviors via targeting miR-218 in choriocarcinoma cells.

Depletion of MALAT1 reduced the tumor growth in vivo.

What is more, FBXW8 was found to be a direct target of miR-

218 and was involved in MALAT1-meidiated promotion of cell

proliferation in choriocarcinoma (138). Hence, MALAT1

promoted cell proliferation via interaction with miR-218 and

upregulation of FBXW8 in choriocarcinoma.
Targeting FBXO family by lncRNAs

Linc01436 regulates FBXO11
Linc01436 was reported to be controlled by E2F6 and served

as a tumor promoter in NSCLC cells (141). Linc01436 worked as

a miR-30a-3p sponge to increase the expression of EPAS1 in

NSCLC, resulting in promotion of cell growth, invasion and

migration in vitro and enhancement of tumor growth and tumor

metastasis in mice (141).

Emerging evidence has revealed that linc01436 plays an

oncogenic role in gastric cancer progression (142–144).

Linc01436 repressed the expression of miR-585-3p and

increased mitogen-activated protein kinase 1 (MAPK1)

expression, which contributed to gastric cancer development

(143). Similarly, linc01436 triggered gastric cancer progression

through modulation of miR-513a-5p and apurinic/apyrimidinic

endodeoxyribonuclease 1 (APE1) (144). The higher expression

of linc01436 was observed in tumor tissues of gastric cancer

patients and was associated with a poor survival in gastric cancer

cases (142). Moreover, using in vitro experiments, knockdown of

linc01436 retarded metastasis and blocked proliferation in

BGC823 gastric cancer cells, while increased linc01436

promoted metastasis and proliferative activity in AGS gastric

cancer cells (142). Mechanistically, miR-585 can bind to

linc01463 and FBXO11, suggesting that linc01436 sponges

miR-585 and inhibit it, leading to indirect promotion of

FBXO11 expression in gastric cancer (142). Taken together,

linc01463 targets miR-585/FBXO11 axis and subsequently

promotes progression of gastric cancer.

LincRNA GATA6-AS1 regulates FBXO11
Xu et al. reported that lincRNA GATA6-AS1 regulated

invasive and migratory capacities and viability via binding to

miR-19a-5p and increasing TET2 in ovarian cancer cells (145).

LincRNA GATA6-AS1 promoted GATA6 expression and
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controlled the behaviors of lung cancer cells (146). In lung

cancer cel ls , l incRNA GATA6-AS1 suppressed cel l

proliferation and invasive ability (147). Using several

approaches, including RNA sequencing dataset, RT-qPCR and

TCGA data, one group found that GATA6-AS1 expression levels

were downregulated in lung cancer tissues (147). Moreover,

GATA6-AS1 overexpression increased the expression of

FBXO11 and SP1 via sponging miR-324-5p, contributing to

enhancement of invasion and proliferation in lung cancer cells.

Furthermore, miR-324-5p overexpression abolished the effects

of GATA6-AS1 upregulation in lung cancer (147). In a word,

lincRNA GATA6-AS1 might regulate miR-324-5p/FBXO11 axis

and facilitated lung cancer development.

LncRNA ODIR1 regulates FBXO25
FBXO25 has been reported to participate in cancer

development and malignant behaviors (148, 149). Impairing

PRKCD-FBXO25-HAX-1 signal ing pathway led to

lymphomagenesis and reduced the apoptotic reaction (150).

FBXO25 facilitated cell invasion, migration and proliferation

via regulation of YAP, cyclins, MMPs and b-catenin in NSCLC

cells (148). Clinically, FBXO25 had the higher expression in the

nucleus and cytoplasm of tumor tissues in lung cancer patients,

and was associated with lymph node metastasis and TNM stage

and overall survival (148). In cutaneous squamous cell

carcinoma cells, FBXO25 increased cell growth and metastasis

via binding with Oct-1, a Cyclin D1 repressor, and stabilization

of Cyclin D1 (149). One study showed that lncRNA RP11-

527N22.2, also known as osteogenic differentiation inhibitory

lncRNA 1 (ODIR1), interacted with FBXO25 and promoted the

destruction of FBXO25 protein by recruiting Cullin 3 (151).

FBXO25 promoted H2BK120 ubiquitination and increased the

trimethylation of H3K4 (H3K4me3), which increased osterix

transcription and the expression of osteocalcin, osteopontin and

ALP (151). In human umbilical cord-derived mesenchymal stem

cells, downregulation of ODIR1 contributed to osteogenic

differentiation, while upregulation of ODIR1 suppressed

osteogenic differentiation (151). It is required to investigate the

role of ODIR1-mediated FBXO25 disruption in oncogenesis

and progression.
Linc00494 regulates FBXO32
FBXO32 promoter hypermethylation has been revealed to be

linked to poor prognosis in patients with ovarian cancer (152).

FBXO32 has been involved in carcinogenesis and tumor

malignant behaviors. FBXO32 worked as an E3 ligase for

PHPT1 ubiquitination, leading to reduction of PHPT1

accumulation, inactivation of the ERK/MAPK axis, which

inhibited the proliferation of lung cancer cells (153). FBXO32

repressed tumorigenesis by targeting KLF4 for ubiquitination

and proteasomal degradation in breast cancer (154). Linc00494

was predicted to bind with NF-kappa B1 by bioinformatics
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analysis in ovarian cancer cells (155). Dual-luciferase reporter

assay, RIP and RNA pull-down confirmed the interaction

between linc00494 and NF-kappa B1. Linc00494 increased the

activity of NF-kappa B1 after their interaction. Moreover, NF-

kappa B1 suppressed the transcription of FBXO32 via binding

with the promoter region of FBXO32. Linc00494 upregulation

accelerated the expression of NF-kappa B1 and caused invasion,

migration and tumorigenesis in ovarian cancer cells. In

consistent, upregulation of FBXO22 reversed the linc00494-

mediated tumorgenicity in ovarian cancer (155). Strikingly,

linc00494 expression levels were highly upregulated in ovarian

cancer tissues, while FBXO32 has a lower expression in ovarian

tumor specimens (155). In summary, linc00494 modulated NF-

kappa B1 and FBXO32 and enhanced progression of

ovarian cancer.
Conclusions and
future perspectives

In conclusion, multiple lncRNAs have been reported to

regulate the expression of several F-box proteins in
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tumorigenesis, including lncRNAs SLC7A11-AS1, MT1JP,

TUG1, FER1L4, TTN-AS1, CASC2, MALAT1, TINCR,

PCGEM1, linc01436, linc00494, GATA6-AS1, and ODIR1

(Figures 1 and 2). Modulation of these lncRNA expressions

is a potential therapeutic strategy for cancer therapy via

regulation of F-box proteins. Besides lncRNAs, miRNAs

and circRNAs have also participated in modulation of F-

box protein in carcinogenesis. It is necessary to note that

several issues need to be addressed for clarifying the functions

of lncRNAs in oncogenesis via targeting F-box proteins. For

example, there are thousands of lncRNAs. However, only

about a dozen lncRNAs were identified to regulate the

expression of F-box proteins. More lncRNAs should be

discovered, which modulate the F-box protein expression in

cancer. Among the 69 F-box proteins, no lncRNA was

discovered to target FBXL proteins in tumorigenesis. In

addition, one lncRNA can target several F-box proteins. For

example, MALAT1 targets both FBXW7 and FBXW8 in

cancer cells. It is unclear whether MALAT1 targets two F-

box proteins at the same time in carcinogenesis. Hence,

further in-depth investigation is pivotal to determine

whether regulation of F-box proteins by related lncRNAs is

a therapeutic strategy for cancer treatment.
FIGURE 1

Multiple lncRNAs regulate the expression of FBXW7 in human cancer. Multiple lncRNAs, including MT1JP, FER1L4, TTN-AS1, CASC2 and MALAT1,
have been demonstrated to regulate the expression of FBXW7 in tumorigenesis.
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