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Simple Summary: This study investigated tumor-infiltrating lymphocytes (TILs) in pretherapeutic
biopsies as biomarkers of treatment response and long-term prognosis in patients with locally
advanced rectal cancer undergoing neoadjuvant chemoradiotherapy. A systematic review and meta-
analysis was performed in accordance with the PRISMA guidelines. The results indicate that it
is possible to identify a sub-group of patients with improved treatment response and long-term
prognosis by assessing the density of CD8+ TILs at the time of diagnosis.

Abstract: Neoadjuvant chemoradiotherapy (NCRT) is indicated in locally advanced rectal cancer
(LARC) to downstage tumors before surgery. Watchful waiting may be a treatment option to avoid
surgery in patients, obtaining a complete clinical response. However, biomarkers predictive of
treatment response and long-term prognosis are lacking. Here we investigated tumor-infiltrating
lymphocytes (TILs) in pretherapeutic biopsies as predictive and prognostic biomarkers. A systematic
review and meta-analysis was performed in accordance with the PRISMA guidelines. In total,
429 articles were identified, of which 19 studies were included in the systematic review and 14 studies
in the meta-analysis. Patients with high pretherapeutic CD8+ TILs density had an increased likelihood
of achieving a pathological complete response (RR = 2.71; 95% CI: 1.58–4.66) or a complete or near-
complete pathological treatment response (RR = 1.86; 95% CI: 1.50–2.29). Furthermore, high CD8+

TILs density was a favorable prognostic factor for disease-free survival (HR = 0.57; 95% CI: 0.38–0.86)
and overall survival (HR = 0.43; 95% CI: 0.27–0.69). CD3+, CD4+, and FOXP3+ TILs were not identified
as predictive or prognostic biomarkers. Thus, assessing pretherapeutic CD8+ TILs density may assist
in identifying patients with increased sensitivity to NCRT and favorable long-term prognosis.

Keywords: rectal neoplasms; tumor-infiltrating lymphocytes; cancer biomarkers; CD8+ T cells;
complete response

1. Introduction

Neoadjuvant chemoradiotherapy (NCRT) is indicated in patients with locally ad-
vanced rectal cancer (LARC) to downstage tumors before surgery. The current stan-
dard of care consists of short or long-course radiotherapy combined with single-agent
fluoropyrimidine-based chemotherapy or in combination with oxaliplatin. Following
NCRT, a complete clinical response is observed in 10–40% of patients [1]. Inadequate
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treatment response is associated with an unfavorable long-term prognosis [2]. For patients
obtaining a complete clinical response, watchful waiting may be an alternative treatment
option allowing certain patients to undergo an organ-preserving strategy and avoid major
surgery [3]. The achievement of complete response is affected by the initial clinical UICC
stage, pathological subtype, pretherapeutic carcinoembryonic antigen levels, and other
currently unidentified factors [1,4]. Some studies have identified the density of tumor-
infiltrating lymphocytes (TILs) as a predictive marker of treatment response and long-term
prognosis in patients with LARC undergoing NCRT [5,6]. Assessment of TILs is not yet
included as a part of the routine histopathological examination. However, in research,
immunohistochemical (IHC) analysis has been used to assess TILs density and specific
subgroups of lymphocytes. CD3+, CD4+, CD8+, and FOXP3+ TILs are among the most
commonly evaluated markers [7]. High levels of CD3+, CD4+, and CD8+ TILs in the tumor
microenvironment are reported to be a signature of active antitumor immunity. In contrast,
high levels of FOXP3+ TILs have been associated with an immunosuppressive tumor mi-
croenvironment [8–11]. Infiltration of TILs, especially CD8+ T cells, in pretherapeutic tumor
tissue has been correlated with improved survival in different gastrointestinal cancers,
including gastric cancer, hepatocellular carcinoma, and pancreatic cancer [12–14].

This review and meta-analysis examines TILs in pretherapeutic biopsies and their
significance in the prediction of treatment response and long-term prognosis in patients
with LARC undergoing NCRT and surgical resection.

2. Materials and Methods
2.1. Protocol and Registration

This study was designed according to the PRISMA-P guidelines [15] for systematic
review and meta-analysis. A PRISMA checklist is available in Table S1, Supplementary
Material. The protocol was registered at the Center for Open Science under the digital
object identifier: osf.io/npgux (accessed on 18 August 2020)

2.2. Search Strategy

The literature search was conducted using PubMed, Embase, Cochrane Library, and
Web of Science. A Population-Intervention-Comparator-Outcome (PICO)-based search
strategy was applied. The population of interest was restricted to Union for International
Cancer Control (UICC) stage II–IV human rectal cancers undergoing NCRT before curative
intended surgical resection. Assessment of TILs density by at least one of the following
IHC markers CD3, CD4, CD8, or FOXP3 in pretherapeutic biopsies was the intervention.
As comparators, we considered patients with low versus high TILs density and patients
with treatment response versus patients with no response. The outcomes of interest were
pathological complete response (pCR) and pathological treatment response (pTR), overall
survival (OS), and disease-free survival (DFS) or recurrence-free survival (RFS). pCR and
pTR were evaluated histopathologically in the surgical specimen using the tumor regression
grade (TRG). There was no restriction regarding the TRG system applied for evaluation.

The search was restricted to human trials and English language articles. Studies
with a sample size below 30 were deemed too small to provide relevant information and
were excluded. Case studies, reviews, conference abstracts, commentaries, and letters to
editors were also excluded. No search restrictions regarding publication date or study
design were included in the final search string. The search strategy is summarized with
reference to the PICO process in Table S2, Supplemental. The last search was performed on
12 December 2020.

2.3. Data Management and Extraction

Search results from the four databases were imported into EndnoteX9 desktop appli-
cation (Clarivate, Philadelphia, PA, USA) for duplicate removal. After removing duplicates,
the articles were imported into Covidence web application (Veritas Health Innovation,
Melbourne, Australia) for article screening. Subsequently, two reviewers, FK and AO, inde-
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pendently screened articles at the title and abstract level, followed by full-text screening.
The relevance of items was decided based on the predefined eligibility criteria. Any dis-
agreement was resolved by a consensus decision with the inclusion of a third reviewer (RV).

Study data including UICC tumor stage, treatment type, evaluated subgroups of
lymphocytes, TILs density, and quantification method (manual vs. digital), as well as the
cut-off value for low vs. high densities (median, mean, combined scores, or others), TRG
and TRG system were extracted and registered. Corresponding authors of studies with
insufficient or missing data were contacted by email, and in case of no reply, studies were
excluded from the meta-analysis.

2.4. Outcomes and Subgroups

The primary outcome was pCR, defined as no residual cancer cells left in the surgical
specimen according to the Dworak, Mandard, and AJCC TRG systems [16–18]. Studies
using other TRG systems to assess pCR were included in the meta-analyses if a pCR did not
vary from this definition. Patients not achieving a pCR were grouped as non-responders
and used as comparators in the dichotomous analyses.

The secondary outcome was pTR, defined as a complete or near-complete tumor
regression corresponding to a Dworak TRG 3-4, Mandard TRG 1-2, or AJCC TRG 0-1.
Studies using other TRG systems were included in the meta-analyses of pTR if the definition
did not vary significantly. This outcome was selected as many studies had not differentiated
between these two subgroups with no or only minute foci of residual tumor. Patients
not achieving pTR were grouped as non-responders and used as comparators in the
dichotomous analyses.

OS and DFS/RFS were also included as secondary outcomes reflecting long-term
prognosis. The definitions of OS and DFS were based on The National Cancer Institute’s
Dictionary of Cancer Terms. OS was defined as the time between diagnosis of rectal cancer
and the date of death regardless of cause. DFS was defined as the time elapsing from the
date of surgery to the first symptoms of recurrent disease or death. We defined RFS as
equivalent to DFS, and studies with data on RFS were included in the meta-analysis for
DFS. Patients with stage IV disease, and treated with non-curative intent, were excluded
from the meta-analyses of survival outcomes.

2.5. Data Extraction

Hazard ratios (HR) with corresponding 95% confidence intervals (CIs) of high vs. low
density of TILs were extracted. In studies where only the Kaplan-Meier (KM) plots were
available and HR was not presented, the HR was estimated through the KM plots using
the DigitizeIt desktop application and methods as described by Tierney et al. [19].

2.6. Statistical Analysis

The meta-analyses were conducted separately for each subgroup of TILs and outcomes
of interest. All meta-analyses were performed in R statistical software (version 3.4.3, R Foun-
dation for Statistical Computing) applying the Meta [20], Metagen [21], and Metafor [22]
packages. Dichotomous outcomes were analyzed using a random-effects model calculating
risk ratios (RR) using the Mantel-Haenszel method. Sidik-Jonkman was applied for tau2

estimation and Hartung-Knapp adjustment of 95% CI for the random-effect model [23].
When applicable, prediction intervals supplying an estimate of the expected effect sizes
on future studies were calculated [24]. Heterogeneity was assessed by Chi2 testing and I2

statistics. A random-effect model using the inverse variance to estimate HR was applied
in meta-analyses of time to event outcomes. The estimate of variance in the meta-analysis
was based on upper and lower 95% CI as described by Altman et al. [25], and analysis was
performed as described for dichotomous outcomes.



Cancers 2022, 14, 636 4 of 15

2.7. Risk of Bias of Individual Studies

The risk of bias within studies was assessed using the Newcastle-Ottawa Scale (NOS)
for cohort studies [26]. The NOS examines three domains of a study: patient selection,
cohort comparability, and outcome assessment. The maximum attainable NOS score was
nine points.

2.8. Level of Evidence

The level of evidence was evaluated using a modified GRADE approach for obser-
vational studies. The modified version of the GRADE approach can specifically be used
in systematic reviews of prognostic markers. According to this approach, the cumulative
evidence can be rated as either of high, moderate, low, or very low quality [27]. Each
meta-analysis result starts as high-quality evidence. Several limitations can reduce the
quality of evidence (risk of bias, inconsistency of results, indirectness, imprecision, and
publication bias). Limitations considered not serious do not downgrade evidence. Serious
limitations downgrade quality with one level, and very serious limitations downgrade qual-
ity with two levels. In contrast, strengths of evidence (large effect size and dose-response
gradient) can upgrade the level of evidence. Each strength of evidence upgrades quality
with one level.

3. Results
3.1. Search Results

The literature search identified 429 articles (Figure 1). After removing duplicated arti-
cles, a total of 307 studies were screened for title and abstract, ultimately revealing 86 stud-
ies for further full-text screening. After the full-text screening was completed, 19 studies
were eligible for inclusion in the systematic review [5,6,9–11,28–41]. Of these, 14 studies
were eligible [5,6,9,10,28–37] and five studies were ineglible for meta-analysis [11,38–41]
(Figure 1). The five studies ineligible in the meta-analysis were due to the following rea-
sons: Three studies were excluded from the meta-analysis as the subgroups of TILs were
not dichotomized into high or low-density groups for each individual marker [38,39,41],
whereas two were ineligible as the studies included patients that did not undergo curatively
intended treatment [11,40].

3.2. Study Characteristics

The included studies were conducted in Asia (n = 12), Europe (n = 4), Middle East
(n = 2), and Australia (n = 1). The studies were published between 2011 and 2020. All
studies were retrospective cohort studies. The combined cohort, based on all the eligible
studies in the systematic review, consisted of 2034 patients. Most studies included UICC
stage II–III cancers, although three studies also included stage IV cancers eligible for
curative intended therapy [6,11,40]. All patients underwent NCRT before curative intended
surgery. Long-course NCRT was used in 16 studies (84%), whereas two studies did not
specify the type of NCRT [5,38], and one study used short-course NCRT [28]. All studies
assessed TILs in the diagnostic biopsies using IHC stainings. Different cut-off values were
used for dichotomizing the TILs into groups of high vs. low densities. Most studies used
the median TILs value, yet mean values, combined scores, and unspecified values were
also used. Fifteen studies used Dworak, Mandard, or AJCC for the assessment of TRG.
Two studies used the Japanese Colorectal Cancer Classification (JCCC) TRG system [6,30],
while two studies did not specify which TRG system they used [31,38] (Table 1).
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Figure 1. PRISMA flowchart. The literature search was performed using PubMed, Embase, The
Cochrane Library, and Web of Science.

Table 1. Main characteristics of the included studies. The density of TILs was assessed in the
diagnostic biopsy using IHC with antibodies targeting specific subgroups of TILs. Different cut-
off values were used to separate patients into high vs. low density of TILs. Treatment response
was evaluated histopathologically using TRG. Treatment response was defined as pCR or pTR in
most studies.

Author UICC Stage TILs Density
Cut-Off TRG System Treatment Response

Defined as
Inclusion in

Meta-Analysis

Anitei et al. [5] II–III Median Dworak TRG 3-4 CD3 (pTR)
Yasuda et al. [6] II–IV Unspecified JCCC pCR CD8 (pCR)

Teng et al. (A) [9] II–III Median Dworak TRG 3-4
CD4 (pTR)

FOXP3 (pTR, DFS)
CD8 (pTR, OS, DFS)

Teng et al. (B) [10] II–III Median Dworak TRG 3-4 CD3 (pTR)
CD8 (pTR, OS, DFS)

McCoy et al. [11] II–IV Median Dworak TRG 3-4 none

Shinto et al. (A) [28] II–III Median Dworak TRG 3-4 FOXP3 (pTR, DFS)
CD8 (pTR, DFS)
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Table 1. Cont.

Author UICC Stage TILs Density
Cut-Off TRG System Treatment Response

Defined as
Inclusion in

Meta-Analysis

Shinto et al. (B) [29] II–III Unspecified Dworak pCR, TRG 3-4 CD8 (pCR, pTR)

Matsutani et al. [30] II–III Median JCCC TRG 1b-3
CD4 (pTR)

FOXP3 (pTR)
CD8 (pTR)

Zaghloul et al. [31] II–III ROC Unspecified pCR FOXP3 (DFS)
CD8 (pCR, OS, DFS)

Zhang et al. [32] II–III Mean Dworak TRG 3-4
CD4 (pTR)

FOXP3 (pTR)
CD8 (pTR)

Akiyoshi et al. [33] II–III Median Dworak pCR, TRG 3-4 CD8 (pCR, pTR,
DFS)

Chen et al. [34] II–III Unspecified Dworak TRG 3-4 CD8 (OS, DFS)

Moghani et al. [35] II–III 11 cells/high
power field AJCC pCR, TRG 0-1 CD8 (pCR, pTR)

Xiao et al. [36] II–III Unspecified Mandard pCR CD8 (pCR)

Huang, Y et al. [37] II–III Unspecified AJCC TRG 0-1 CD4 (pTR)
CD8 (pTR)

Mirjolet et al. [38] II–III None Unspecified Unspecified none

Huang, A et al. [39] II–III CD3/CD8
combined Dworak TRG 3-4 none

Rudolf et al. [40] II–IV Median Dworak Unspecified none

Sissy et al. [41] II–III CD3/CD8
combined Dworak Unspecified none

UICC: Union for International Cancer Control. AJCC: American Joint Committee on Cancer. JCCC: Japanese
Colorectal Cancer Classification. TRG: Tumor regression grade. pCR: Pathological complete response. pTR:
Pathological treatment response.

3.3. Pathological Complete Response (pCR)

Six studies were eligible for the meta-analysis of the primary outcome, pCR. In four
studies, Dworak, Mandard, or AJCC [29,33,35,36] were used, while two studies used other
TRG systems [6,31]. The eligible studies provided information regarding high versus low
density of CD8+ TILs on 692 patients in total. Of the patients included in the meta-analysis,
282 patients (41%) were categorized as having a high CD8+ TILs density and 410 patients
(59%) with having a low CD8+ TILs density. The categorization of patients in either the high
or low CD8+ T cell expression groups was based on different cut-off estimation methods
in the six studies included in the meta-analysis. Three studies did not specify the cut-off
estimation [6,29,36], one of the studies based the cut-off on the precalculated median TIL
value in the cohort [33], whereas one used 11 cells per high power field as the cut-off
value [35], and the last study used a receiver operating characteristics (ROC) curve [31]
(Table 1). Patients with high CD8+ TILs density had an increased likelihood of achieving
a pCR compared to patients with a low CD8+ TILs density (RR = 2.71; 95% CI: 1.58–4.66)
(Figure 2).

Meta-analysis on the association between pretherapeutic CD3+, CD4+, and FOXP3+ TILs
and pCR could not be performed due to a lack of studies reporting data on these variables.
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3.4. Pathological Treatment Response (pTR)

Overall, 10 studies were eligible for the meta-analyses of the secondary outcome, pTR.
Nine studies assessed TRG according to Dworak, Mandard, or AJCC [5,9,10,28,29,32,33,35,37].
Matsutani et al. used JCCC and included TRG 1b-3 in the group of pTR [30].

3.4.1. CD8+ TILs

Nine studies providing data on 1073 patients in total were included in the meta-
analysis on pretherapeutic CD8+ TILs density and pTR [9,10,28–30,32,33,35,37]. In total,
491 patients (46%) were categorized with high CD8+ TILs levels, while 582 (54%) of the
patients were categorized with low CD8+ TILs levels. Again, the differentiation between
high versus low levels of the examined lymphocyte subsets was primarily based on a
precalculated median value of the examined cohort in each of the eligible studies. Patients
with high levels of CD8+ TILs had an increased likelihood of obtaining a pTR (RR = 1.86;
95% CI: 1.50–2.29) (Figure 3).
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3.4.2. CD3+ TILs

Two studies with 191 patients in total investigated the association between prethera-
peutic CD3+ TILs density and pTR [5,10]. Of the total, 102 (53%) patients were categorized
as CD3+ TILs high, whereas the remaining 89 (47%) patients had low CD3+ lymphocyte
infiltration. High density of CD3+ TILs was not significantly associated with any changes
in pTR (RR = 1.63; 95% CI: 0.35–7.69, p = 0.16) (Figure S1, Supplemental).
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3.4.3. CD4+ TILs

Four studies consisting of 342 patients altogether, evaluated the association between
pretherapeutic CD4+ TILs density and pTR [9,30,32,37]. High CD4+ TILs were reported in
175 patients (51%), while the remaining 167 (49%) of patients in the total cohort had low
expression of CD4+ TILs. CD4+ TILs density was not correlated with significant changes in
pTR (RR = 1.23; 95% CI: 0.83–1.82, p = 0.19) (Figure S2, Supplemental).

3.4.4. FOXP3+ TILs

Four studies with 294 patients in total examined the association between pretherapeu-
tic FOXP3+ TILs density and pTR [9,28,30,32]. Overall, 129 patients (44%) were categorized
as having high FOXP3+ TILs expression, while the remaining 165 (56%) had low expression.
The meta-analysis revealed no significant association between FOXP3+ TILs density and
pTR (RR = 0.85; 95% CI: 0.20–3.58, p = 0.74) (Figure S3, Supplemental).

3.5. Overall Survival (OS)

Four studies providing data on 360 patients altogether examined the association
between CD8+ TILs and OS [9,10,31,34]. Of the total number of patients, 170 (47%) patients
had high CD8+ lymphocyte infiltration and 190 (53%) patients had low CD8+ lymphocyte
infiltration. Meta-analysis of time-to-event data revealed that a high CD8+ TILs density was
a significantly favorable prognostic factor for OS (HR = 0.43; 95% CI: 0.27–0.69) (Figure 4).
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Six studies consisting of 716 patients overall evaluated the association between CD8+

TILs levels and DFS [9,10,28,31,33,34]. In sum, 349 (49%) and 367 (51%) of the patients were
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categorized with high and low CD8+ TILs density, respectively. Time-to-event analysis
revealed that a high CD8+ TILs density was significantly associated with improved DFS
(HR = 0.57; 95% CI: 0.38–0.86) (Figure 4).

3.6.2. FOXP3+ TILs

Three studies with a sum of 193 patients examined whether the pretherapeutic FOXP3+

TILs level was a prognostic factor for DFS [9,28,31]. Collectively, 98 (51%) of the pa-
tients were categorized as having a high FOXP3+ TILs level, while 95 (49%) of the pa-
tients were categorized as having a low FOXP3+ TILs level. The FOXP3+ TILs density
was not associated with any significant changes in DFS (HR = 1.66; 95% CI: 0.17–16.32)
(Figure S4, Supplemental).

3.7. Risk of Bias of Individual Studies

Using the NOS scoring system, four of the included studies in the systematic review
achieved seven points out of a maximum of nine points [5,31,35,40]. Ten studies achieved
eight points [6,9–11,29,30,32,33,36,38]. Five studies achieved the maximum NOS score of
nine points [28,34,37,39,41].

Ten studies were downgraded in the comparability section as the studies did not
control for confounders [5,9–11,30–32,35,38,40]. Seven studies were downgraded in the
outcome section as the studies did not report whether TILs were assessed by independent
and blinded assessors [5,29,31,33,35,36,40]. A detailed description is available in Table S3,
Supplementary Material.

3.8. Level of Evidence

Using the GRADE approach, the level of evidence was rated as moderate on all
outcomes for CD8+ TILs. For pCR and OS, the quality of the cumulative evidence was
downgraded two levels due to potential publication bias and imprecision but upgraded one
level due to a large effect size. For pTR and DFS, the quality of evidence was downgraded
one level due to potential publication bias. The quality of the cumulative evidence for the
results related to the CD3+, CD4+, and FOXP3+ TILs subsets was rated as low or very low
due to multiple limitations. Publication bias could not be statistically assessed by funnel
plots due to the limited number of studies, and therefore, all results were downgraded one
level. A detailed overview is available in Tables S4 and S5, Supplementary Material.

Table 2 provides an overview of the abovementioned results, including the quality of
the cumulative evidence based on the modified GRADE approach.

Table 2. This table provides an overview of the results of the meta-analyses including a point estimate
of the risk ratio (in relation to pathological response) and the hazard ratio (in relation to survival)
with corresponding CI. The level of evidence has also been included in the table. The meta-analyses
evaluated the association between pretherapeutic TILs density and treatment response to NCRT and
long-term prognosis.

Outcome Biomarker Studies n Point Estimate Lower 95% CI Higher 95% CI I2 GRADE Level
of Evidence

pCR CD8+ TILs 6 692 2.71 1.58 4.66 0% Moderate

pTR

CD3+ TILs 2 191 1.63 0.35 7.69 0% Low
CD4+ TILs 4 342 1.23 0.83 1.82 0% Low
CD8+ TILs 9 1073 1.86 1.50 2.29 0% Moderate

FOXP3+ TILs 4 294 0.85 0.20 3.58 76% Very low

DFS
CD8+ TILs 6 716 0.57 0.38 0.86 25% Moderate

FOXP3+ TILs 3 193 1.66 0.17 16.32 62% Very low
OS CD8+ TILs 4 360 0.43 0.27 0.69 0% Moderate

pCR: Pathological complete response. pTR: Pathological treatment response. DFS: Disease-free survival. OS:
Overall survival. n: number of patients. CI: Confidence interval.
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4. Discussion

In this systematic review and meta-analysis, we investigated the pretherapeutic TILs
density as a predictive marker of treatment response and long-term prognosis in patients
with LARC undergoing NCRT and surgery. The meta-analysis found that patients with
a high pretherapeutic CD8+ TILs density had an increased likelihood of achieving pCR
and pTR. Correspondingly, patients with a high pretherapeutic CD8+ TILs density had a
favorable DFS and OS compared to patients with low CD8+ TILs infiltration. Our findings
are consistent with previously published meta-analyses that have correlated high CD8+

TILs density to a favorable prognosis for patients with colorectal cancer [7,8].
It is hypothesized that patients with rectal cancer having a high pretherapeutic TILs

density are more likely to have a good response to NCRT, as the preexisting antitumor
immunity is enhanced by NCRT. This hypothesis is supported by preclinical studies show-
ing that CRT alters the tumor microenvironment (TME) in favor of antitumor immu-
nity [42,43]. Tumor cell death following CRT causes a release of tumor neoantigens and
pro-inflammatory mediators into the TME, increasing T-cell infiltration, T-cell elimination
of cancer cells, and facilitating further adaptive antitumor responses [44–47].

Combining NCRT with immunotherapy may additionally enhance the T-cell mediated
antitumor response [48–50]. Multiple clinical trials are currently investigating whether
the addition of immunotherapy to NCRT regimens increases pCR rates in patients with
LARC (ClinicalTrials.gov (accessed on 6 January 2022): NCT04017455, NCT03127007,
NCT03102047, NCT03854799, and NCT03921684). Recently, a phase II randomized clinical
trial examined the efficacy and safety of adding the immune check-point inhibitor (ICI),
pembrolizumab, to standard NCRT for the treatment of rectal cancer [51]. The study
found pCR in 31.9% and 29.4% of the patients in the pembrolizumab arm and control
arm, respectively. The findings did not reach statistical significance, and the percentage of
grade 3 and 4 adverse events were slightly higher in the pembrolizumab arm [51]. However,
the study did not examine the pretherapeutic TILs level, the amount of tumor stroma, the
number of cancer-associated fibroblasts (CAFs), or other TME factors associated with a
tumor phenotype that negatively impacts response rates and survival measures [52,53].
The composition of the TME highly influences the infiltration, survival, and proliferation
of TILs. Fibrotic tissue surrounding cancer cells may prevent direct cell-to-cell contact
between lymphocytes and cancer cells, thus hindering the killing mechanism of malignant
cells by lymphocytes. Also, hypoxia in the TME may lead to apoptosis of TILs, thereby
reducing their number and effectivity in the tumor tissue [53].

Examining the density of TILs as well as the composition of the TME prior to treatment
with ICI have the potential to further assist the clinicians in the selection of patients that
may benefit from this treatment. However, tumor sampling by using single biopsies has
been associated with limitations [54]. The tumoral immune infiltrate and the composition
of the TME may be better evaluated with multiple biopsies or by selecting a larger tumor
area for sampling [55]. These considerations should also be taken into account when
analyzing and interpreting the TILs density and the overall composition of the TME. In
continuation, the Immunoscore has been internationally validated as a prognostic tool for
colon cancer [56,57]. The Immunoscore is a scoring system categorizing patients as low,
intermediate, or high based on the density of CD8+ and CD3+ T cells and their abundance
in the center and margin of the tumor.

The international validation studies on the Immunoscore in colon cancer have found
the method to be a reliable estimate of recurrence in patients with colon cancer with
superiority to several routinely assessed parameters as histopathological differentiation,
microsatellite instability (MSI) status, and vascular and perineural invasion [56,57]. Like-
wise, a diagnostic biopsy-adapted immunoscore has been found to be a predictive method
for both survival and neoadjuvant treatment response in patients with LARC undergoing
surgery [41]. This approach may also assist in selecting patients with LARC that may
benefit from a “watchful waiting” regimen when planning the treatment in the oncological
and surgical setting.

ClinicalTrials.gov
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Limitations of this study should also be addressed. Firstly, the GRADE assessment
revealed low to moderate levels of evidence. For many of the examined outcomes and TILs
subgroups examined in this study, the number of data eligible for the meta-analysis was
limited and the results for some of the outcomes and TILs subgroups were thus based on
small sample sizes. The limited number of studies also prevented proper assessment of the
risk of publication bias. Secondly, our evaluation of the risk of bias in individual studies
revealed several limitations. All the included studies were retrospective cohort studies
creating a risk of selection or information bias. Some of the included studies did not clarify
if experienced and blinded pathologists assessed the TRG and TILs density. Evaluation
of TRG is associated with significant interobserver variability [58], and only a few of
the included studies have addressed this problem. Our meta-analyses combined TRG
assessment using various TRG systems. Although the TRG systems are quite similar, minor
differences exist with the risk of increasing the imprecision of the results. Furthermore,
most studies assessed TILs density manually and not digitally. The manual assessment
of TILs is associated with interobserver variability, which may result in a considerate
inconsistence in the reported data. Complete pathological response is usually not associated
with interobserver variability. However, most pathologists find tumor regression grading
difficult. Furthermore, the histological examination including number of examined sections
from each tumor block is not uniform among pathologists [59]. In the United Kingdom,
it is required to examine additional deeper sections from each block before reporting a
diagnosis of pCR [60], while this is not mentioned as obligatory in the recommendations
by the International Collaboration of Cancer Reporting (ICCR) [61].

Likewise, different cut-off values were used to classify the patients into either high
or low TILs density groups in the included studies, creating an inconsistence in the cumu-
lative evidence. Most of the included studies used the precalculated median value of the
study cohort as the cut-off value to classify patients into either high or low lymphocyte
infiltration groups. The median value of TILs may vary, not just across different cancer
types, but also in different cohorts of patients with the same cancer. This variability in the
categorization of patients should be taken into account when interpreting the results of
this meta-analysis. Standardizing the cut-off value of TILs for different cancer types may
thus assist in creating a more consistent classification of tumors as having high or low TILs
levels. Consensus concerning a standardized cut-off value optimized to predict outcomes
as well as an exact definition of the area where to perform the counts would probably result
in a more homogenous group and studies would be easier to compare, especially when
conducting meta-analyses.

Lastly, our meta-analyses were performed on dichotomized data. While dichotomiza-
tion of values simplifies statistical analysis and clinical application, it hinders the possibility
to evaluate a dose-response relationship between the degree of immune infiltration and
the degree of tumor regression. Proving a dose-response relationship would, in theory,
strengthen the validity of the findings as outlined in the GRADE approach.

Despite the limitations, the findings of this meta-analysis indicate that assessment
of pretherapeutic TILs may identify a subgroup of patients with LARC that may benefit
from NRCT with improved treatment response and a favorable long-term prognosis as
well as patients that may benefit most from a watchful waiting regimen. Thus, assessment
of CD8+ TILs at time of diagnosis may, among other clinical-biological markers and clinical
decision support tools, assist clinicians in selecting patients who may benefit from NCRT
and immune-enhancing treatment regimens, establishing a more personalized approach
to the treatment of LARC. Further clinical studies examining the association between pre-
and post-therapeutic TILs density and improved prognosis, as well as the survival benefit
of adding ICIs to standard neoadjuvant therapy for LARC should be conducted.

5. Conclusions

High pretherapeutic CD8+ TIL levels were associated with pCR and pTR as well as
improved DFS and OS in patients with LARC undergoing NCRT, suggesting the density
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of CD8+ TILs in the pretherapeutic biopsies may serve as an important predictive and
prognostic biomarker of treatment response and survival.

The same results could not be obtained for CD3+ or CD4+ TILs. Likewise, the findings
related to FOXP3+ TILs did not reveal any significant results. However, the results on
these TILs subtypes were based on limited data. Further examination of the predictive and
prognostic value of pretherapeutic TIL levels in rectal cancer is thus needed. Especially,
prospective studies using reproducible digital and consistent quantification methods of
both TILs and TRG are highly relevant when conducting future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14030636/s1, Table S1: PRISMA checklist, Table S2: Search
strategy, Table S3: Newcastle-Ottawa Scale, Table S4: GRADE assessment of the quality of evidence
for pCR and pTR, Table S5: GRADE assessment of the quality of evidence for DFS and OS, Figure S1:
CD3+ TILs density and pTR, Figure S2: CD4+ TILs density and pTR, Figure S3: FOXP3+ TILs density
and pTR, Figure S4: Prognostic value of FOXP3+ TIL
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