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OBJECTIVE—Inflammatory mediators associated with type 1
diabetes are dilute and difficult to measure in the periphery,
necessitating development of more sensitive and informative
biomarkers for studying diabetogenic mechanisms, assessing
preonset risk, and monitoring therapeutic interventions.

RESEARCH DESIGN AND METHODS—We previously uti-
lized a novel bioassay in which human type 1 diabetes sera were
used to induce a disease-specific transcriptional signature in
unrelated, healthy peripheral blood mononuclear cells (PBMCs).
Here, we apply this strategy to investigate the inflammatory state
associated with type 1 diabetes in biobreeding (BB) rats.

RESULTS—Consistent with their common susceptibility, sera
of both spontaneously diabetic BB DRlyp/lyp and diabetes
inducible BB DR�/� rats induced transcription of cytokines,
immune receptors, and signaling molecules in PBMCs of healthy
donor rats compared with control sera. Like the human type 1
diabetes signature, the DRlyp/lyp signature, which is associated
with progression to diabetes, was differentiated from that of the
DR�/� by induction of many interleukin (IL)-1–regulated genes.
Supplementing cultures with an IL-1 receptor antagonist (IL-1Ra)
modulated the DRlyp/lyp signature (P � 10�6), while adminis-
tration of IL-1Ra to DRlyp/lyp rats delayed onset (P � 0.007), and
sera of treated animals did not induce the characteristic signa-
ture. Consistent with the presence of immunoregulatory cells in
DR�/� rats was induction of a signature possessing negative
regulators of transcription and inflammation.

CONCLUSIONS—Paralleling our human studies, serum signa-
tures in BB rats reflect processes associated with progression to
type 1 diabetes. Furthermore, these studies support the potential
utility of this approach to detect changes in the inflammatory
state during therapeutic intervention. Diabetes 59:2375–2385,

2010

T
ype 1 diabetes is characterized by immune infil-
tration of the pancreatic islets (insulitis) and
destruction of the insulin-producing �-cells. It is
modeled by the biobreeding (BB) rat, in which

disease is associated with insulitis, hyperglycemia, and
exogenous insulin dependency (1,2). Like humans and the
nonobese diabetic (NOD) mouse, the major histocompat-
ibility complex (MHC) (insulin-dependent diabetes locus 1
[Iddm1]) contributes the largest genetic risk for type 1
diabetes in BB rats (3,4).

The DRlyp/lyp and DR�/� congenic BB rat lines differ
only by the Iddm2 locus on chromosome 4 (5). Iddm2 has
been cloned, and the lymphopenia in DRlyp/lyp rats arises
from a mutation in the Gimap5 gene, which encodes a
mitochondrial protein necessary for postthymic T-cell
survival (6,7). The spontaneously diabetic phenotype,
which occurs in 100% of DRlyp/lyp rats during adoles-
cence (65.3 � 6.3 days), is elicited through deficiency in
regulatory T-cells (TREG cells), as diabetes can be rescued
through adoptive transfer of this population (8).

Type 1 diabetes in the nonlymphopenic BB DR�/� rat,
which possesses a wild-type Gimap5, is inducible through
depletion of TREG cells (9,10). Thus, in all BB rats, there is
predisposition for type 1 diabetes that is manifest upon
loss of immune regulation. This predisposition is absent in
Wistar-Furth (WF) rats, which share the RT1u MHC hap-
lotype, since depletion of TREG cells does not induce
disease. This susceptibility is also absent in Fischer rats,
as introgression of RT1u/u and/or Gimap5�/� is insufficient
for type 1 diabetes development (11).

In addition to T-cell responses, cytokines are important
in diabetogenesis (12), as they are associated with �-cell
destruction and disease status in both humans and spon-
taneous rodent models. Previously, we applied a sensitive
genomics-based bioassay to investigate the presence of
proinflammatory factors in human type 1 diabetes. The
approach used sera of patients with recent-onset type 1
diabetes or healthy control subjects to induce transcrip-
tion in unrelated healthy peripheral blood mononuclear
cells (PBMCs) (13). Recent-onset type 1 diabetes sera
induced a transcriptional profile that included genes re-
lated to innate immunity and genes regulated by interleu-
kin (IL)-1. The signature was distinct from that induced by
sera of healthy control subjects or long-standing type 1
diabetic patients, and analysis of a limited number of
preonset samples showed that it preceded disease and the
development of autoantibodies. Our findings in type 1
diabetes, and those reported for systemic-onset juvenile
idiopathic arthritis (14), support that expression signa-
tures induced by serum factors associated with different
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inflammatory states are disease specific, are reflective of
active disease, and are mechanistically informative.

Here, we examine the serum-induced transcriptional
signatures of DRlyp/lyp and DR�/� rats in an attempt to
bridge the divide between invasive studies allowed in
animal models and the peripheral blood sampling possible
in humans. These studies identify an innate immune
signature associated with progression to type 1 diabetes in
DRlyp/lyp rats that is modulated by the addition of an IL-1
receptor antagonist (IL-1Ra) in vitro and find that admin-
istration of IL-1Ra to pre-diabetic animals modulates the
inflammatory signature and delays disease onset.

RESEARCH DESIGN AND METHODS

Brown Norway (BN) and BB rats were propagated as described (5,6). Before
euthanization, animals were fasted for 16 h, and those possessing blood
glucose levels �130 mg/dl were disqualified from studies of pre-diabetes. Rats
were anesthetized under isofluorane, and blood was collected by heart
puncture. Serum was separated by centrifugation then stored at �80°C until
use.

Human recombinant IL-1Ra (hIL-1Ra) (350 �g/kg/day) or vehicle (saline)
was delivered to DRlyp/lyp rats by intraperitoneal injection. Dosage was
based upon previous hIL-1Ra administration to rodents (15,16). Treatment
was initiated by day 30 and continued either through day 40 or through
diabetes onset. Diabetes onset was defined as the first of two consecutive
blood glucose measurements �250 mg/dl. Survival was analyzed with the
Kaplan-Meier method. All procedures were approved by the Medical College
of Wisconsin Institutional Animal Care and Use Committee.
PBMC cultures. Fresh PBMCs of healthy BN rats (	180-day-old males, to
avoid variation introduced by estrous or pubertal status) were isolated by
density gradient centrifugation. As described (13), transcription was induced
by culturing PBMCs for 6 h at 37°C in 5% CO2 with 20% autologous BN
(self-baseline control), allogeneic BN (healthy unrelated control), DRlyp/lyp,
or DR�/� serum. Indicated cultures were supplemented with 1 ng/ml rat
IL-1� or 1 �g/ml rat IL-1Ra. RNA was extracted using TRIzol reagent,
amplified/labeled using the express kit (Affymetrix, Santa Clara, CA), and
hybridized to the Affymetrix Rat Genome 230 2.0 Array. RNA from each
culture was independently analyzed. Image data were quantified with Af-
fymetrix Expression Console Software and normalized with Robust Multichip
Analysis (www.bioconductor.org/) to determine signal log ratios. ANOVA was
conducted and false discovery rates (FDRs) were determined using Partek
Genomics Suite version 6.2. To capture the most reliable data, limit the length
of gene lists, and facilitate focused pathway analyses, differentially expressed
probe sets were defined as those possessing an FDR �10% and �log2 ratio�
�0.5 between the compared groups. Ontological analysis was performed with
the Database for Annotation, Visualization, and Integrated Discovery (DAVID)
(17). Hierarchical clustering was conducted with Genesis (18). Orthologous
rat and human probe sets were mapped using the Affymetrix support
document (HG-U133_Plus_2.na29.orthologue.csv.zip). All raw data files have
been deposited in The National Center for Biotechnology Information Gene
Expression Omnibus (accession no. GSE19537).
Direct detection of inflammatory mediators. Sera of day 60 BB rats and
day 180 BN rats were assayed with the BeadLyte cytokine assay kit (Millipore,
Billerica, MA), per the manufacturer’s protocol, and a Bio-Plex Luminex 100
XYP instrument. Concentrations were calculated with the Bio-Plex Manager
4.1 software and a five-parameter curve-fitting algorithm applied for standard
curve calculations. IL-33 levels in sera and IL-1�/-
 levels in conditioned
culture medium were measured with Quantikine enzyme-linked immunosor-
bent assays (ELISAs) (R&D Systems, Minneapolis, MN), and gram-negative
bacterial endotoxins (lipopolysaccarides [LPS]) were measured by the Limu-
lus amoebocyte lysate assay (Associates of Cape Cod, Falmouth, MA).
Western blot analysis for anti–hIL-1Ra antibodies. hIL-1Ra (17 kDa) was
electrophoresed through polyacrylamide gels (10–20% Tris-HCl) and trans-
ferred to polyvinylidene difluoride membranes. Membranes were blocked for
1 h with 5% BSA and 0.1% Tween-20 at room temperature then probed with a
1:2,000 dilution of sera from hIL-1Ra or saline-treated DRlyp/lyp rats overnight
at 4� C. Blots were washed three times with 1 � TBS with 0.1% Tween 20 then
incubated with a 1:2,000 dilution of anti-rat IgG, horseradish peroxidase–
linked antibody in blocking solution for 1 h at room temperature. After three
washes, the Enhanced Chemiluminescence (ECL) Plus System (Amersham,
Piscataway, NJ) was used for visualization.

RESULTS

Induction of transcriptional signatures. To determine
whether inflammatory mediators related to diabetogenesis
could be detected through their ability to induce transcrip-
tion, PBMCs of healthy, day 180 BN rats were cultured
with day 60 DRlyp/lyp (representing the period immedi-
ately before onset), day 60 DR�/�, allogeneic BN, or
autologous BN serum. To ensure induced transcription
was not related to elevated blood glucose levels, only sera
of normoglycemic, preonset rats were used. In preliminary
studies, we observed that day 60 DRlyp/lyp serum, like
human recent-onset sera, induced many genes regulated
by IL-1. Therefore, PBMCs were also cultured with day 60
DRlyp/lyp serum supplemented with IL-1Ra as well as
autologous BN serum supplemented with IL-1�, to respec-
tively block or induce IL-1–mediated gene expression.
Culture of BN PBMCs with DRlyp/lyp or DR�/� sera
regulated, within the threshold values, 1,979 and 2,904
probe sets, respectively, relative to culture with allogeneic
BN sera.
Analysis of genes commonly regulated by day 60

DR�/� and DRlyp/lyp sera. As reflected in the Venn
diagram illustrated in Fig. 1A, culture of BN PBMCs with
either DRlyp/lyp or DR�/� sera regulated a total of 3,971
probe sets (supplement A Fig. 1A, available at http://
diabetes.diabetesjournals.org/cgi/content/full/db10-0372/DC1).
Consistent with type 1 diabetes susceptibility in both
strains, the signatures share a significantly nonrandom
(P � 10�6, 
2 test), commonly regulated intersection of
912 probe sets that represents 46.1 and 31.4% of the probe
sets induced by either DRlyp/lyp or DR�/� serum, respec-
tively. Hierarchical clustering (Fig. 1B) shows the related-
ness of the five experimental conditions for this subset.
These 912 shared probe sets were annotated with DAVID,
which identified significantly regulated gene ontology bio-
logical processes related to immunological activation,
antigen presentation, and intracellular signaling, in partic-
ular through the nuclear factor (NF) �B pathway (Table 1
and supplement B).

NF�B is a transcriptional regulator of innate and adap-
tive immunity (19) that is activated through events such as
binding of IL-1 to IL-1R1 or LPS to toll-like receptor (TLR)
4. These events converge at a set of I-�B kinases that
phosphorylate the inhibitory I-�B proteins (NFKBIA and
NFKBIB) leading to their degradation, allowing release
and nuclear translocation of cytoplasmic NF�B, where it
facilitates target gene transcription. Both DRlyp/lyp and
DR�/� sera induced Nfkb2, which encodes the p100
precursor that is cleaved to produce the NF�B p52 protein;
the receptor-interacting serine-threonine kinase 2 (Ripk2),
a potent activator of NF�B; as well as tumor necrosis
factor (TNF) receptor superfamily member 25 (Tnfrsf25),
which stimulates NF�B activity (20). Sera of either BB rat
induced transcription of genes related to intracellular
signaling, including signal transducer and activator of
transcription 2 (Stat2) and mitogen-activated protein ki-
nase activated protein kinase 5 (Mapkapk5), which is
activated by MAPKs in response to exposure to proinflam-
matory cytokines. DRlyp/lyp and DR�/� sera also in-
duced transcription of genes encoding chemokines (Ccl2,
Cxcl16) and receptors including Tlr4, Tlr7, Ccr1, and
Cd14, which are important in TLR4 signaling. Other genes
related to immune function included IL-1R–associated
kinase 3 (Irak3) and intercellular adhesion molecule 1
(Icam1). Both DRlyp/lyp and DR�/� sera induced the
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FIG. 1. Analysis of genes commonly regulated by day 60 DR�/� and DRlyp/lyp sera relative to allogeneic BN sera. PBMCs of four BN rats each
were cultured under six different conditions: 1) autologous serum (n � 4 cultures), 2) autologous serum spiked with IL-1� (1 ng/ml, n � 4
cultures), 3) allogeneic BN serum (n � 15 cultures), 4) a DRlyp/lyp serum pool (n � 4 cultures), 5) a DRlyp/lyp serum pool supplemented with
IL-1Ra (1 �g/ml, n � 4 cultures), and 6) DR�/� serum pool (n � 4 cultures). The serum pools were created from an equal contribution of six
individual male rats. Gene expression was measured independently in each culture, and all data were normalized with that of the autologous
induction to account for gene expression induced by placing the PBMCs into culture. A: A Venn diagram illustrating the relationship between the
gene expression induced in the DRlyp/lyp vs. BN allogeneic and DR�/� vs. BN allogeneic inductions (�log2 ratio� > 0.5- � 1.4-fold; ANOVA FDR
<0.10). B: The mean expression of the five experimental conditions were examined for relatedness by hierarchical clustering using the commonly
regulated probe sets (n � 912) of the DRlyp/lyp vs. BN allogeneic and DR�/� vs. BN allogeneic intersection. Note the similarity between the
DRlyp/lyp and DR�/� signatures and the failure of IL-1Ra to highly influence the DRlyp/lyp signature for this subset of genes. C: Well-annotated
genes regulated in BN PBMCs when cultured with either DRlyp/lyp or DR�/� sera related to immune activation. *Orthologues regulated by
human type 1 diabetes sera (13). The scale represents the fold of change between the serum tested relative to autologous serum (�fourfold to
�fourfold).
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transcription factor Kruppel-like factor 2 (Klf2), an inflam-
matory inhibitor that functions through the binding of
coactivators necessary for optimal NF�B activity (21), and
B-cell CLL/lymphoma three (BclIII), an IL-10–inducible
gene that impairs binding of NF�B complexes to DNA
(19,22). Importantly, all 912 probe sets of the intersection
exhibited directionally concordant inductions by either
DRlyp/lyp or DR�/� sera relative to allogeneic BN sera.
Furthermore, when directly comparing expression levels
between the DRlyp/lyp and DR�/�, only two probes sets
(2 of 912, 0.2%) were differentially expressed (Klf4 and
Map4k2, supplement A). Overall, analysis of the intersec-
tion revealed that culturing BN PBMCs with either DR�/�
or DRlyp/lyp sera, compared with allogeneic BN sera,
induced transcription consistent with immunological acti-
vation (Fig. 1C).
Independent analysis of genes regulated by DRlyp/
lyp and DR�/� sera. To reveal processes associated
with progression to type 1 diabetes, the DRlyp/lyp and

DR�/� serum signatures were independently analyzed.
The mean expression from each of the five experimental
conditions was subjected to hierarchical clustering using
the 1,979 or 2,904 probe sets respectively regulated by
DRlyp/lyp sera or DR�/� sera relative to the BN alloge-
neic induction (Figs. 2A and C). Ontological analysis of
the DRlyp/lyp signature identified biological processes
related to proinflammatory processes possessing higher
numbers of associated genes with greater significance
compared with the analyses of the DRlyp/lyp:DR�/�
intersection or the DR�/� signature (Table 1 and
supplement B). Specifically, DRlyp/lyp sera regulated
biological processes related to antigen presentation,
inflammation, and leukocyte migration. Annotated
genes related to these functions included induction of
Il1b, Tlr2, Il18, Icam2, proteasome subunit � type 1,
(Psmb1), Stat1, and numerous MHC class II genes.
Among the 1,979 probe sets regulated by DRlyp/lyp sera
were central components of the NF�B cascade, includ-

TABLE 1
Significantly regulated gene ontology biological processes

Biological process* Count Percentage P value

Day 60 DRlyp/lyp:DR�/� intersection (n � 912 probe sets)
Antigen processing and presentation of exogenous antigen 7 0.76 2.55 � 10�4

Immune system process 49 5.31 2.28 � 10�3

Antigen processing and presentation 10 1.08 4.57 � 10�3

Antigen processing and presentation of peptide antigen 8 0.87 8.62 � 10�3

Immune response 33 3.58 1.21 � 10�2

Regulation of transcription 87 9.44 1.89 � 10�2

Regulation of signal transduction 33 3.58 2.68 � 10�2

Regulation of transcription, DNA dependent 79 8.57 2.71 � 10�2

Regulation of gene expression 91 9.87 3.54 � 10�2

Myeloid leukocyte mediated immunity 4 0.43 3.65 � 10�2

I-�B kinase/NF�B cascade 11 1.19 6.94 � 10�2

Day 60 DRlyp/lyp (n � 1,979 probe sets)
Antigen processing and presentation of exogenous antigen 14 0.71 6.54 � 10�9

Antigen processing and presentation 22 1.11 4.47 � 10�6

Antigen processing and presentation of peptide antigen 17 0.86 3.55 � 10�5

Immune system process 95 4.80 3.50 � 10�3

I-�B kinase/NF�B cascade 24 1.21 6.23 � 10�3

Immune response 65 3.28 1.00 � 10�2

Myeloid leukocyte mediated immunity 6 0.30 2.15 � 10�2

Leukocyte migration 9 0.45 8.73 � 10�2

Day 60 DR�/� (n � 2,904 probe sets)
Regulation of transcription 260 9.33 8.75 � 10�8

Regulation of gene expression 276 9.90 2.13 � 10�7

Regulation of transcription, DNA dependent 237 8.50 3.84 � 10�7

Regulation of signal transduction 91 3.27 1.83 � 10�4

Regulation of transcription from RNA polymerase II promoter 81 2.91 2.64 � 10�3

Negative regulation of transcription, DNA dependent 38 1.36 9.95 � 10�3

Antigen processing and presentation of exogenous antigen 8 0.29 1.21 � 10�2

Negative regulation of transcription 49 1.76 1.34 � 10�2

Antigen processing and presentation 17 0.61 1.40 � 10�2

Negative regulation of gene expression, epigenetic 5 0.18 2.17 � 10�2

I-�B kinase/NF�B cascade 25 0.90 3.33 � 10�2

Immune system process 105 3.77 3.75 � 10�2

Day 40 PBS-treated DRlyp/lyp (n � 1,526 probe sets)
Antigen processing and presentation 27 1.73 2.63 � 10�11

Antigen processing and presentation of peptide antigen 21 1.35 1.89 � 10�9

Immune system process 96 6.17 1.96 � 10�6

Immune response 67 4.30 2.31 � 10�5

Antigen processing and presentation of exogenous antigen 9 0.58 1.92 � 10�4

I-�B kinase/NF�B cascade 25 1.61 1.98 � 10�4

*Genes identified in Figs. 1, 2, and 4 were analyzed for significantly regulated annotations by DAVID. If an annotation was identified in more
than one of the analyses, it is listed accordingly. Complete lists of annotations are provided in supplement B. The P value defines the
significance of the association of a particular biological process with the gene list analyzed.
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ing Nfkbia and Nfkbib, as well as positive regulators of
NF�B activity, including casein kinase 2 � subunit
(Csnk2b), a potent NF�B activator that directly phosphory-
lates NFKBIA (23), baculoviral IAP repeat-containing 2
(Birc2) (20), and Cd40 (Fig. 3A and supplement A).

When examining the 1,067 probe sets uniquely regulated
by DRlyp/lyp sera (i.e., those excluding the intersection)
(Fig. 2B), a role for IL-1 in induction of the signature
became evident, as blocking IL-1R1 by adding IL-1Ra to
cultures modulated the signature, yielding one more sim-
ilar to that induced by DR�/� sera. Specifically, after

adding IL-1Ra to the culture, expression of 83.3% (889 of
1,067) of the DRlyp/lyp-specific probe sets no longer met
the threshold values (P � 10�6, 
2 test). Among 912 genes
of the intersection, only 40% (374) were influenced by the
addition of IL-1Ra (P � 10�6, 
2 test). When examining
1,992 probe sets uniquely regulated by DR�/� sera (Fig.
2D), addition of IL-1Ra to the DRlyp/lyp culture resulted in
induction of a signature more similar to that of the DR�/�
culture in terms of fold of change. However, the overall
expression levels were less influenced, in that among 1,992
genes regulated in the DR�/� culture, only 26.2% (521 of
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FIG. 2. Independent analysis of genes regulated by DRlyp/lyp and DR�/� sera. In all cases, replicates were averaged and the relatedness of the
five conditions was analyzed by hierarchical clustering. A: Illustrates all probe sets regulated between the DRlyp/lyp vs. BN allogeneic inductions
including probe sets of the DRlyp/lyp:DR�/� intersection (n � 1,979). B: Illustrates all probe sets regulated between the DRlyp/lyp vs. BN
allogeneic inductions excluding probe sets of the DRlyp/lyp:DR�/� intersection (n � 1,067). Note the distinctiveness of the DRlyp/lyp signature
relative to the DR�/� and the influence of IL-1Ra in impairing induction of the DRlyp/lyp signature in panels A and B. C: Illustrates all probe sets
regulated between the DR�/� vs. BN allogeneic inductions including probe sets of the DRlyp/lyp:DR�/� intersection (n � 2,904). D: Illustrates
all probe sets regulated between the DR�/� vs. BN allogeneic inductions excluding probe sets of the DRlyp/lyp:DR�/� intersection (n � 1,992).
Note the similarity between DRlyp/lyp and DR�/� signatures and how the addition of IL-1Ra to DRlyp/lyp cultures enhances expression in C and
D. The scale represents fold of change between the serum tested relative to autologous serum (�fourfold to �fourfold).
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1,992) of the probe sets in the DRlyp/lyp � IL-1Ra culture
were regulated to meet the threshold values. These statis-
tical findings are reflected in Figs. 2B and D and show gene
expression arising through IL-1R1 signaling accounts for a
large part of the difference between the DRlyp/lyp and
DR�/� signatures. Furthermore, addition of IL-1Ra to
DRlyp/lyp cultures reduced gene expression annotated as

proinflammatory (Fig. 2B) and enhanced gene expression
annotated as being regulatory (Fig. 2D). Addition of IL-1�
to PBMCs cultured with autologous BN sera induced a
modest signature, more similar to that induced by that of
BB rat sera than cultures possessing BN allogeneic sera (Fig.
2), regulating 209 of 3,971 probe sets regulated by DR�/� or
DRlyp/lyp serum relative to BN allogeneic serum.

A

B

Il1b* 24494 1.61 1.51 1.81
Cr2* 289395 1.52 -1.01 1.07
Ccl3 25542 1.49 1.18 1.35
Azi2 316051 1.42 1.23 1.03
Tnip2 305451 1.31 1.17 1.06
Il18 29197 1.30 1.16 1.19
Mx2* 286918 1.32 1.11 1.12
Hla-dmb 294273 1.30 1.12 1.25
Hla-dma 294274 1.47 1.12 1.26
RT1-Db1* 294270 1.44 1.00 1.14
Mt1a* 24567 1.23 1.13 1.02
Stat1* 25124 1.24 1.10 1.10
Btk 367901 1.20 1.13 1.07
Mapk1 116590 1.16 1.08 1.02
Nfkbib 81525 1.11 1.08 1.04
Prkd3* 313834 1.35 -1.09 -1.02
Psmb9 24967 1.33 -1.05 1.01
Rab20* 689377 1.29 -1.01 1.09
Tlr2* 310553 1.15 -1.06 1.07
Fcrla* 304965 1.19 1.01 1.09
Rnf167 360554 1.14 -1.06 1.12
Csnk2b 81650 1.25 -1.39 1.08
Icam2 360647 1.16 -1.20 1.17
Birc2 60371 1.32 -1.11 1.02
Cd74 25599 1.14 -1.03 1.17
Cd40 171369 1.27 -1.02 1.08
Nup85 287830 1.25 1.02 1.06
Nfkbia 25493 1.27 -1.15 -1.03
Eef1d 300033 1.20 -1.21 1.02
Psmb8 24968 1.24 -1.13 1.05
Faf1 140657 1.12 -1.15 1.02
Ccdc101 293488 1.14 -1.44 -1.05
Gzmm 29252 1.09 -1.27 1.01
Bet1l 54400 1.28 -1.34 -1.16
Txnl4b* 292008 1.29 -1.24 -1.01
Eif2s3x* 299027 1.15 -1.25 -1.07
Stk19 361800 1.02 -1.55 -1.11
Cklf 245978 1.16 1.00 -1.23
Itga6* 114517 -1.43 -1.26 -1.21
Nlk* 497961 -1.92 -1.46 -1.19

Egr1 24330 1.76 2.66 2.26
Cpsf6 299811 1.63 2.93 1.72
Elk3 362871 1.26 2.51 1.52
Tcf7 363595 1.20 2.47 1.69
Smad7 81516 1.27 2.17 2.07
Map3k7ip2 308267 1.38 2.26 1.72
LOC684513 684513 1.50 2.42 1.84
Mll5 311968 1.37 2.37 1.92
Mll5 311968 1.37 1.72 1.91
Irak2 362418 1.39 1.50 1.59
Pou2f1 171068 1.13 1.64 1.72
Irf2 290794 1.15 2.09 1.35
RGD1565584 293112 1.12 1.77 1.28
Zeb1 25705 1.26 1.71 1.54
Maml1 303101 1.16 1.67 1.47
Ncor1 54299 1.16 1.91 1.49
Runx1 50662 1.14 1.98 1.50
Cbx7 362962 1.14 1.90 1.49
Ep300 170915 1.09 1.80 1.36
Smarca4 171379 -1.02 1.95 1.61
Mdm4* 304798 1.38 1.67 1.21
Ifit2* 294091 1.38 1.91 1.39
Ctcf 83726 1.36 1.97 1.62
Gtf2ird1 246770 1.34 1.97 1.43
RGD1565584 293112 1.26 1.86 1.30
Zbtb7a 117107 1.17 1.98 1.38
Jun* 24516 1.14 1.80 1.35
Pias2 83422 1.14 1.65 1.39
Sirt4 304539 1.14 1.63 1.44
Rybp 312603 1.12 1.73 1.43
Mll1 315606 -1.01 1.85 1.41
Ncor1 54299 1.11 1.44 1.24
Mbd2 680172 1.04 1.49 1.12
Foxp1 297480 1.13 1.48 1.47
Usp7 360471 1.07 1.48 1.37
Pura 307498 1.00 1.44 1.32
Nek7 360850 1.02 1.23 1.03
Ncor1 54299 -1.06 1.48 1.13
Grk6 59076 -1.13 1.32 1.11
Nfkbie 316241 1.15 1.94 1.42
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FIG. 3. Well-annotated regulated probe sets were uniquely identified in the DRlyp/lyp vs. BN allogeneic induction (A) or the DR�/� vs. BN
allogeneic induction (B). *Orthologues regulated by human type 1 diabetes sera (13). The scale represents the fold of change between the serum
tested relative to autologous serum (�fourfold to �fourfold).
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Overall, the ontological analysis of 2,904 probe sets
regulated by DR�/� sera revealed the greatest number of
highly significant biological processes, and these annota-
tions were primarily related to regulation of gene expres-
sion (Table 1 and supplement B). Numerous genes related
to negative regulation of inflammation and NF�B signaling
were regulated by DR�/� sera, including Nfkbie, an
inhibitor of NF�B (24); the transcriptional repressors zinc
finger E-box binding homeobox 1 (Zeb1); zinc finger and
BTB domain containing 7a (Zbtb7a); interferon regulatory
factor 2 (Irf2); ETS domain-containing protein Elk-3; the
inhibitor of activated STAT 2 (Pias2); suppressor of
cytokine signaling-5 (Socs5); the cell cycle inhibitor; my-
eloid/lymphoid or mixed-lineage leukemia 5 (Mll5); and
others (Fig. 3B).

While the sera of either BB substrain induced gene

expression consistent with immune activation, DRlyp/lyp
sera induced an inflammatory signature consistent with
the presence of IL-1, whereas that of the DR�/� sera can
be characterized as largely immunoregulatory. Among the
genes regulated by DRlyp/lyp and DR�/� sera were 87
orthologues previously identified among 587 genes regu-
lated by human type 1 diabetes sera (Figs. 1 and 3 and
supplement A) (13).
Direct detection of inflammatory mediators. In an
effort to account for the induced signatures, cytokine
levels were measured by ELISA in the DRlyp/lyp, DR�/�,
and BN sera used in the expression studies (Table 2).
Measurable differences in IL-1
 or IL-1� levels between
DRlyp/lyp, DR�/�, or BN rat sera were not detected,
raising the question whether the induced transcription
measured after 6 h of culture was a primary effect of IL-1

TABLE 3
IL-1� levels in conditioned medium after PBMC culture with DRlyp/lyp, DR�/�, and BN sera

Duration
Day 60

DRlyp/lyp

Day 60
DRlyp/lyp�IL-1Ra

Day 60
DR�/�

Day 180
BN allogeneic

Day 180
BN autologous

0 h 2.9 � 1.7 1.7 � 1.2 4.4 � 2.0 2.2 � 1.3 2.0 � 2.0
1 h 5.3 � 2.3 5.3 � 2.0 4.4 � 1.8 0.0 � 0.0 0.7 � 0.8
3 h 4.7 � 2.2 7.7 � 6.7 4.1 � 2.3 3.3 � 2.9 0.8 � 0.5
6 h 3.6 � 1.4 5.2 � 1.9 7.7 � 3.5 2.7 � 2.5 1.9 � 0.9
12 h 7.0 � 2.5 10.3 � 3.8 4.6 � 1.7 9.0 � 4.0 6.6 � 3.3
24 h 12.4 � 3.3*† 10.1 � 5.4 9.5 � 4.1 1.2 � 0.7 4.0 � 1.8

Data are means � SE of four cultures per group (pg/ml). Each culture was tested in duplicate using the IL-1� Quantikine ELISA kit (R&D
Systems). In cultures possessing autologous BN sera supplemented with 1 ng/ml IL-1�, on average 816.3 � 51.7 pg/ml was detected across
the six time points. Assay sensitivity: �5 pg/ml. *P � 0.05 Student t test vs. 0 h time point. †P � 0.05 Student t test vs. day 180 allogeneic
BN sera at 24 h of culture.

TABLE 2
Cytokine/chemokine levels in DRlyp/lyp, DR�/�, and BN rats

Cytokine Day 60 DRlyp/lyp Day 60 DR�/� Day 180 BN
Lower detection

limit (pg/ml)

IL-1a 0.0 � 0.0 0.0 � 0.0 0.0 � 0.0 �27
IL-1b 15.6 � 4.4 11.7 � 6.0 11.8 � 8.1 �27
IL-2 20.6 � 6.9 23.8 � 9.7 3.9 � 3.9 �75
IL-4 1.9 � 1.9 5.1 � 3.9 6.7 � 3.3 �27
IL-5 19.6 � 10.8 0.0 � 0.0 0.0 � 0.0 �10
IL-6 1.6 � 1.3 0.0 � 0.0 1.8 � 1.8 �250
IL-9 224.1 � 43.9 105.0 � 28.5 102.9 � 55.8 �250
IL-10 107.2 � 30.0 58.2 � 19.4 42.7 � 24.2 �27
IL-13 90.4 � 21.1*† 14.1 � 2.2 14.1 � 4.4 �27
IL-17 0.0 � 0.0 0.0 � 0.0 0.0 � 0.0 �10
IL-18 14.6 � 3.0 12.4 � 3.3 3.2 � 1.6 �10
Granulocyte colony-stimulating factor 0.0 � 0.0 0.0 � 0.0 0.0 � 0.0 �10
Granulocyte/macrophage colony-stimulating factor 6.9 � 5.2 0.0 � 0.0 2.9 � 2.9 �27
Growth-regulated oncogene alpha, chemokine CxCl1 302.5 � 45.0 227.1 � 29.9 199.8 � 34.7 �27
Eotaxin 0.9 � 0.9 0.0 � 0.0 8.4 � 2.8 �27
Interferon-� 3.9 � 2.3 1.6 � 1.0 0.0 � 0.0 �27
IP-10 0.0 � 0.0 0.0 � 0.0 0.2 � 0.2 �10
Leptin 1,727.4 � 607.1 2,478.8 � 602.3 1,438.4 � 203.9 �10
Monocyte chemoattractant protein (CCL2) 80.0 � 32.9 45.8 � 21.1 87.6 � 7.3 �75
Macrophage inflammatory protein-1 alpha 0.0 � 0.0 0.0 � 0.0 0.0 � 0.0 �10
Rantes 1,496.9 � 416.0 6,757.0 � 4,493.9 1,530.2 � 176.7 �27
TNF-
 1.6 � 0.9 0.0 � 0.0 16.9 � 3.1 �10
Vascular endothelial growth factor 0.0 � 0.0 0.0 � 0.0 0.0 � 0.0 �27
IL-12p70 0.0 � 0.0 0.0 � 0.0 0.0 � 0.0 �27
IL-33 8.9 � 0.4 6.8 � 0.1 5.6 � 0.5 �7
LPS§ 1.30 � 0.2‡ 1.34 � 0.2‡ 0.87 � 0.1 �0.5

Data are means � SE of six rats per group (pg/ml). Each sample was tested in duplicate using the Millipore BeadLyte cytokine assay kit, with
the exception of IL-33 and LPS. *P � 0.01 Wilcoxon rank-sum test vs. BN; †P � 0.01 Wilcoxon rank-sum test DRlyp/lyp vs. DR�/�; ‡P �
0.05 Wilcoxon rank-sum test vs. BN; §conversion from endotoxin units (EU) to picograms (pg) is based upon 1 EU � 100 pg.
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FIG. 4. Treatment of DRlyp/lyp rats with hIL-1Ra. A: Longitudinal monitoring of DRlyp/lyp rats treated with 350 �g/kg/day human recombinant
IL-1Ra (n � 16, dashed line) or saline (n � 23, solid line). Agents were delivered intraperitoneally in saline. Treatment was initiated by day 30
(prior to insulitis). Fasting blood glucose was measured three times per week, and type 1 diabetes onset was defined as the first of two
consecutive fasting blood glucose measurements >250 mg/dl. hIL-1Ra–treated rats survived 71 � 11 days (range 53–100), while saline-treated
controls survived 61 � 6 days (53–75) (P � 0.007, log-rank test). B: Detection of anti–hIL-1Ra antibodies in IL-1Ra–treated DRlyp/lyp rats.
Indicated amounts of hIL-1Ra (17 kDa) were loaded onto polyacrylamide gels, electrophoresed, and blotted. Membranes were probed with a
1:2,000 dilution of onset sera from hIL-1Ra–treated (top left blots), saline-treated (top right blot), day 40 hIL-1Ra–treated (bottom left blot), or
saline-treated (bottom right blot) DRlyp/lyp rats. C: A Venn diagram illustrating the relationship between the gene expression induced between
the PBS-treated DRlyp/lyp vs. BN allogeneic and hIL-1Ra–treated DRlyp/lyp vs. BN allogeneic inductions (244 �log2 ratio� >0.5- �1.4-fold;
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on the PBMCs or a secondary effect of IL-1 produced by
the PBMCs in response to other dilute mediators in
DRlyp/lyp sera. Conditioned medium of cultures supple-
mented with the various sera were assayed for IL-1
 and
IL-1� at 0, 1, 3, 6, 12, and 24 h. While IL-1
 was not
detected at all, significant detectable levels of IL-1� were
measured in only DRlyp/lyp cultures at 24 h but not at or
prior to 6 h (Table 3). This supports the hypothesis that the
6 h transcriptional response is primary and is due in part to
IL-1 itself, as lower IL-1� protein was not significantly
detected in the DR�/� and DRlyp/lyp � IL-1Ra cultures.
This parallels the significant detection of Il1b transcript
only in cultures supplemented with DRlyp/lyp sera. Signif-
icant differences in serum IL-10 were not observed; how-
ever, consistent with the transcriptional signatures, levels
in DR�/� and DRlyp/lyp serum were greater than that
measured in the BN rat. IL-13 was the only significantly
upregulated cytokine detected in serum of the day 60
DRlyp/lyp rat.

Recent studies have identified increased levels of LPS in
human type 1 diabetic patients (25). Given that TLR4 and
IL-1R1 signaling both are mediated through the adaptor
protein MyD88 to activate NF�B, we investigated LPS
serum levels. On average, significantly higher LPS levels
were detected in the DRlyp/lyp and DR�/� rat serum
compared with that of BN rats (Table 2), consistent with
the significant induction of Il1b transcript in cultures
possessing with DRlyp/lyp sera even when supplemented
with IL-1Ra (supplement A).
Delay of BB rat type 1 diabetes through IL-1R block-
ade. Given the parallels between the signatures induced
by human type 1 diabetes and DRlyp/lyp sera, in terms of
overrepresentation of transcripts regulated by IL-1 and
modulation of the DRlyp/lyp signature upon addition of
IL-1Ra to cultures, we tested the effectiveness of IL-1Ra in
delaying type 1 diabetes onset in BB rats. The treatment of
BB rats with rat IL-1Ra is cost prohibitive, while hIL-1Ra
shares �70% amino acid homology with rat IL-1Ra and is
bioactive in rat (15,26). Thus, we reasoned that if IL-1–
mediated inflammation was relevant to diabetogenesis in
DRlyp/lyp rats, treatment with hIL-1Ra should delay onset
for approximately the amount of time required to mount a
robust antibody response (	10–14 days). Treatment was
initiated by day 30 and continued through type 1 diabetes
onset. Treated rats survived 71 � 11 days, whereas con-
trols survived 61 � 6 days (P � 0.007) (Fig. 4A). Significant
differences in weight or growth rate were not observed
between treated and control rats (P � 0.05). As expected,
the animals possessed antibody titer to hIL-1Ra (Fig. 4B).
Use of transcriptional signature to monitor effect of
IL-1R blockade. To determine whether hIL-1Ra treatment
of DRlyp/lyp rats would result in modulation of the serum
signature, additional rats were treated with hIL-1Ra or
saline for 10 days, beginning at day 30. Serum was col-
lected at day 40 and assayed to determine 1) whether an
inflammatory signature was present at this time prior to
insulitis (27), 2) whether day 40 and day 60 signatures

were similar, and 3) whether a day 40 signature was
modulated in hIL-1Ra–treated rats. Furthermore, after
only 10 days of treatment, the effect of hIL-1Ra treatment
would be less likely masked by the high concentrations of
neutralizing antibodies observed at onset (Fig. 4B, lower
panels).

Regulated probe sets between cultures possessing se-
rum of saline- or hIL-1Ra–treated DRlyp/lyp rats compared
with allogeneic BN serum were identified and subjected to
hierarchical clustering (Fig. 4C and D). In the PBS-treated
DRlyp/lyp versus BN allogeneic comparison, 1,526 probe
sets met these criteria, and among these, a significant
percentage (638 of 1,526, 41.8%; P � 10�6 
2 test) were
also regulated by day 60 DRlyp/lyp sera. Ontological
analysis again identified biological processes related to an-
tigen presentation, inflammation, leukocyte migration, and
activation of the NF�B cascade (Table 1 and supplement
2). Selected genes related to these pathways are shown
(Fig. 4E, supplement A). Compared with BN sera, sera of
day 40 DRlyp/lyp rats treated with hIL-1Ra regulated only
five probe sets. The two probe sets of the intersection
exhibited directionally concordant inductions by either
saline-treated DRlyp/lyp or IL-1Ra–treated DRlyp/lyp sera
relative to allogeneic BN sera. As reflected by the fold
changes illustrated in Fig. 4D, treatment reduced induction
of the proinflammatory signature observed in PBS-treated
rats. Overall, these results show that like human type 1
diabetes (13), a serum-induced signature with identity to
that observed at onset is detected prior to onset in the
DRlyp/lyp rat. Moreover, this signature is modulated by
treating rats with hIL-1Ra, suggesting that this approach
may prove useful in monitoring the effect of therapeutic
interventions in human type 1 diabetes.

DISCUSSION

Previously, we defined a transcriptional signature induced
by sera of human type 1 diabetic patients (13). Here,
parallel studies were conducted that defined unique signa-
tures for diabetes-inducible DR�/� and spontaneously
diabetic DRlyp/lyp rats. Like human type 1 diabetes, the
signature associated with disease progression in DRlyp/
lyp rats includes many genes regulated by IL-1 and differ-
ential regulation of NF�B signaling is a key feature
distinguishing the signatures induced by sera of the DRlyp/
lyp and DR�/� substrains.

Identity is observed between signatures induced by day
60 serum of DRlyp/lyp and DR�/� rats, in particular the
912 probe sets of the DRlyp/lyp:DR�/� intersection.
Identity is also evident in 1,992 probe sets regulated to
threshold levels by DR�/� serum. These probe sets,
annotated as immunoregulatory, are regulated by DRlyp/
lyp serum to a lesser degree that does not meet threshold
values. This suggests the presence of endogenous, albeit
insufficient, immunoregulatory activity in DRlyp/lyp rats
and may explain why relatively few (106) adoptively trans-
ferred DR�/� TREG cells prevent type 1 diabetes in

FDR <0.10). PBMCs of six BN rats each were cultured with a serum pool generated from six hIL-1Ra–treated DRlyp/lyp rats or a serum pool
generated from six PBS-treated DRlyp/lyp rats (n � 12 cultures). For PBMCs of each donor BN rat (n � 6), a culture possessing autologous sera
was prepared. Fifteen cultures possessing allogeneic BN serum were prepared. Global gene expression was measured in each culture and all data
were normalized with that of the autologous induction to account for gene expression induced by placing the PBMCs into culture. D: Regulated
probes were identified between the PBS-treated DRlyp/lyp vs. BN allogeneic and hIL-1Ra–treated DRlyp/lyp vs. BN allogeneic inductions,
replicates were averaged, and the relatedness of the three conditions were examined by hierarchical clustering. E: Well-annotated, regulated
probe sets regulated by sera of PBS-treated DRlyp/lyp rats vs. the BN allogeneic induction. *Orthologues regulated by human type 1 diabetes sera
(13). The scale represents the fold of change between the serum tested relative to autologous serum (�fourfold to �fourfold). (A high-quality
digital representation of this figure is available in the online issue.)
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DRlyp/lyp rats (8). Conversely, from the perspective of the
probe sets regulated by DRlyp/lyp sera, the DRlyp/lyp and
DR�/� signatures are distinct, with the DRlyp/lyp signa-
ture possessing an IL-1–driven component that is down-
regulated by adding IL-1Ra to the culture.

Among human type 1 diabetic patients, a significant
percentage will develop autoimmune thyroid disease (28).
Likewise, lymphopenic BB rats develop autoimmune thy-
roiditis. Since the method measures the sum of the inflam-
matory factors present in serum, we cannot exclude that
thyroid autoimmunity has not contributed to the signature
defined for DRlyp/lyp rats. In terms of other models, we
have examined serum signatures associated with type 1
diabetes in LEW.1WR1 rats (29) and find the inflammatory
states distinct but sharing partial identity (supplement C)
(30).

Despite the challenges of directly measuring peripheral
cytokine levels in human type 1 diabetes, studies have
established that a complex cytokine milieu exists. This
includes elevated IL-1 family members in patient cohorts
before and after disease onset (31–35). Here, ELISA anal-
ysis was unable to detect differences in IL-1�/-
 levels
between DRlyp/lyp, DR�/� or BN rat sera. This may be
related to assay sensitivity, the limited number of rats
analyzed, or presence of soluble IL-1 receptors, which
impairs detection of free bioactive IL-1 and highlights the
need for new, more sensitive biomarkers. Given that the
amount of IL-1� (1 ng/ml) spiked into the autologous BN
cultures exceeded the sensitivity of the multiplex cytokine
analysis for IL-1
 (�27 pg/ml) and IL-1� (�27 pg/ml), the
signatures induced by DRlyp/lyp and DR�/� sera (in
particular genes of the intersection) are not likely an effect
of IL-1 concentrations exclusively but involve the contri-
bution of other inflammatory mediators. Binding of IL-1
and LPS to their respective receptors initiate transcrip-
tional programs similar to those observed. We found LPS
levels in BB rats nearly twice that of BN rats, consistent
with reported intestinal hyperpermeability in BB rats (36),
which may lead to the translocation of bacteria and/or
endotoxin and a heightened systemic inflammatory state.
IL-13 was elevated in DRlyp/lyp compared with DR�/�
and BN serum. This is consistent with elevated IgE levels
and eosinophilia prior to onset in DRlyp/lyp rats (37), as
IL-13 induces immunoglobulin isotype switching to IgE in
B-cells and regulates eosinophilic inflammation.

In vitro, human and rodent pancreatic �-cells are highly
susceptible to the actions of IL-1 (38), and IL-1Ra can
protect �-cells from the downstream consequences of IL-1
exposure (39). While IL-1 transcript and protein are de-
tected within immune infiltrated pancreatic islets of BB
rats and NOD mice (40–42), in vivo modulation of either
ligand or receptor in these models has yielded mixed
results. Administration of high doses of IL-1 to diabetes-
prone BB rats induced higher blood glucose concentra-
tions before and at type 1 diabetes onset and accelerated
onset (43). In contrast, administration of IL-1 to the NOD
mouse delayed onset and reduced incidence (44,45). IL-1R
deficiency in the NOD mouse slowed progression to type 1
diabetes but did not prevent it (46), and treatment of NOD
mice with IL-1Ra inhibited recurrence of type 1 diabetes
after islet transplantation (47). IL-1 has been shown to
exacerbate autoimmunity by promoting expansion of ef-
fector T-cells and attenuating TREG cell function (48),
raising the possibility of IL-1–mediated impaired regula-
tory function of TREG cells in DRlyp/lyp relative to DR�/�
rats. Treatment of DRlyp/lyp rats with hIL-1Ra delayed

onset for the time required to mount a neutralizing hu-
moral immune response. These results are consistent with
a previous study in which hIL-1Ra delayed BB rat type 1
diabetes onset but did not affect growth or modify lym-
phocyte counts (16). As reported here, anti–hIL-1Ra anti-
bodies developed, to which short-term protection (2–3
weeks) was attributed. Importantly, with delayed onset we
observe modulation of the serum-induced transcriptional
profile in hIL-1Ra–treated rats.

These findings support that this bioassay may not only
have utility as an early mechanistically informative inflam-
matory biomarker of type 1 diabetes but may prove useful
in monitoring changes in inflammatory state during thera-
peutic interventions, including those targeting IL-1 (49).
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