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Abstract: Induced pluripotent stem (iPS) cells were created from mouse fibroblasts by induced expression 

of Yamanaka factors, Oct3/4, Sox2, Klf4, and c-Myc. This technique has quickly resulted in an exponential 

increase in the amount of pluripotency studies, and has provided a valuable tool in regenerative medicine. At 

the same time, many methodologies to generate iPS cells have been reported, and are comprised mainly of 

viral methods and non-viral methods. Although viral methods may not be applicable for clinical applications, various non-

viral methods have been reported in recent years, including DNA vector-based approaches, transfection of mRNA, trans-

duction of reprogramming proteins, and use of small molecule compounds. This review summarizes and evaluates these 

non-viral methods.  
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INTRODUCTION 

Induced pluripotent stem (iPS) cells, which are similar to 
embryonic stem (ES) cells in morphology, gene expression, 
epigenetic status, and in vitro differentiation, are a type of 
pluripotent stem cell directly generated from somatic cells by 
various synthetic methods [1]. Compared with ES cells, iPS 
cells possess indistinguishable pluripotent capabilities, and 
their specificity towards patients can bypass some of the 
risks of ES cells. They are therefore a potential alternative to 
ES cells in regenerative medicine. Also, they can circumvent 
ethical concerns. Because iPS cells were originally derived 
from mouse fibroblasts by retrovirus-mediated introduction 
of four factors, Oct3/4, Sox2, Klf4, and c-Myc [2], and then 
reprogrammed from human fibroblasts by the same four fac-
tors [3] or by Oct3/4, Sox2, Nanog, Lin28 [4], numerous 
methods for the generation of these cells have been devel-
oped. 

Based upon different ways of transforming exogenous 
genes, the methodology for iPS cell generation can be di-
vided into viral-based methods and non-viral methods. Both 
these methods may or may not involve integration of exoge-
nous genes into the host genome. Because viral methods may 
result in gene reactivation and unusual phenotypic expres-
sion of iPS cells [5, 6], which could be valuable for further 
studies and clinical applications, studies using non-viral 
methods, especially without integration, have been fre-
quently used.  
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The following review presents a summary of methods for 
identification of iPS cells, discusses the current iPS cell gen-
eration strategies using non-viral delivery systems which 
result in DNA free of integration, and describes various ap-
plications of this methodology.  

METHODS FOR IDENTIFICATION OF IPS CELLS 

Compared with differentiated cells, iPS cells contain very 
different epigenetic signatures. With permissive chromatin, 
lower levels of heterochromatin, and the frequent appearance 
of bivalent domains, pluripotent cells are able to differentiate 
into various tissue types [7]. Currently, three different meth-
ods are used for identification. 

First, preliminary identification of iPS cells can be based 
on morphology. Similar to early stage embryonic cells, the 
chief distinguishing features of iPS cells are small size, high 
nuclear/cytoplasm ratios, and one or more nuclei. Based 
upon microstructure, histochemistry, Forssman antigen, and 
protein synthesis, it has been reported that iPS cells are com-
prised of more euchromatin, unbound ribosome, and mito-
chondria, with less organelles and less complexities of cellu-
lar structures [8].  

Second, immunocytochemistry staining and reverse tran-
scription-polymerase chain reaction (RT-PCR) analysis are 
essential for identification of iPS cells. Immunological 
markers of iPS cells include alkaline phosphatase (AKP), 
stage-specific embryonic antigens (SSEA), Tra-1-60, Tra-1-
81 and other molecular labeling techniques [9]. A number of 
studies have reported that expression of AKP was highly 
correlated with undifferentiated iPS cells, while negative 
expression was found in differentiated ES cells [10]. SSEA 
are glycoproteins expressed in early stage development, 
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whose expression changes when cells differentiate [11]. The 
expression of the epitopes recognized by the monoclonal 
antibodies Tra-1-60 and Tra-1-81 is important for assessing 
the pluripotency status of iPS cells [12]. In addition, RT-
PCR analyssis for stem cell markers, including Oct4, Sox2, 
Nanog, etc, is very essential [13]. 

Finally, common tests for pluripotency involve teratoma 
and chimera formation. Teratomas can develop when iPS 
cells are injected into immunodeficient animals, which con-
sist of all three ectodermal, mesodermal, and endodermal 
embryonic germ layers [14]. Chimeras can be formed when 
iPS cells are microinjected into mouse blastocysts, which 
lead to differentiation into multiple cell types during the 
normal growing process [15, 16]. 

METHODS FOR DELIVERY OF REPROGRAMMING 
FACTORS 

Delivery of Reprogramming Factors by DNA 

Plasmids: Plasmids, the most common type of episomal 
vector, were first identified as a viable reprogramming vector 
using the canonical reprogramming factors detailed by Okita 
et al. [17]. Repeated transfection of expression plasmids into 
mouse embryonic fibroblasts produced iPS cells without 
evidence of plasmid integration, which caused teratomas 
when transplanted into immunodeficient mice. Gonzalez et 
al. designed and tested a single transcription cassette con-
taining Oct4, Sox2, Klf4, and c-Myc, named pCAG-OSKM 
[18]. When pCAG-OSKM was delivered by nucleofection, it 
generated integration-free iPS cell lines, showing that iPS 
cell induction could be accomplished by transient expression 
using a single polycistronic cassette. By serially transfecting 
and encoding the four reprogramming factors (Oct4, Nanog, 
Sox2, and Lin28) independently, Si-Tayeb et al. were able to 
obtain human iPS cells from human foreskin fibroblasts [19]. 
Although the plasmid vectors used in their studies were al-
most the same as lentivirus vectors, the absence of packaging 
vectors precluded the possibility of emerging wild-type vi-
ruses and exogenous DNA, which would be lost from donor 
cells during cell division.  

The use of plasmids, including non-episomal plasmids, 
requires fundamental programs that are easily available to 
any laboratory with even basic experience in molecular biol-
ogy. However, further studies are necessary to improve the 
efficiency of this methodology.  

Minicircle Vectors: Jia et al. used a single minicircle 
vector containing 4 reprogramming factors (Oct4, Sox2, 
Lin28, and Nanog), with a green fluorescent protein (GFP) 
reporter gene linked by self-cleaving peptide 2A sequences, 
to generate transgene-free iPS cells from adult human adi-
pose stem cells without genomic integration [20]. By using 
integration-free oriP/Epstein-Barr virus nuclear antigen-1 
(EBNA1) vectors to encode 7 factors, including Oct4, Sox2, 
Nanog, Lin28, Klf4, c-Myc, and SV40Tag, Yu et al. ob-
tained human iPS cells from human foreskin fibroblasts, 
without vector integration after they were removed [21]. By 
transfecting a single multiprotein expression vector to en-
code c-Myc, Klf4, Oct4, and Sox2 linked with 2A sequences, 
Kaji et al. reprogrammed both mouse and human fibroblasts 
into iPS cells without integration. After they removed the 
exogenous factors when the reprogramming succeeded, the 

Cre-excised cell lines maintained the endogenous gene ex-
pression of c-Myc, Klf4, Sox2, and Oct4, indicating that the 
single vector system could completely eliminate exogenous 
genes without disturbing the iPS cell state [22].  

Compared to other non-integrating reprogramming meth-
ods, the reprogramming efficiency with minicircle vectors is 
greater, but the technology is more complicated. 

Delivery of Reprogramming Factors by RNA 

By repeated application of synthetic mRNAs, using a 
simple integration-free strategy, Warren et al. efficiently 
reprogrammed multiple human cell types to pluripotency, 
and induced the differentiation of RNA-induced pluripotent 
stem cells (RiPSCs) into differentiated myogenic cells [23]. 
While the cytotoxicity of transfected mRNAs needed modi-
fications, Rosa et al. adjusted the ribonucleotide bases of 
vector mRNAs by replacing 5-methylcytidine for cytidine 
and pseudouridine for uridine, to decrease the immunogenic-
ity of the mRNAs. This effective method can also be used 
for directed differentiation of iPS cells, or even for transdif-
ferentiation to create differentiated cell types for clinical use 
[24]. Furthermore, by increasing the sequence contexts ame-
nable to RNA-directed genome editing, Hou et al. reported 
efficient targeting of an endogenous gene into 3 human iPS 
cell lines [25]. 

MicroRNAs (miRNA) have also played an important role 
in the control of pluripotent stem cells [26-28], and are also 
influenced by the pluripotency factors Sox2, Oct4, and 
Nanog [29, 30]. The miR-302s, -17s, -515s, and miR-371–
373 clusters were increased in ES cells, but reduced when 
the cells differentiated [31, 32]. The mouse miR-
291/294/295 homologous human counterpart, miR-302, was 
also found to be predominantly expressed in human embry-
onic stem (hES) and iPS cells, but not in differentiated cells 
[33, 34]. By integrating and introducing the miR-302 cluster 
into the genome, Lin et al. reprogrammed human hair follicle 
(hHF) cells into iPS cells [35]. Subramanyam et al. showed 
that miR-302 and miR-372 promoted the reprogramming of 
human fibroblasts to induced pluripotent stem cells [36] and 
Hu et al. demonstrated that miR-302 could increase repro-
gramming efficiency by repressing NR2F2 [37]. Recently, 
the use of miR-302/367 clusters has facilitated efficient gen-
eration of iPS cells [38], and knockdown or knockout of 
miR-302/367 clusters impaired the reprogramming [39]. Lee 
et al. showed that expression of exogenous miR-302 cluster 
could efficiently obtain reprogrammed iPS cells by relieving 
MBD2 (methyl-DNA binding domain protein 2) -mediated 
inhibition of NANOG expression [40]. Furthermore, Judson 
et al. reported that the effects of miRNA expression could 
also promote somatic cell reprogramming [41].  

RNA-based methodology eliminates the risk of genomic 
integration as well as insertional mutagenesis, and has ad-
vantages regarding efficiency and kinetics. However, the 
modified mRNAs are more difficult to generate in the labo-
ratory. 

Delivery of Reprogramming Factors by Protein 

Any DNA-based reprogramming methods cannot com-
pletely avoid random integration, so another optional method 
for the generation of transgene-free iPS cells involves deliv-
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ery by proteins [42]. By delivering 4 reprogramming pro-
teins, Oct4, Sox2, Klf4, and c-Myc, directly fused with a 
cell-penetrating peptide (CPP), Kim et al. obtained stable 
iPS cells from human fibroblasts [43]. Nemes et al. reported 
that transduction of the 4 reprogramming proteins, combined 
with a CPP consisted of the glutathione-S-transferase tag and 
a transcription-nuclear localization signal polypeptide, were 
capable of reprogramming mouse embryonic fibroblasts 
(MEFs) to iPS cells [44]. Furthermore, Zhou et al. reported 
the generation of mouse iPS cells by transduction involving 
4 rounds of reprogramming proteins tagged with polyargin-
ine in the presence of valproic acid (VPA) in E. coli [45]. 
Kwon et al. differentiated both mouse embryonic stem cells 
and protein-based iPS cells into midbrain dopaminergic 
(DA) neurons. By comparing the efficiency of DA neuron 
differentiation from the 2 cell types, protein-based repro-
gramming resulted in more stable and authentic DA neuron-
specific marker expression [46]. Cho et al. reported that 
transfer of embryonic stem cell-derived proteins into adult 
mouse fibroblasts resulted in complete reprogramming to 
pluripotency without expression of ectopic transgenes [47]. 
Using the improved transactivator of transcription kappa 
(TAT ), a synthetic TAT-HIV, Nordin et al. recently de-
scribed a strategy to generate 293T cells secreting the pluri-
potent factors Oct-3/4 or KLF4, which could be important in 
the generation of iPS cells for therapeutic purposes [48]. 

However, it is not definitively known whether protein 
transduction can be used for adult cells, which have proven 
to be more difficult to reprogram, compared to embryonic 
cells [49]. In addition, the difficult production and poor re-
programming efficiency have restricted the applicability of 
protein-based iPS cells. Using cell permeable reprogram-
ming factor proteins, Lim et al. induced the outgrowth of 
stem cell-like colonies, which failed to expand into iPS cells 
or ES cell lines. They concluded that partial reprogramming 
was a common response to protein-based delivery of pro-
gramming factors into somatic cells [50]. However, use of 
self-penetrating proteins and truncated proteins has been 
reported to be a more effective approach [51]. Harreither et 
al. reported that unmodified OCT-4 protein can be used as a 
self-penetrating pluripotency reprogramming factor, without 
the addition of a cationic fusion tag [52]. Thier et al. estab-
lished optimized stabilization conditions for Oct4-TAT and 
Sox2-TAT proteins, which was a substitute for viral methods 
[53, 54]. Moreover, a truncated version of the transcription 
factor Nanog retained the ability to promote reprogramming 
[55], and versions of Sox proteins shortened to their DNA 
binding high mobility group (HMG) domain also retained 
reprogramming [56]. Because both the efficiency [57] and 
outcome [58] greatly depend on exposure time and the se-
quence of factor additions, the use of proteins for cellular 
reprogramming could be an excellent way to generate iPS 
cells, that could involve extensive control of the reprogram-
ming procedure. 

GENERATION OF IPS CELLS BY SMALL MOLE-
CULE COMPOUNDS 

For iPS cells to be used in clinical applications, several 
challenges remain, including possible risks and drawbacks of 
genetic manipulation and low efficiency. Among the emerg-
ing methods for reprogramming of iPS cells, one of the most 

ideal and practical ways to obtain reprogrammed iPS cells 
involves the introduction of small molecules instead of ex-
ogenous genes into somatic cells. These functional non-
peptide or peptide small molecules and natural products are 
small in molecular mass, contain a simple structure, are in-
expensive to produce, are easily absorbed, and are stable 
under physiological conditions. 

Up to now, plenty of small molecules have been identi-
fied to substitute reprogramming factors for attaining iPS 
cells. Huangfu et al. reported that DNA methyltransferase 
and histone deacetylase (HDAC) inhibitors, especially VPA, 
improved reprogramming efficiency, even without the need 
for the oncogenes c-Myc or Klf4 [59, 60]. Shi et al. found 
that BIX-01294, a methyltransferase inhibitor, could replace 
Sox2 and c-Myc for reprogramming, and meanwhile im-
proved the efficiency [61, 62]. Li et al. reported that a spe-
cific glycogen synthase kinase 3 (GSK-3) inhibitor, 
CHIR99021, was able to reprogram both mouse embryonic 
fibroblasts and human primary keratinocyte transduced by 
Oct4 and Klf4 [63]. Yuan et al. reported that, combined with 
transforming growth factor (TGF)-  inhibitor A-83-01, a 
protein arginine methyltransferase inhibitor AMI-5 enabled 
Oct4-induced reprogramming of mouse embryonic fibro-
blasts [64]. By integrative genomic analysis of reprogram-
ming of mouse fibroblasts and B lymphocytes, Mikkelsen et 
al. suggested that both RNA inhibition of transcription fac-
tors and treatment with DNA methyltransferase inhibitors 
could improve the overall efficiency of the reprogramming 
process [65]. Li et al. reported that the small molecule, Oct4-
activating compound 1 (OAC1), could enhance iPS cell re-
programming efficiency and accelerate the reprogramming 
process [66]. Kang et al. obtained iPS cells in two steps, 
generating stable intermediate cells from mouse astrocytes 
by Bmi1 and convensing them into iPS cells by treatment 
with MEK/ERK and GSK3 pathway inhibitors, which dem-
onstrated that combinations of small molecules can directly 
reprogram mouse somatic cells into iPS cells [67]. 

Dozens of studies have managed to reprogram cells using 
small-molecule compounds, but Oct4 was still indispensable. 
Recently, Hou et al. generated pluripotent stem cells from 
mouse somatic cells at a frequency up to 0.2% using a com-
bination of 7 small chemical molecules only, which were 
called chemically induced iPS cells (CiPSC) [68]. Though 
some of these substitutes may trigger unexpected pathways 
and a comprehensive comparison of the CiPS and ES cells is 
required for downstream applications, small molecules are 
still more advantageous for their availability, reversibility, 
cell-permeation and standardization. 

APPLICATIONS AND EXPECTATIONS  

In order to apply iPS cell technology for clinical use, ef-
ficiency and safety should be improved. Previous studies 
have shown that removing some obstacles [69-73] and acti-
vating innate immunity [74] could promote reprogramming 
efficiency, and using piggyBac (PB) transposition could 
eliminate the potential dangers of insertion [75-79]. Moreo-
ver, besides obtaining iPS cells from blood [80] and primary 
skin fibroblasts [81], generating a non-viral human iPS cell 
bank from donors has been achieved [82], based on previous 
virus-based methods [83-86]. Considering the rapid progress 
of this area, involving safer, more affordable, more efficient, 
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and more convenient protocols, it is conceivable that this 
methodology will in the near future be used clinically, for 
various human tissues.  

The iPS cells provide a widely available, non-ethically 
disputed, and almost infinite source of pluripotent cells, 
which promise a new paradigm in regenerative medicine. In 
the present review, we described non-viral and integration-
free technologies, as well as their potential applications in 
both therapeutic and research settings. Compared to viral 
methods, DNA transfection-based methods appear safer, yet 
they also entail some risks of genomic recombination or in-
sertional mutagenesis. The RNA-based technology throughly 
evades the risks while the techniques to modify mRNAs are 
difficult. Generation of iPS cells by recombinant proteins is 
still worth considering for clinical use due to its high safety, 
despite being quite expensive and having very low effi-
ciency. Since some small molecules have been identified as 
enhancing reprogramming efficiency and replacing certain 
reprogramming factors, reprogramming by defined chemical 
means may be achieved in the future. Since small molecule 
compounds have been identified as enhancing reprogram-
ming efficiency and replacing certain reprogramming fac-
tors, complete chemical reprogramming approaches remain 
to be further developed to reprogram human somatic cells 
into iPS cells and eventually meet the needs of regenerative 
medicine.  
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