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Th17 cells have stem cell-like features and promote long-term immunity
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Memory T cells are one of the most
effective components of anti-

tumor immunity. However, limited stud-
ies on cancer patients have not addressed
the phenotypic, genetic and functional
heterogeneity of memory T-cell subsets
in the human cancer environments.
Human IL-17+CD4+ (Th17) cells are
confined to memory T-cell compartment
with CD45RO+CD62L-CCR7- pheno-
type and are enriched in CD49+CCR6+

population. Th17 cells do not express
PD-1, FoxP3, KLRG-1, CD57 and IL-
10, making them unlikely candidates for
being functionally exhausted PD-1+ T
cells or suppressive Foxp3+ or IL-10+ T
cells or senescent CD28-CD57+KLRG-1+

T cells. However, Th17 cells express high
levels of CD95 and moderate levels of
CD27. Th17 cells phenotypically
resemble terminally differentiated mem-
ory T cells. Interestingly, Th17 cells
possess polyfunctional cytokine profile,
and have stem cell-like features. Th17
stemness may be partially controlled by
signaling pathways of hypoxia inducible
factor HIF1a, Notch and Bcl. The stem
cell-like character of Th17 cells is an
important decisive factor for Th17 cell
biology.

Polyfunctional Cytokine Profile,
but not Surface Phenotype

Determines Th17 Functionality

Memory T cells are long-lived cells with a
heightened capacity to respond to sub-
sequent insults with the same pathogen.
One useful model put forward delineates
memory T cells into two subsets based on
their expression of CCR7 and CD62L.1,2

Based on this model, central memory
T cells generally express both CCR7 and

CD62L which are essential for lympho-
cytes to traverse high endothelial venules
and to enter lymph nodes, whereas effector
memory T cells express neither. These
characteristics have led to the proposal that
central memory T cells predominantly
reside in the lymph nodes, blood and
spleen, whereas effector memory T cells
predominate in non-lymphoid tissues
(such as the gut, lung and liver and
tumor). In terms of function, freshly
isolated effector memory T cells, but not
central memory T cells, express high levels
of IFNc, and perforin and granzyme B
molecules, which are necessary for lytic
activity. However, recent studies have
demonstrated that phenotypic and func-
tional heterogeneity exists within memory
T-cell populations, and the central vs.
effector memory division is much less clear
cut in humans. Several reports describe
cells with apparent memory phenotypes in
cancer patients.3,4 One function of these
cells is to produce effector molecules, such
as IFNc and granzyme B, and was inferred
by RNA analysis without detailed genomic
and functional analysis.3,4 Some functional
evidence for the induction of memory
T cells in patients comes from a huma-
nized model of breast cancer.5,6 In these
studies, a significant proportion of bone
marrow cells were memory T cells
(CD45RA-), with the majority of these
expressing low levels of CD62L. It has
also been shown that TAA-specific CD8+

T cells can be established from tumor
associated memory T cells in patients with
cancer. In vitro experiments demonstrated
that these cells respond to tumor antigens,
and adoptive transfer of these cells into
NOD/SCID mice implanted with auto-
logous tumors led to homing to the tumor
tissue and inhibited tumor growth.7-9

However, most of these studies focus on
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CD8+ memory T cells. Human tumor
associated CD4+ memory T cells are
poorly understood.

Human tumor environmental Th17
cells are confined to memory T-cell com-
partments with CD45RO+CD62L2CCR72

phenotype and are enriched in
CD49+CCR6+ population.10,11 Th17 cells
do not express PD-1, FoxP3, KLRG-1,
CD57 and IL-10. Furthermore, Th17 cells
express high levels of CD95 and lower
levels of CD27. Thus, Th17 cells pheno-
typically resemble terminally differentiated
memory T cells. This phenotype is univer-
sally observed in the human microenviron-
ments of cancer, autoimmune lesions and
organ transplantation.12 Recent mouse
data supports the notion that Th17 cells
have a phenotype of terminally differen-
tiated memory T cells.13 Human Th17
cells express polyfunctional cytokine pro-
file including IL-2, IFNc, TNFa and
GM-CSF (Fig. 1). The synergy between
different cytokines derived from Th17
cells is mechanistically important for
Th17-medaited effector function. For
example, IL-17 and IFNc synergistically
induce β-defensine expression to promote
psoriatic progression11 and stimulate type-I>
chemokine production10 to enhance effector
T-cell and NK-cell tumor trafficking
(Fig. 1). Thus, polyfunctional cytokine
profile, but not surface phenotype, deter-
mines Th17 cell functionality (Fig. 1).14

Genetic Pattern but not Surface
Phenotype Determines the Fate

of Memory Th17 Cells

It is thought that terminally differentiated
memory T cells may have a short half-
life with senescent and exhausted pheno-
type, and provide limited protective
anti-tumor immunity. Given the terminally-
differentiated phenotype of Th17 cells, it
is assumed that mouse Th17 cells may
be short-lived T cells.15 Interestingly, we
recently demonstrated that human Th17
cells express high levels of multiple stem
cells associated genes including HIF1a,
Notch, Bcl2, OCT4, and Nanog. These
cells are long-lived with high self-renewal
capacity, are resistant to apoptosis induced
by TCR engagement or chemotherapy, and
mediate/promote long-term anti-tumor
immunity (Fig. 2).12 Similar observations

were made in mouse studies.13 Furthermore,
we have demonstrated that HIF1a/Notch/
Bcl-2 is a key signaling pathway controlling
Th17 cell survival and apoptosis pattern
(Fig. 2).12 Therefore, genetic pattern, but
not surface phenotype, determines the
fate of memory Th17 cells.

The self-renewal, expansion and multi-
lineage developmental potential define the
unique properties attributed to stem cells.
The capacity to continuously generate
effector memory T cells will replenish the
effector memory T-cell pool, and help
maintain a constant repertoire of memory
T cells for a human lifetime, despite the
finite lifespan of individual effector cells
and reduced thymus function.1,2,16 Based
on the genetic and functional observations,
but not the surface phenotype, our data
provide evidence supporting the “stem
cell-like CD4+ memory T cell” concept in
humans,17 and indicate that human Th17
cells have stem cell-like properties (Fig. 2).
This concept is supported by recent
studies on Th17 cells in tumor bearing
mouse model.13

It is important to point out that “stem-
like memory T cells” may encompass the
capability to both self-renew and to
generate more differentiated, memory
T-cell populations. This concept was
initially stemmed from mouse studies.
Mouse central memory T cells are arrested
at a pre-differentiation stage by transcrip-
tional inhibitors and retain replicative
potential and long-term production of
effector T cells after a second antigenic
challenge.2 The capacity to continuously
generate effector memory T cells will
replenish the effector memory T-cell pool,
and help maintain a constant repertoire of
memory T cells for a human lifetime,
despite the finite lifespan of individual
effector cells.1 This notion has recently
received certain experimental support. In
a mouse model of graft-vs.-host disease,
CD44lowCD62Lhigh memory CD8+ T cells
express high cell surface levels of stem
cell antigen-1 (Sca-1), B-cell lymphoma
protein-2 (Bcl-2) and common IL-2
and IL-15 receptor β chain (CD122).18

Because these cells showed robust

Figure 1. Polyfunctional Th17 cells in the diseased microenvironments. Th17 cells from blood and
peripheral tissues are recruited into the microenvironments of tumor and autoimmune lesions.
Myeloid antigen-presenting cells (APCs) secrete IL-1 and IL-23, which results in Th17 cell expansion.
Th17 cells express polyfunctional cytokines including IL-17 and IFNc. Th17 cell-derived IL-17, IFNc,
along with Th1-derived IFNc, stimulates expression of CXCL9 and CXCL10 in the tumor
environment. These chemokines recruit T cells and NK cells into the local environment, where they
execute antitumor responses. Or, Th17 derived IL-17 and IFNc induce keratinocytes and APCs
to secrete b-defensin 2 and CCL20 in the psoriatic environment, which further increase
the recruitment of Th17 cells into the autoimmune lesion and promote keratinocyte proliferation,
and psoriasis.
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self-renewal and the multipotent capacity
to generate central memory and effector
memory T cells, it is thought that these
cells have “stem cell” characters. More
recent work has shown that by blocking
T-cell differentiation, Wnt signaling pro-
moted the generation of this memory stem
cell population in mice19 and in human.20

Mouse studies also indicate that Th17 cells
possess stem cell properties, are long-lived
and mediate potent tumor immunity.13

We have further revealed the molecular
mechanisms by which HIF1a/Notch/
Bcl-2 signaling pathways are important
for maintaining Th17 cell stemness

(Fig. 2). Interestingly, a recent report in
mouse system also supports the concept
that HIF1a signaling pathway is crucial for
controlling Th17 cell biology.21

Conclusion

The existence of “memory stem T cells
or stem-like memory T cells” or the
concept of “memory stem T cells” is
arguable. Nonetheless, our understanding
of memory T cells in human tumor
microenvironment lags behind the much
more comprehensive analyses of these
cells in infectious disease models. This

deficiency significantly tempers our efforts
toward understanding basic human
memory T-cell biology, establishing and
evaluating immune therapeutic regimens
and tumor vaccines in treating patients
with cancer. It is essential to conduct
comprehensive phenotypic, genetic and
epigenetic, and functional research on the
nature of memory T cells in the human
tumor microenvironment.

In clinical settings, although clinical
efficacy needs to be improved, adoptive
T-cell therapy indicates that tumor associ-
ated memory T cells (or tumor draining
lymph node T cells) can be isolated and
expanded by a variable of methods, and
these T cells can induce tumor regression
in patients with cancer.22,23 Altogether,
current information indicates that memory
T cells, including Th17 cells, could be
one of the most effective components of
anti-tumor immunity. However, limited
studies on cancer patients have not
addressed the phenotypic and functional
heterogeneity of memory T cells in the
human cancer environment, in which
genetic and epigenetic factors, but not
surface phenotype, influence and/or deter-
mine the fate of these memory T cells.
Thus, mechanistic, clinical and compara-
tive analyses on human memory T-cell
heterogeneity will pave the way for mani-
pulating these cells for clinical benefit.
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