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Global identification of Arabidopsis lncRNAs reveals
the regulation of MAF4 by a natural antisense RNA
Xinyue Zhao1,2, Jingrui Li1,2, Bi Lian1,2, Hanqing Gu1,2, Yan Li1 & Yijun Qi1,2

Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression

and plant development. Here, we identified 6,510 lncRNAs in Arabidopsis under normal or

stress conditions. We found that the expression of natural antisense transcripts (NATs) that

are transcribed in the opposite direction of protein-coding genes often positively correlates

with and is required for the expression of their cognate sense genes. We further char-

acterized MAS, a NAT-lncRNA produced from the MADS AFFECTING FLOWERING4 (MAF4)

locus. MAS is induced by cold and indispensable for the activation of MAF4 transcription and

suppression of precocious flowering. MAS activates MAF4 by interacting with WDR5a, one

core component of the COMPASS-like complexes, and recruiting WDR5a to MAF4 to

enhance histone 3 lysine 4 trimethylation (H3K4me3). Our study greatly extends the

repertoire of lncRNAs in Arabidopsis and reveals a role for NAT-lncRNAs in regulating gene

expression in vernalization response and likely in other biological processes.
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Long non-coding RNAs (lncRNAs) have emerged as impor-
tant players in the regulation of gene transcription, splicing,
and translation1,2. Based on their relationship with protein-

coding genes, lncRNAs can be classified as natural antisense
transcripts (NATs), overlapping lncRNAs (OT-lncRNAs), long
intergenic non-coding RNAs (lincRNAs), and intronic non-
coding RNAs (incRNAs)3,4. NAT-lncRNAs are transcribed in the
opposite direction of protein-coding genes, OT-lncRNAs partially
or fully overlap protein-coding genes in the sense direction,
whereas lincRNAs and incRNAs originate from intergenic and
intronic regions, respectively.

NAT-lncRNAs are widespread in animals5–8 and plants9–12.
They and their cognate sense transcripts often exhibit concordant
or discordant expression patterns7,13. NAT-lncRNAs may posi-
tively or negatively regulate the expression of their sense tran-
scripts using diverse transcriptional or post-transcriptional
mechanisms. The transcriptional machineries of NAT-lncRNAs
and their sense transcripts may compete for RNA Polymerase II
(RNA Pol II) and regulatory transcription factors, or undergo
collision, resulting in transcriptional interference5,14,15. More-
over, NAT-lncRNAs can serve as scaffolds to recruit DNA-
modifying and histone-modifying enzymes, thereby facilitating
DNA methylation, histone modifications, chromatin conforma-
tion changes, and eventually upregulation or downregulation of
gene transcription5,14–17. Post-transcriptionally, NAT-lncRNAs
may affect mRNA decay by nucleases, mask miRNA binding sites,
modulate protein translation or produce endogenous siRNAs to
execute RNA interference (RNAi)1,5,14,18.

In plants, thousands of lncRNAs have been identified and
implicated in root development, seedling light response, flowering
time control, reproduction, and stress response11,12,19–28. How-
ever, only a handful of plant lncRNAs have been experimentally
characterized. COOLAIR is a set of alternatively spliced and
polyadenylated transcripts transcribed from the FLOWERING
LOCUS C (FLC) locus at an early stage of cold exposure29,30 and
mediates the reduction of active histone mark H3 lysine 36 tri-
methylation (H3K36me3) and an increase of repressive histone
mark H3K27me331. COLDAIR is induced at a later stage of cold
exposure and cooperates with an FLC promoter-derived lncRNA
COLDWRAP to establish high H3K27me3 and silence FLC32,33.
The lincRNA APOLO is transcribed in response to auxin and
regulates root development through mediating the formation of a
chromatin loop encompassing the promoter of its neighboring
gene PID and downregulating the transcription of PID19,34. The
lncRNA HID1 induced by continuous red light also tran-
scriptionally suppresses its target gene and promotes seedling
photomorphogenesis35. The elf18-induced lncRNA ELENA
enhances PR1 expression through interacting with MED19a and
affecting its enrichment on the PR1 promoter36. Instead of being
transcriptional regulators, ASCO-lncRNA was found to associate
with the nuclear speckle RNA-binding protein (NSR) and mod-
ulate NSR-mediated alternative splicing events through mimick-
ing and displacing pre-mRNA targets37. Similarly, the lncRNA
IPS1 inhibits the activity of phosphate starvation-induced miR399
by mimicking and sequestering miR399 target mRNA38. Two rice
lncRNAs PMS1T and LDMAR were shown to regulate
photoperiod-sensitive male sterility39,40. Whereas PMS1T func-
tions through generating phased small interfering RNAs (pha-
siRNAs)41, the molecular basis of LDMAR function remains a
mystery.

In this study, in order to explore the function of lncRNAs in
gene regulation and the range of such regulation in plants, we
employed high-depth strand-specific RNA sequencing (RNA-seq)
to systematically identify lncRNAs in Arabidopsis thaliana. We
annotated 6510 lncRNAs including 4050 NAT-lncRNAs and
2460 lincRNAs. We found that many NAT-lncRNAs and their

cognate protein-coding sense transcripts are concordantly
expressed in different tissues or under stress conditions and
knocking down NAT-lncRNAs leads to decreased expression of
sense transcripts. We further demonstrated that one NAT-
lncRNA, MAS, positively regulates the transcription of its cognate
sense gene MAF4 through interacting with and recruiting
WDR5a, a core component of the COMPASS-like complexes, to
MAF4, thereby regulating flowering time. Our study provides a
resource for studying lncRNAs in Arabidopsis and reveals a
mechanism for gene regulation by NAT-lncRNAs.

Results
Global identification of lncRNAs in Arabidopsis. To globally
identify lncRNAs in Arabidopsis, we reconstructed an Arabidopsis
transcriptome using high-depth strand-specific RNA sequencing
(ssRNA-seq). We generated cDNA libraries for rRNA-depleted
total, polyadenylated [poly(A)+] and non-polyadenylated [poly
(A)−] RNAs in whole cell extract, nuclear and cytosolic fractions
that were prepared from Arabidopsis grown under normal or
stress conditions (Supplementary Data 1, RNA-seq datasets
numbered 1–34). A total of 1.2 billion genome-matched reads
were obtained. These reads, together with the reads obtained from
3 published RNA-seq datasets11, were assembled to reconstruct
the Arabidopsis transcriptome. This resulted in 106,421 unique
transcripts from 64,987 genomic loci. Among these, 25,245 were
previously annotated protein-coding transcripts (TAIR10),
accounting for 93% of all annotated protein-coding transcripts.
This indicates that the reconstructed transcriptome had reason-
ably high coverage and quality. After the removal of 39,082
transcripts corresponding to protein-coding transcripts, other
known ncRNAs (e.g., miRNAs, tRNAs, and rRNAs), 29,463
transcripts with short length (< 150 nt) or low abundance
(FPKMMAX < 1), 25,270 transcripts with protein-coding potential
(CPC score > 0), and 6096 transcripts partially or fully over-
lapping with protein-coding genes in the sense direction, we
annotated 6510 lncRNAs ((Supplementary Fig. 1a and Supple-
mentary Data 2). These lncRNAs include 4050 NAT-lncRNAs
and 2460 lincRNAs (Fig.1). NAT-lncRNAs were further classified
into overlapping (2117), divergent (1296) and convergent (637)
NAT-lncRNAs (Fig. 1).

Characteristics of Arabidopsis lncRNAs. We analyzed features
of the identified lncRNAs including average size, exon number,
isoform number, and expression level. Same analyses were also
performed for protein-coding transcripts in parallel for compar-
ison. We found that lncRNAs were much shorter than coding
RNAs (mean length of 633 nt for lncRNAs versus 1408 nt for
coding RNAs) (P-value < 0.0001, Mann–Whitney U-Test, one-
tailed) (Supplementary Fig. 1b). The lncRNAs had fewer exons
(mean= 3.7) than coding RNAs (mean= 5.9) (P-value < 0.0001,
Mann–Whitney U-Test, one-tailed) (Supplementary Fig. 1c) and
smaller number of isoforms (mean= 1.3) comparable to coding
RNAs (mean= 1.4) (Supplementary Fig. 1d). The expression
levels of lncRNAs and coding RNAs were estimated by fragments
per kb of exonic sequence per million mapped reads (FPKM)
using Cuffdiff42. The expression levels of lncRNAs were lower
than those of coding RNAs (P-value < 0.0001, Mann–Whitney U-
Test, one-tailed) (Supplementary Fig. 1e).

We examined whether lncRNAs are polyadenylated, taking
advantage of RNA-seq datasets for poly(A)+ [SW_poly(A)+]
and poly(A)− [SW_poly(A)−] RNAs (Supplementary Data 1).
By applying a strict criterion (P-value < 0.05 and fold-change ≥2),
we found that 1352 lncRNAs were significantly enriched in the
poly(A)+ fraction, whereas 198 lncRNAs were significantly
enriched in the poly(A)− fraction (Supplementary Fig. 2a and
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Supplementary Data 3). The presence or absence of poly(A) in
representative lncRNAs was validated by RT-PCR analyses
(Supplementary Fig. 2b).

We estimated the partitioning of each lncRNA between the
nucleus and the cytoplasm by analyzing the RNA-seq datasets for
cytosolic (SC_Total) and nuclear fractions (SN_Total) (Supple-
mentary Data 1). We found that 239 lncRNAs had significantly
higher levels in the nuclear fraction than that in the cytosolic
fraction, whereas only 43 lncRNAs were more abundant in the
cytosolic fraction (P-value < 0.05 and fold-change ≥2) (Supple-
mentary Fig. 2c and Supplementary Data 4). RT-PCR analyses
with fractionated nuclear and cytosolic extracts confirmed that all
10 randomly selected lncRNAs were predominantly localized in
the nucleus (Supplementary Fig. 2d).

LncRNAs are developmentally and physiologically regulated.
To investigate whether the identified lncRNAs are devel-
opmentally and physiologically regulated, we estimated the
expression levels of each lncRNA by calculating FPKM in dif-
ferent tissues (seedling, inflorescence, and siliques) or under
different treatments (cold, ABA and drought) using the RNA-seq
datasets, which include three biological replicates for each sample.
The Pearson correlation coefficients close to 1 indicate high
reproducibility of the RNA-seq experiments (Supplementary
Fig. 3). We found that 627 lncRNAs had differential expression in
different tissues (P-value < 0.05 and fold-change ≥2) (Fig. 2a and
Supplementary Data 5). 510 and 509 lncRNAs showed inducible
expression patterns at one time point upon ABA and drought
treatment, respectively (Fig. 2a and Supplementary Data 6, 7). We
also found that 196 lncRNAs including COOLAIR showed a
significant increase or decrease in their expression levels after cold
treatment (Fig. 2a and Supplementary Data 8). The expression
patterns of several randomly selected lncRNAs were confirmed by
quantitative RT-PCR (RT-qPCR) (Fig. 2b-d). These data show
the dynamic changes of lncRNA expression in response to
developmental and environmental cues and suggest their roles in
development and stress responses.

NAT-lncRNAs regulate the expression of cognate sense genes.
To explore the function of lncRNAs in gene regulation, we first
examined whether lncRNAs and their adjacent genes are con-
cordantly or discordantly expressed. We calculated the Pearson
correlation coefficients (p.c.c.) between the different types of
lncRNAs and their adjacent protein-coding genes. The p.c.c.
values between adjacent protein-coding gene pairs were calcu-
lated in parallel for comparison. We found that the p.c.c. values of
overlapping NAT-lncRNA/sense gene pairs were significantly
higher than the values between adjacent protein-coding pairs
(Fig. 3a), suggesting that overlapping NAT-lncRNAs have a
stronger tendency to have positively correlated expression pat-
terns with their sense overlapping genes. The concordant
expression patterns of 216 overlapping NAT-lncRNAs and their
cognate sense genes (p.c.c. score > 0.6) are shown in Fig. 3b.

The finding of concordant expression of NAT-lncRNAs and
their cognate genes led us to examine whether NAT-lncRNAs
play a role in regulating the expression of their cognate genes. We
knocked down 21 NAT-lncRNAs using artificial microRNAs
(amiRNAs) (Supplementary Fig. 4). Interestingly, the reduction
of 15 and 3 NAT-lncRNAs resulted in significantly decreased and
increased expression of their cognate sense genes, respectively.
The reduction of other 3 NAT-lncRNAs did not significantly
change the expression of their cognate sense genes (Fig. 3c,
Supplementary Figs. 5, 6). Alteration of sense gene expression in
amiRNA knockdown lines was not due to targeting of sense genes
by amiRNA*s. Eight out of 21 amiRNA*s do not base pair with

sense mRNAs at all. The rest of the amiRNA*s have mismatches
to corresponding sense mRNAs at critical positions (Supplemen-
tary Fig. 4). Furthermore, most of the amiRNA*s do not have 5’
terminal uridine (Supplementary Fig. 4), making it less likely that
they are loaded into the effector AGO1 to suppress gene
expression43. To further rule out the possibility that production
of secondary siRNAs targeting sense genes leads to alteration of
sense gene expression, we performed small RNA (sRNA)
sequencing on 12 randomly chosen amiRNA knockdown lines.
The results revealed that no secondary siRNAs were detected in
these lines (Supplementary Fig. 7). Together, our data suggest that
NAT-lncRNAs are involved in the regulation of cognate sense
gene expression.

A natural antisense lncRNA regulates MAF4 gene expression.
The finding that NAT-lncRNAs regulates cognate sense gene
expression prompted us to investigate the biological importance
of such regulation. We focused on one NAT-lncRNA, NAT-
lncRNA_2962. NAT-lncRNA_2962 is transcribed from the anti-
sense strand of the cold-responsive MAF4 gene, a FLC family
member that functions to prevent precocious vernalization
response44–46. We renamed it MAS for MAF4 antisense RNA
(Fig. 4a). RACE analyses showed that the 5’ end of MAS is
initiated at a site several nucleotides to the transcription termi-
nation site (TTS) of MAF4 and the 3’ end of MAS extends into
the 1st intron of MAF4 and undergoes polyadenylation (Sup-
plementary Fig. 8a).

MAF4 is induced during early periods of cold exposure and its
expression peaks at 20th day of cold exposure44. We validated the
temporal expression pattern of MAF4 by RT-qPCR. Intriguingly,
the expression pattern of MAS during cold treatment closely
mimicked that of MAF4 (Fig. 4b). The concordant expression of
MAF4 and MAS suggests that either MAF4 transcript promotes
MAS expression or vice versa. We tested the first possibility by
examining the expression of MAS in maf4-144 that contains a

Divergent (n = 1296) Convergent (n = 637)

NAT-lncRNA (n = 4050)

LincRNA (n = 2460)

Overlapping (n = 2117)

Non-overlapping (n = 1933)

Protein coding gene
LncRNA

Fig. 1 Annotation of lncRNAs in Arabidopsis. LncRNAs are classified into two
categories based on their genomic locations: NAT-lncRNAs and lincRNAs.
NAT-lncRNAs include overlapping NAT-lncRNAs and non-overlapping
NAT-lncRNAs. Non-coding and coding transcripts are depicted as gray and
black bars, respectively. Arrows indicate the directions of transcription
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Fig. 2 LncRNAs are developmentally and physiologically regulated. a Heat maps showing the abundances of differentially expressed lncRNAs in different
plant tissues and in plants treated with ABA, drought or cold. Rows are ordered based on a k-means clustering of lncRNAs. Color intensity represents the
fractional density across the row of FPKM counts. b–d Detection of representative lncRNAs in the indicated samples by RT-qPCR. Error bars represent s.e.
m (n= 3), asterisks indicate a significant difference (t-test, P-value < 0.05). Source data are provided as a Source Data file
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Fig. 3 NAT-lncRNAs regulate the expression of cognate sense genes. a A boxplot showing the correlation of expression patterns between neighboring gene
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(Mann–Whitney U-test, P-value < 0.01). b Heat maps showing the expression patterns of 216 NCO pairs. Rows are ordered based on a k-means clustering
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T-DNA insertion in the largest intron ofMAF4 and has abolished
MAF4 expression before and after cold treatment (Fig. 4c) and
two amiRNA lines (amiR-MAF4-1 and amiR-MAF4-2) in which
MAF4 transcript was knocked down (Fig. 4d). The basal
expression and induction of MAS were not disturbed in both

maf4-1 and amiR-MAF4-1/2 (Fig. 4c, d), indicating that MAF4
transcript does not affect MAS expression. We then tested
whether MAS regulates MAF4 expression. We generated two
amiRNA lines (amiR-MAS-1 and amiR-MAS-2) in which MAS
transcript was knocked down (Fig. 4a, e). In both lines, the basal
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level of MAF4 transcript was reduced and the induction of MAF4
expression by cold was severely compromised as well (Fig. 4e).
Similar to the reduction of sense gene expression in other
amiRNA knockdown lines we generated (Supplementary Fig. 4),
the reduction of MAF4 expression was not due to amiRNA*s
targeting MAF4 mRNA (Supplementary Fig. 8b) or amiRNA-
triggered production of secondary siRNAs (Fig. 4a). Thus, our
data strongly support the notion that MAS plays a positive role in
MAF4 expression. MAF544–46, another FLC family member that
functions to prevent precocious vernalization response, is near
the MAF4 gene. MAF5 expression remained unaltered in amiR-
MAS-1/2, suggesting thatMAS does not regulate the expression of
MAF5 (Supplementary Fig. 8c).

The role of MAS in MAF4 expression prompted us to examine
whether MAS also acts as a floral repressor. We examined the
flowering phenotype of amiR-MAS-1/2, maf4-1 and the wild-type
(Col-0) plants grown in short-day conditions after 20 days of cold
exposure. We found that, like the maf4-1 mutant, amiR-MAS1/2
flowered earlier than Col-0 (Fig. 4f). All together, these results
suggest that MAS transcript is necessary for the expression of
MAF4 and repression of flowering.

MAS promotes MAF4 expression at the transcriptional level.
We next investigated how MAS regulates MAF4. As MAS is
complementary to the MAF4 transcript, it was possible that they
form a double-stranded RNA to produce sRNAs. However, few
sRNAs were detected at the overlapping region of MAS and

MAF4 (Fig. 4a)47, excluding the possibility that MAS regulates
MAF4 via a mechanism involving sRNAs.

To examine whether MAS regulates MAF4 expression through
modulating the stability of MAF4 transcripts, we measured the
RNA decay rate of MAF4 in Col-0 and amiR-MAS-1/2 lines
treated with the transcriptional inhibitor actinomycin D (ActD).
ActD effectively blocked the transcription of both MAF4 and
MAS as well as that of GAPDH. However, the decline rates of
MAF4 transcripts in Col-0 and amiR-MAS-1/2 were indistin-
guishable, suggesting that MAS does not regulate the stability of
MAF4 transcript (Fig. 5a).

We next tested whetherMAS transcriptionally promotesMAF4
expression. We performed nuclear run-on (NRO) assay to assess
the transcriptional rate of MAF4 in Col-0 and amiR-MAS-1/2.
Knockdown of MAS transcript caused a significant reduction of
MAF4 transcriptional rate, but not that of ACTIN2 or MAS itself,
indicating that MAS controls MAF4 expression at the transcrip-
tional level (Fig. 5b). To further demonstrate thatMAS expression
can transcriptionally activate MAF4, we generated a transgenic
line in which the genomic sequence of MAF4 (including the
promoter and coding region of MAF4) was reversely fused to a β-
estrogen-inducible promoter48 that drives the expression of MAS
(Fig. 5c). As expected, β-estrogen treatment induced the
transcription of MAS, and more importantly, the transcription
of MAF4 was also induced (Fig. 5c, d).

We asked whether MAF4 could be regulated by ectopically
expressed MAS. We then generated two transgenic lines
(MASOX-1 and MASOX-2) in which MAS transcript was
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overexpressed most likely at loci other than MAF4 (Fig. 5e). The
expression level of MAF4 did not change in either transgenic line
(Fig. 5e), suggesting that MAS functions to regulate MAF4 in cis,
but not in trans. Taken together, our data indicate that cis-acting
MAS activates MAF4 expression at the transcriptional level.

MAS mediates the recruitment of WDR5a to MAF4. In Ara-
bidopsis, H3K4me3 has been implicated in transcriptional acti-
vation of genes49, including MAF444,46. To explore whether MAS
mediates MAF4 gene activation through regulating H3K4me3
deposition, we detected H3K4me3 levels at the MAF4 locus in
Col-0 and amiR-MAS-1/2 lines. We found that H3K4me3 was
highly enriched at the transcription start site (TSS) of the MAF4
locus in Col-0; however, such enrichment was significantly
reduced in amiR-MAS-1/2 (Fig. 6a), suggesting that MAS plays a
role in enhancing H3K4me3 deposition at MAF4. We also
detected the levels of active marks H3K27Ac and H3K36me3, and
the repressive mark H3K27me3 at the MAF4 locus in Col-0 and
amiR-MAS-1/2. Interestingly, the levels of H3K27Ac and
H3K36me3 remained unaltered while the levels of H3K27me3
were slightly increased in amiR-MAS-1/2 (Supplementary Fig. 9).

H3K4me3 is conservatively catalyzed by the WDR5/MLL com-
plexes (also called COMPASS-like complexes in Arabidopsis)50,51.
WDR5a is a plant homolog of human WDR5 (Supplementary
Fig. 10a). We used WDR5a RNAi lines51 to determine whether
WDR5a is essential for H3K4me3 deposition at MAF4 and its
activation. We found that WDR5a knockdown resulted in a great
reduction of H3K4me3 level at MAF4 (Supplementary Fig. 10b)
and impaired cold-induced MAF4 expression (Supplementary
Fig. 10c), suggesting that WDR5a is required for H3K4me3
deposition and activation of MAF4.

In mammals, lncRNAs are involved in targeting WDR5/MLL
complexes to specific loci through interacting with WDR552–54.
We thus examined whetherMAS associates with WDR5a to guide
WDR5a to MAF4. We first confirmed that MAS transcript was
retained in the nucleus and associated with the chromatin
fraction (Fig. 6b, c). We further carried out chromatin isolation
by RNA purification coupled with qPCR (ChIRP-qPCR) and
found that MAS bound the MAF4 gene (Fig. 6d). We next
generated transgenic lines expressing FLAG-tagged WDR5a or
WDR5aF250A, a mutant form of WDR5 lacking RNA binding
capability54. We immunoprecipitated FLAG-tagged WDR5a and
WDR5aF250A from cold-treated transgenic plants and detected
MAS transcript in the immunoprecipitates. We found that
WDR5a but not WDR5aF250A pulled down MAS (Fig. 6e). In
contrast to the case of MAS, neither WDR5a nor WDR5aF250A

associated with MAF4 transcript (Fig. 6e).
To further determine the role of MAS in targeting WDR5a to

MAF4, we detected the enrichment of WDR5a at MAF4 in Col-0
and amiR-MAS-1/2 lines. MAS knockdown greatly reduced the
enrichment of WDR5a at MAF4 (Fig. 6f). Moreover, WDR5a, but
not WDR5aF250A, could accumulate at MAF4 (Fig. 6g), suggest-
ing that MAS binding is important for WDR5a recruitment.

Collectively, our data suggest that MAS is transcribed during
cold exposure and its induction plays a crucial role in the
recruitment of WDR5a to MAF4 to activate the expression of
MAF4 (Fig. 6h).

Discussion
The function and range of lncRNA-mediated regulation in plants
have been increasingly appreciated. In this study, we identified a
large number of lncRNAs and analyzed their expression profile in
different tissues under normal or stress conditions using strand-
specific RNA-seq. We sequenced poly(A)+ and poly(A)−,
nuclear and cytoplasmic RNAs separately to increase the

sensitivity of detecting lncRNAs with distinct features. Indeed, ~
88% of the lncRNAs we identified have not been previously
discovered by tilling arrays or conventional RNA-seq11,20,23.
Thus, the lncRNAs we identified represent a valuable addition to
the Arabidopsis lncRNA collection, and provide a rich resource
for the community to further investigate the biology of lncRNAs
in plants.

We focused on the function of a NAT-lncRNA MAS in the
activation of MAF4 expression during cold treatment. We found
that that MAS acts in cis to activate MAF4 expression at the
transcriptional level (Figs. 4, 5). The transcriptional activating
role of MAS is similar to that played by lncRNAs HOTTIP53,
NeST52, LAIR55, and EVX1as56. However, the mechanisms
adopted by these lncRNAs are varied. MAS binds WDR5a and
then guides the COMPASS-like complexes to MAF4 to promote
H3K4me3 (Fig. 6). Like MAS, HOTTIP also interacts with WDR5
and recruits the MLL complex to maintain H3K4me3 and acti-
vation of HOXA genes53. However, the cis-regulatory action of
HOTTIP and NeST requires the chromosome looping that brings
the HOTTIP or NeST locus into close spatial proximity to its
target genes53. Ectopic overexpression of MAS cannot stimulate
MAF4 expression, whereas ectopic overexpression of LAIR pro-
motes the upregulation of LRK genes. EVX1as increases the
transcription of EVX1 through facilitating the binding of Med-
iator complex to EVX1 region, leading to an active chromatin
state.

Exemplified by MAS, many NAT-lncRNAs were found to be
concordantly expressed with their sense genes (Fig. 3), suggesting
co-upregulation of NAT-lncRNAs and their sense genes. Our
results are consistent with previous findings that neighboring
genes often have correlated expression irrespective of their
orientations57. Also, previous study of an immediate-early gene
(IEGs) revealed that the ripple effect plays an important role in
transcriptional activation of IEGs and their neighboring genes58.
However, the cases of NAT-lncRNAs and comparisons between
the ripple effects triggered by lncRNAs and regular genes were
not included in the previous analysis58. Our genome-wide ana-
lysis revealed that NAT-lncRNAs are significantly more likely to
produce ripple effects and activate their sense overlapping genes
than regular genes and other types of lncRNAs (Fig. 3a). On one
hand, this could be because the average distances between the
TSSs of NAT-lncRNAs and their paired genes are smaller. On the
other hand, this may reflect the fact that NAT-lncRNAs play
crucial roles in activating the expression of their paired genes. We
found that some NAT-lncRNAs are indeed required for the
expression of their sense overlapping genes, suggesting that this
cis-regulatory mode could be common to many NAT-lncRNAs
(Fig. 3c and Supplementary Figs. 3, 4). Whether these NAT-
lncRNAs regulate their cognate sense genes through recruiting
the COMPASS-like complexes or other mechanisms remains to
be investigated.

Our finding that many lncRNAs are responsive to different
stresses suggests that plant lncRNAs may play crucial biological
roles. COOLAIR and COLDAIR have been found to mediate
vernalization-induced repression of the floral repressor FLC29,32.
Here we demonstrate that the lncRNA MAS, by regulating the
expression of an FLC family member, MAF4, fine-tunes the time
of flowering. However, different from the repressive roles of
COOLAIR and COLDAIR, MAS activates the expression of
MAF4. Whereas COLDAIR associates with a subunit of the
conserved repressive complex PRC232, MAS binds to the core
component of the COMPASS-like complex that achieves tran-
scriptional activation. Then why the floral repressor FLC and
MAF4 are oppositely regulated upon cold exposure? It was sug-
gested that MAF4 and MAF5 are transiently activated to prevent
precocious flowering so that plants only flower after a long period
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of cold when FLC is completely silenced44. The dynamic and
different expression profiles of FLC and MAF4 highlight the
important role of lncRNAs in coordinating the vernalization
response. However, the majority of lncRNAs, involved in flow-
ering time control or other stress responses, are still awaiting
functional characterization.

Methods
Plant materials and growth conditions. All plants used in this study are in the
Col-0 background. Detailed information about mutants and generation of trans-
genic plants can be found in Supplementary Methods. Plants were grown on 1/2 MS
medium with 30 g/L sucrose in long-day (LD, 16 h light, 22 °C / 8 h dark, 18 °C) or
short-day conditions (SD, 8 h light, 22 °C / 16 h dark, 18 °C).

Stress treatments were performed as previously described with some
modifications44,59–61. For ABA treatment, 2-week-old seedlings were transferred to
1/2 MS liquid medium with 100 μM ABA. For dehydration treatment, 2-week-old
seedlings were removed from the agar and desiccated in dishes. After being treated
for different time periods (0, 2, 4, 6, 8 h), the plants were harvested for RNA
isolation. For cold treatment, 2-week-old seedlings (grown under SD conditions)
were transferred to 4 °C and cultured under SD conditions for different time
periods. After treatment, the plants were harvested or transplanted into soil and
grown under SD conditions for flowering time test.

Nuclear and cytosolic fractionation. Nuclear and cytosolic fractionation was
performed as previously described62. The plant tissues were ground into fine
powder. For cytosolic fraction, 2 volumes of lysis buffer (20 mM Tris-HCl pH 7.4,
25% glycerol, 20 mM KCl, 2 mM EDTA, 2.5 mM MgCl2, 250 mM sucrose, 5 mM
DTT, 40 U/mL RNase inhibitor) were added to the powder. After filtration and
centrifugation at 13,000 × g for 10 min at 4 °C, the supernatant was collected as
cytosolic fraction. For nuclear fraction, 5 volumes of lysis buffer were added to the
powder. After filtration and centrifugation at 13,000 × g for 10 min at 4 °C, the
pellet was washed with NRBT buffer (20 mM Tris-HCl pH 7.4, 25% glycerol, 2.5
mM MgCl2, 0.2% Triton X-100, 5 mM DTT, 160 U/mL RNase inhibitor) and
collected by centrifugation at 1,500 × g for 2 min at 4 °C. When the pellet was
creamy white, 300 μL of Extraction Buffer II (250 mM sucrose, 10 mM Tris-HCl
pH 8.0, 10 mM MgCl2, 1% Triton X-100, 5 mM β-mercaptoethanol, 1 × protease
inhibitor, 350 U/mL RNase inhibitor) was added to resuspend the pellet. The
suspension was added on the top of 300 μL of Extraction Buffer III (1.7 M sucrose,
10 mM Tris-HCl pH 8.0, 2 mM MgCl2, 0.15% Triton X-100, 5 mM β-mercap-
toethanol, 1 × protease inhibitor, 350 U/mL RNase inhibitor) and the pure nuclei
were collected by centrifugation at 13,000 × g for 10 min at 4 °C. As quality controls
of the preparation of nuclear and cytosolic fractions, nuclear and cytosolic RNA
markers U6 and tRNA were detected as described63.

Preparation of polyadenylated and non-polyadenylated RNAs. Total RNA was
extracted with TRIzol (Invitrogen) and treated with DNase I (Ambion). Poly-
adenylated [poly(A)+] RNAs were isolated from total RNA through two rounds of
purification with oligo(dT) beads (QIAGEN). The poly(A)+ RNA-depleted frac-
tion from the first round of purification was collected as crude non-polyadenylated
[(poly(A)−] RNA sample, which was subjected to another two rounds of treatment
with oligo(dT) beads. Ribosomal RNAs were removed by two rounds of treatment
with the Ribo-minus kit (Invitrogen).

Library preparation and sequencing. cDNA libraries for strand-specific
sequencing were constructed by ligation- or dUTP-based methods64. A detailed
protocol is available in Supplementary Methods.

Reconstruction of Arabidopsis transcriptome. Clean reads (Phred quality score ≥
20) were aligned to the Arabidopsis reference genome (TAIR10)65 by using TopHat
version 2.0.1066. Parameters were set for strand-specific mapping and up to 5
different alignments were allowed for a given read. Annotations in TAIR10 served
as an additional junction set to facilitate the alignment. Mapped reads from each
RNA-seq dataset were assembled into transcripts in a reference annotation-based
transcript assembly (RABT assembly) mode by Cufflinks version 1.3.067. Putative
transcripts were retrieved with the parameter ‘--min-frags-per-transfrag 1’. Finally,
assembled transcripts from each dataset and the reference annotation were merged
into a unified transcriptome using Cuffmerge utility version v1.0.042.

Identification of Arabidopsis lncRNAs. We developed a stringent selection
pipeline to systemically identify Arabidopsis lncRNAs, on the basis of pipelines for
animal lncRNA annotation68,69. This pipeline aimed at removing known non-
lncRNA transcripts, unreliable lowly expressed transcripts, and transcripts with
protein-coding potential. First, only transcripts with TAIR10 annotation [Cufflinks
class codes ‘u’ (intergenic transcripts),’x’ (Exonic overlap with reference on the
opposite strand),’i’ (transcripts entirely within intron) were retained. Second,
transcripts of short length (length <150 nt) or low abundance (FPKMmax < 1,
FPKMmax stands for the maximum expression level of a lncRNA from all samples)

were removed. Third, transcripts with protein-coding potential were removed.
Protein-coding potential was determined by using two programs: (1) transcripts
were subjected to a BlastX search against all plant protein sequences in the Swiss-
Prot database70 with a cutoff e-value < 10-4 and the transcripts with strong hits
(alignment length ≥40 aa, percent identity ≥35% and coverage of the alignment
region in either query or subject sequence ≥35%) to known proteins were con-
sidered to have protein-coding potential; For antisense transcripts, open reading
frames were checked. (2) the CPC (Coding Potential Calculator) score71, a value to
assess protein-coding potential of a transcript based on six biologically meaningful
sequence features, was calculated for each transcript. When the CPC score is
positive, we considered the transcript to have protein-coding potential. Transcripts
that passed the three filtering steps were annotated as lncRNAs.

Co-expression analysis. Pearson correlation coefficient was calculated between
the expression levels of adjacent protein-coding genes and between the expression
levels of lncRNAs and their closest protein-coding genes. LncRNA/protein-coding
gene pairs with low abundance (FPKMmax < 1) were excluded from our analysis.
LncRNA/protein-coding gene pairs with Pearson correlation coefficients greater
than 0.6 were presented in the heat map.

Quantitative RT-PCR. Total RNA was isolated using TRIzol reagent (Invitrogen)
and treated with DNase I (Invitrogen) for 30 min at 37 °C to eliminate con-
taminated genomic DNA. cDNAs were generated using 2 μg of total RNA with
random or gene-specific primers and M-MLV (Invitrogen). Quantitative RT-PCR
was performed using SYBR Premix Ex Taq (Takara) as described. Each sample was
analyzed in triplicate. The level of GAPDH mRNA was detected in parallel and
used for normalization. Primer sequences are provided in Supplementary Data 9.

sRNA sequencing and analysis. sRNAs of 18–30 nt were gel-purified on a 15%
denaturing PAGE gel and subjected to library construction as described47. A
detailed protocol is available upon request. The libraries were single-end sequenced
on an Illumina HiSeq2000 platform. After removing adapters and low-quality
reads, sRNA-seq reads were mapped to the Arabidopsis genome (TAIR10 version)
with Bowtie72 allowing no mismatches, and the mapped reads were retained for
further analyses. sRNA abundance was calculated as reads per million (RPM).

ChIP and ChIP-qPCR analyses. ChIP was performed as described73 with some
modifications. A detailed protocol is available in Supplementary Methods. qPCR
was performed using SYBR Premix Ex Taq (Takara). Relative enrichment of
H3K4me3, H3K27Ac, H3K27me3, H3K36me3 and WDR5a in each DNA region
was normalized to input DNA. Primer sequences are provided in Supplementary
Data 9.

RNA IP. RNA IP (RIP) was performed as described74. Briefly, plants were har-
vested and crosslinked by using 1% formaldehyde for 20 min. RNA-protein
complexes were immunoprecipitated by incubating with anti-FLAG M2 Magnetic
Beads (M8823, Sigma-Aldrich) and rabbit polyclonal anti-H3 (ab1791, Abcam,
1:200) at 4 °C for 6 h. Then, the crosslinking was reversed and RNA was purified by
TRIzol.

Nuclear run-on assay. Nuclear run-on assay was performed as described75 except
that nuclei were isolated from 10-day-old seedlings as described62. A detailed
protocol is available in Supplementary Methods.

ChIRP and ChIRP-qPCR analyses. ChIRP was performed as previously with some
modifications76. Antisense DNA probes which were separated into two groups
(even and odd) were designed against the full-length MAS sequence and biotiny-
lated at the 3’ end (Invitrogen). A set of probes against lacZ RNA was used as
negative control.

Col-0 seedlings (1 g) were crosslinked in 1% (vol/vol) formaldehyde (Sigma-
Aldrich) at room temperature for 20 min in a vacuum. Crosslinking was quenched
with 0.125 M glycine for 5 min. Nuclei were isolated as described in the NRO assay
and were sonicated. Chromatin was diluted in 2 volumes of hybridization buffer
(750 mM NaCl, 1% SDS, 50 mM Tris-HCl pH 7.0, 1 mM EDTA, 15% formamide,
0.1 mM PMSF, 1 × protease inhibitor, and 350 U/mL RNase inhibitor) and was
mixed gently. After preclearance with Streptavidin Sepharose beads (GE
Healthcare), 100 pmol of probes were added and mixed by end-to-end rotation at
37 °C for 4 h. Washed Streptavidin Sepharose beads (30 μL) were added, and the
reaction was performed at 37 °C for 30 min with rotation. Then beads were washed
two times with high-salt wash buffer (2 × SSC, 0.5% SDS, 1 mM DTT, and 1 mM
PMSF) and two times with low-salt wash buffer (0.1 × SSC, 0.5% SDS, 1 mM DTT,
and 1 mM PMSF) for 5 min each time at room temperature. DNA and RNA were
purified and analyzed by qPCR. Probes and primer sequences are provided in
Supplementary Data 9.

RNA decay assay. RNA decay assay was performed as described77 with some
modifications. Two-week-old seedlings of Col-0, amiR-MAS-1, and amiR-MAS-2
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were grown in 4 °C growth chamber for 20 d. After cold treatment, plants were
transferred into 1/2 MS medium with 100 μg/mL actinomycin D (Sigma-Aldrich).
Materials were harvested after 2, 4, 6, 8 h. Total RNA was extracted by TRIzol
reagent and used for RT-qPCR assays.

5’ and 3’ RACE. Poly(A)+ RNAs were isolated from 100 ug total RNAs using oligo
(dT) Dynabeads (Thermo Fisher). The 5’ and 3’ RACE experiments were preformed
according to the manuals of GeneRacer (Invitrogen). For 3’ RACE, poly(A)+ RNAs
were reversely transcribed with GeneRacer oligo (dT) primers and then amplified
with GeneRacer 3’Primer/Nest primer and MAS-3’ RACE-GSP1/2/3. For 5’ RACE,
poly(A)+ RNAs were reversely transcribed with MAS-5’ RACE-GSP1. After
degradation of RNAs, the cDNA was tailed by dCTP and the second strand cDNA
was generated using the Abridged Anchor Primer (AAP). Final amplification was
performed with the Abridged Universal Anchor Primer (AUAP) and MAS-5’
RACE-GSP2/3. Primer sequences are provided in Supplementary Data 9.

Data availability
RNA-Seq and sRNA-seq datasets generated in this study can be found in the NCBI
Gene Expression Omnibus under accession number GSE42695 and GSE120709. A
reporting summary for this Article is available as a Supplementary Information file.
The source data underlying Figs. 2–6 and Supplementary Figs. 2-3, 5-6 and 8-10
are provided as a Source Data file. All other data that support the findings of this
study are available from the corresponding author upon request.
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