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ABSTRACT: Elastic network models, simple structure-based
representations of biomolecules where atoms interact via
short-range harmonic potentials, provide great insight into a
molecule’s internal dynamics and mechanical properties at
extremely low computational cost. Their efficiency and
effectiveness have made them a pivotal instrument in the
computer-aided study of proteins and, since a few years, also
of nucleic acids. In general, the coarse-grained sites, i.e. those
effective force centers onto which the all-atom structure is
mapped, are constructed based on intuitive rules: a typical
choice for proteins is to retain only the Cα atoms of each
amino acid. However, a mapping strategy relying only on the
atom type and not the local properties of its embedding can be suboptimal compared to a more careful selection. Here, we
present a strategy in which the subset of atoms, each of which is mapped onto a unique coarse-grained site of the model, is
selected in a stochastic search aimed at optimizing a cost function. The latter is taken to be a simple measure of the consistency
between the harmonic approximation of an elastic network model and the harmonic model obtained through exact integration
of the discarded degrees of freedom. The method is applied to two representatives of structurally very different types of
biomolecules: the protein adenylate kinase and the RNA molecule adenine riboswitch. Our analysis quantifies the substantial
impact that an algorithm-driven selection of coarse-grained sites can have on a model’s properties.

1. INTRODUCTION

Our current understanding of biological processes at the
molecular level has benefited greatly from computer
simulations and in silico studies. Computational models of
fundamental molecules and molecular assemblies such as
proteins, nucleic acids, or lipid bilayers allow us to observe and
quantitatively investigate them under a broad range of physical
conditions and at a level of resolution usually inaccessible to
experiments.
Since the first pioneering simulations of simple model

systems1 and biological molecules,2 computational models
have enjoyed a steady increase in force field accuracy, system
sizes, and accessible time scales. State-of-the-art simulations,
especially those performed through purposefully constructed
machines such as ANTON,3 attain durations compatible with
the folding time of small proteins,4,5 while systems composed
of millions of atoms can be studied on more standard
supercomputing machines.6,7

However, many situations remain where investigating fully
atomistic models of biomolecules is neither a viable option nor
in fact an adequate strategy. It is uncontested that the sizes and
time scales involved in many exciting problems still

substantially exceed the typical computational power accessible
to a majority of research groups. However, even ignoring this
aspect, we should recall that from an epistemological point of
view an all-atom treatment might not only be impractical or
impossible tout court, but explicitly undesirable: a “complete”
representation of some complex system will of course exhibit
all the emergent behavior it is capable of displaying; but if a
much simpler representation captures the same phenomenol-
ogy, this offers novel and often deep explanatory insight into
the underlying mechanisms and helps to distill causations that
otherwise remain opaque. Good models are necessarily highly
simplified versions of the systems, for the same reason that
useful maps are highly simplified versions of reality.8

These two principlesefficiency and simplicityhave
inspired the development of coarse-grained (CG) models,9−12

which demagnify the atomistic resolution of a molecule by
combining several atoms or entire chemical groups into
effective degrees of freedom (called interaction sites or coarse-
grained beads) that are subject to suitably chosen effective
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interaction potentials. It is worth recalling that classical
atomistic force fields are also coarse-grained. They have
removed the electronsand all the quantum mechanics that
goes with themand replaced them by effective interactions:
strong short-range repulsions arising from the Pauli principle,
long-range van der Waals attractions to account for correlated
charge fluctuations, and Coulomb interactions for the case
where a local unit is not entirely charge neutral. Doing this is
neither lossless nor unique, which explains why more than one
atomistic force field exists.
The spectrum of CG models developed during the past few

decades spans from particle-based models,10,13−19 where each
bead is taken to represent groups of atoms (from parts of a side
chain over single amino acids up to entire proteins), all the way
to continuum descriptions employed in the study of very large
or mesoscale systems such as viruses,20−23 membranes,24−29 or
even cells.30−32

A particular flavor of CG modeling, which is widely used, is
the so-called elastic network model (ENM).33−38 This group
encompasses a class of particle-based representations of
biomolecules in which the gamut of realistic interactions is
replaced by harmonic springs. ENMs have gained widespread
attention following the pioneering work of Tirion,33 who
demonstrated that an all-atom model of a protein, whose
detailed force field has been replaced by local springs, all of the
same strength, can reproduce the protein’s low-energy
vibrational spectrum with astounding faithfulness. Observe
that because a normal-mode analysis of a harmonic system can
be performed analytically, we do not even have to run a
simulation to get the answer. In subsequent developments,
ENMs of even lower resolution have been studied, keeping
only one or two atoms per residue.34−38 These CG models
have proven extremely useful in characterizing the collective
motions of proteins, which matters because these low energy
conformational fluctuations often relate directly to a protein’s
function.16,39−43

The construction of CG ENMs is carried out starting from a
reference conformation (typically the native structure, as
determined from crystallography), of which only the Cα atoms
are retained. Springs are then placed between those Cα atoms
falling within a predetermined cutoff distance. More detailed
models exist,38 which include also interaction centers
representative of the side chains; their position in space,
however, is uniquely determined by that of the Cα atoms, thus
maintaining the same number of degrees of freedom as the
former models. This strategy, in all its many variants,
constitutes a simple rule to define a versatile and computa-
tionally efficient model of the protein.
Nonetheless, the question remains if the specific choice of

the degrees of freedom retained in ENMsfor instance, the α-
carbonsis in any way optimal. In fact, one may reasonably
expect that a different selection of atoms as CG sites,
performed to maximize the consistency between the reference
system and the resulting CG model, could outperform a
strategy that entails no system specificity. Various authors have
already shown that the number as well as the distribution of
CG sites can be adjusted to optimize the balance between
efficiency and accuracy. Gohlke and Thorpe,15 for example,
suggested that particularly rigid subregions of a protein
represent a most natural notion of large-scale, variable-sized
coarse-grained groups. This concept was employed by Zhang
and coworkers44−46 and Potestio and coworkers16,18,47 to
develop optimization schemes aimed at identifying these quasi-

rigid domains in proteins, either by exploring various mappings
with fixed number of CG sites or searching for the best CG site
number and distribution. Sinitskiy and collaborators48 built on
the work by Zhang et al. to single out an optimal number of
CG sites to be employed in a simplified representation of the
system. More recently, the study by Foley and coworkers49

shed further light on this latter aspect by making use of the
notion of relative entropy50 to quantify the balance between
the simplification of a CG model and its information content.
Refining the mapping of CG sites should thus further

improve a model’s quality; of course, if the latter required us to
actually simulate the original system (for instance to learn
more about the mode spectrum), we would lose one of the key
redeeming virtues of the whole approachthe fact that we can
get a good proxy for the low energy fluctuations without ever
running an atomistically detailed simulation.
In the present work, we propose a simulation-free strategy

for improving the construction of an ENM, which amounts to
selecting the CG beads via an algorithmic optimization
procedure. This procedure in turn relies on an intermediate
step, in which the number of atoms in an existing ENM is
reduced by performing a partial trace over “undesired” degrees
of freedom in the system’s partition function. Performing such
a partial trace has been proposed before;51−53 its chief
attraction lies in the fact that harmonic partition functions
can be computed exactly. However, there is a snag, and in the
present context it is an important one: an ENM, while entirely
consisting of harmonic springs, is not harmonic in the
coordinates over which we wish to integrate (that is, the
Cartesian displacements from a reference conformation),
rather only in the distances (a distinction which sometimes
seems to be missed). Hence, it first needs to be harmonically
expanded in these coordinates, a model that for clarity we dub
here hENM. Unfortunately, though, a CG-hENM obtained by
performing a partial trace over some of its parent’s coordinates
no longer corresponds to a CG-ENM of which it would be the
harmonic expansion. This results in artifacts at the ENM level
despite the exact transformation at the hENM level.
The key idea of our paper is to show that this admittedly

annoying artifact, which to our knowledge has not been
previously realized, can be exploited to optimize the modeling:
in fact, we propose to choose the CG sites to minimize the
corresponding mapping error. We construct a quantity that
serves as a proxy for this error and employ it to construct
models which outperform, in terms of this and other
observables, models built on more conventional approaches.
We illustrate the properties of this new method by explicitly
applying it to two examples: (i) a small protein (adenylate
kinase) and (ii) an RNA molecule (adenine riboswitch).

2. THEORY
2.1. Overview of Elastic Network Models. Elastic

network models for proteins were first introduced by Tirion33

as a simplified approximation of an atomistic force field. The
assumption underlying this approach is that the small-
amplitude, low-energy, and collective vibrations of proteins
emerge from the concurrent action of a large number of
interactions, whose specific functional form and strength is
rendered unimportant by the central limit theorem. The
complex and accurate potential of a realistic modelincluding
bonds, angles, van der Waals forces, and electrostatic
interactionsis thus replaced by an effective potential of the
form
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Here, rij is the scalar distance between particles i and j,
calculated as the magnitude of the distance vector rij ≡ ri − rj.
The superscript 0 indicates the same quantity but evaluated in
the ground state (reference) structure, obtained for instance
from X-ray crystallography. Only two model parameters
remain: first, the elastic strength (spring constant) K, and
second, the cutoff distance Rc within which two atoms must be
located in the reference structure to interact. This cutoff enters
the definition of the contact matrix
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It is important to realize that the potential energy function
eq 1 is not quadratic in the actual coordinates ri, despite
consisting entirely of harmonic springs, because calculating the
distance rij = |rij| involves taking a square root. However, we
can expand eq 1 quadratically in the displacements Δri = ri −
ri
0 away from the reference structure, whichup to an

irrelevant constantleads to
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Here, the Hessian matrix Hkl is given by
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where the “elastic dyad” Dkl is defined by

KCD r r( )kl kl kl kl
0 0= ̂ ⊗ ̂ (7)

and rk̂l
0 = rkl

0/rkl
0 is the unit vector pointing from the site l to

the (different) site k (in the reference state), such that (rk̂l
0 ⊗

rk̂l
0) is the projector onto the line between them. Several

comments are in order:

1. Each element of the Hessian matrix is in fact a 3 × 3
submatrix due to the occurrence of the dyads. This is
necessary because the displacements Δrk and Δrl in eq 3
are themselves vectorial.

2. For any pair k ≠ l, the Hessian submatrix is simply the
negative of the elastic dyad, and as such it is a 3 × 3
matrix which has exactly one nonzero eigenvalue, which
corresponds to the (negative of the) spring constant K,
and whose eigenvector aligns with the bond between k
and l.

3. The second term in eq 5 ensures that the sum over the
elements in any row or any column of Hkl vanishes. This
removes the contribution of pure translations to the
energya physically pleasing outcome that has not been
imposed by hand but is a natural consequence of the fact

that the elastic energy 1 is a sum of terms that depend
only on the difference between pairs of coordinates.

4. Taken together, we recognize Hkl as a generalized
Kirchhoff matrix.

What makes the quadratic expansion 3 of the ENM 1 so
attractive is that it is exactly solvablein the sense that we can
exactly calculate its correlation matrix in the canonical state,

k Tr r H( )k l klB
1⟨Δ ⊗ Δ ⟩ = −

(8)

where kB is Boltzmann’s constant and T the temperature. To
clarify the notation: if we view the Hessian as a 3N × 3N
matrix, subdivided into 3 × 3 blocks for the (x, y, z)
components of the position variations of particle k and l, then
the right-hand side of eq 8 contains the inverse of the entire
3N × 3N matrix, which subsequently gets reparceled into sub-
blocks.
For historical reasons, the elastic network model described

in eq 1 is dubbed anisotropic ENM (or ANM for short),
because the energy cost associated with the displacement of an
atom depends on its direction: for a given i−j-bond, no energy
is required to move atom i in the direction perpendicular to rij,
only displacements parallel to it affect the energy. This
distinction is not present in the so-called Gaussian ENM (or
GNM),34,54,55 where the pairwise interaction is proportional to
the squared vectorial displacement (Δri − Δrj)2 and, therefore,
a given displacement will increase the energy by the same
amount irrespective of the direction in which it is performed.
In the following, we will focus on ANMs and hANMs only.
We conclude this section by introducing a further distinction

between classes of matrices Hkl that can be employed to build a
network of the general form 3, and those that can be expressed
according to eqs 4−7. The latter are a subclass of the former,
more general class that can be dubbed quadratic displacement
networks, or QDN. Quadratically expanding an ENM leads to
an hENM, a special case of a QDN. Also, all QDNs can be
coarse-grained exactly. However, if a QDN happens to belong
to the special subclass of hENMs, it generally loses that
property upon coarse-graining.

2.2. The Issue of Mapping in ENMs. Approaches to
coarse-graining fall into two major categories: bottom-
up12,50,56−62 and top-down13,33,34 methods. Those belonging
to the first class assume the existence of a higher-resolution
“reference” model from which they construct a simplified
representation via a set of systematic rules. In contrast, those
belonging to the second class postulate empirical models
suggested by generic physical principles, without insisting on a
microscopic underpinning. Their parameters, however, may get
further refined by higher level knowledge (e.g., known
structure or thermodynamic properties) that could for instance
be obtained from experiment.
Classical (h)ENMs18,33−38 are representatives of this second

class, in that the interactions among the CG sites are
parametrized based on a reference structure, but without
incorporating any more accurate knowledge of the real forces
acting between the atoms. One could of course do the latter,
for instance by combining the crystal structure with an
atomistic force field, evaluate the interactions, and thereby
systematically improve the spring constants,63,64 but this is
much less common. However, once we construct lower
resolution ENMs, we have the choice to either follow the
same top-down strategy as used for more finely resolved
ENMs, or to systematically derive lower resolution ENMs in a
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bottom-up fashion, using finely resolved ENMs as the
reference. The latter is the topic of the present paper.
To construct a low-resolution ENM, we need to do two

things: first, agree on a smaller set of new degrees of freedom;
and second, define effective interactions between them. The
usual way to formalize the first step is to establish a mapping10

between atoms of the high resolution description and the
smaller number of CG sites of the lower resolution model. This
mapping can be expressed as vector-valued functions MI({ri})
which specify the (typically Cartesian) coordinates RI of the
CG sites in terms of the set {ri} of high resolution coordinates:
RI = MI({ri}). These mappings are almost invariably linear,62

and the most common choices are (i) the definition of center-
of-mass coordinates of the set of atoms grouped together and
(ii) the reduction to one particular coordinate from that set. It
is generally understood that the choice of mapping affects the
quality of the resulting CG model, but systematic studies for
how to optimize this step have only been undertaken quite
recently16,18,48,49

When constructing CG-ENMs, the most common choice for
a mapping is to remove all atoms of a given residue except for
their α-carbon. This reduces the number of interaction sites to
that of amino acids and leads to a (quasi) uniform mass
distribution along the backbone. A less frequent strategy is to
keep the Cα as well as, from each nonglycine residue, a second
site representative of the side chain, thus approximately
doubling the number of interaction sites with respect to Cα-
only models.
Once the mapping has been established, interactions must

be defined, which are typically of the form 1, possibly with
bond-specific spring constants:

V K R RR( )
1
2

( )I
I J

IJ IJ IJENM
CG 0 2∑{ } = −

< (9)

where KIJ is the spring constant between sites I and J; if there is
no spring between two sites, we simply set KIJ = 0. Once again,
this model can be quadratically expanded in the ΔRI, just as we
did for the more finely resolved model 1, leading to

V R R H R( )
1
2I

K L
K KL LhENM

CG

,

CG∑{ } = Δ Δ†

(10)

where the Hessian HKL
CG is constructed analogously to eqs 4−7,

except for the additional obvious replacement KCkl → KKL.
This model can again be solved analytically by virtue of being
quadratic, leading to the full spectrum of CG eigenmodes of
the dynamics. We note that what we refer to with the term
dynamics is to be intended as the equilibrium fluctuations of
the system and not the time evolution of its conformation. We
employ the term dynamics with this meaning throughout the
manuscript.
At this point, an intriguing idea might suggest itself: the

systematic construction of CG models, in one way or the other,
tries to capture as much thermodynamic properties as possible
from its more finely resolved reference. The quality with which
this is doable is limited, trivially, by the fact that the CG model
has a lower resolution; and more practically, by the fact that we
usually cannot calculate the full thermodynamic information
on the finely resolved model. However, in this case our
underlying model consists of harmonic springs, and its
quadratic expansion is exactly solvable. Can we exploit this
property and analytically calculate the optimal CG model,
without the need to perform simulations to approximately

track thermodynamic information, as we would do in other
more complex cases? The systematic and semianalytic
reduction of degrees of freedom in ENMs has been
attempted,51,65,66 however, always retaining the structure of a
simplified (CG) model that is quadratic in the Cartesian
displacements, i.e. of the form 10. Here, we show that a break
exists in the continuity of the connections between different
models; more precisely, we can analytically link models 3 and
12, but not models 1 and 9. The reason is subtle, and the result
might at first sight be annoying; however, we argue that it
permits us to make significant headway on the first and
understudied coarse-graining question: how to pick good CG
sites.

2.3. Coarse-Graining an hENM. A powerful way to
conceptualize coarse-graining is to view it as a mapping of the
canonical state of a microscopic system into a smaller phase
space via the transformation theorem for probability
densities.60 Having established the connection RI = MI({ri}),
one writes the canonical partition function in the degrees of
freedom {ri} and encodes the mapping by including the
additional delta function δ(RI − MI({ri})), thereby arriving at
an equivalent canonical partition function which now depends
on the {RI}; its logarithm, multiplied by −kBT, equals the
potential of mean force in the coarse-grained coordinates.
In our case, the situation is even simpler, because the linear

mapping we have in mind picks a subset of degrees of freedom
from the fine-grained level, in which case one merely has to
perform a partial trace over all the degrees of freedom one
wishes to eliminate. Specifically, let us assume that we can
subdivide the total set of degrees of freedom into a subset A
that will be kept and a subset B that will be removed:

r r ri i A i B{ } = { } ∪ { } (11)

Starting out with a linearized ENM (thus an hENM) of the
form 3, we derive its coarse-grained version as follows:

re d eV
i B

Vr r r( ) ( , )i A i A i BhENM
CG

hENM
AT

= { }β β− { } − { } { }Ÿ (12)

where for simplicity we ignore the momenta and normalization
factors as they only contribute irrelevant constants to the new
potential. Because the linearized ENM is quadratic in the {ri},
the right-hand side of eq 12 is a multidimensional Gaussian
integral that can be performed exactly. As a consequence, we
have a simple closed-form expression for the left-hand side. If
we order our degrees of freedom so that the Hessian of the
microscopic system can be written in the following block form,

H
H G

G H

A

B

= †

i

k

jjjjjj
y

{

zzzzzz
(13)

the coarse-grained system will again be of Hessian formsee
eq 10and its Hessian is explicitly given by51,65,66

H H GH GA B
CG 1= − − †

(14)

Several things are worth noting here:

1. The calculation of the coarse-grained Hessian is
noniterative and computationally inexpensive: it requires
only the inversion of a matrix.

2. The CG interactions HCG in the A-subset are not
identical to the bare interactions HA: eliminated degrees
of freedom leave a trace (no pun intended) in the
effective Hamiltonian.
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3. The new potentials are effectively free energies of
interaction (or so-called multibody potentials of mean
force). Curiously, they do not depend on temperature,
even though the mapping eq 12 explicitly does. This
absence of a state-point-dependency is unusual and
generally not true for this type of coarse-graining. It
holds here because the microscopic Hamiltonian is
quadratic.

4. HCG might be temperature independent, but performing
the partial trace in eq 12 creates T-dependent prefactors,
which we ignored. This would matter if we cared about
absolute free energies and not just effective potentials.

5. The effective Hessian in eq 14 is generally not of the
form eqs 4−7 corresponding to a linearized ENM.

The last point is extremely important, so let us elaborate.
The most general form of a quadratic displacement network, or
QDN as it was previously christenedeq 3couples any two
vector displacements Δri and Δrj by a 3 × 3 submatrix Hij. The
values of the 9 sub-block elements are in principle not
restricted by particular requisites: in fact, while the symmetry
of the overall HCG matrix has to be enforced, as it grants the
preservation of the action−reaction principle, this constraint
does not necessarily hold for the single sub-blocks. This
generality allows for different responses to the different
displacements applied to pairs of residues in one order or
another: that is to say that

u H v v H uij ij≠† †
(15)

When the HCG matrix is obtained by integrating a subset of
degrees of freedom from a finer-grained Hamiltonian H (see
eq 14), the sub-block matrix HIJ

CG does not need to be
symmetric for I ≠ J. Indeed, the off-diagonal 3 × 3 “elements”
of this tensor emerge from the integration of several degrees of
freedom, and entail the effect of the removed particles.
Consequently, the 9 submatrix elements can have arbitrary and
independent values. In contrast, the Hessians which arise from
the linearization of an ENM have the particular form eqs 4−7,
in which the interaction between two (different) vector
displacements is given by a dyad of the form ΔRIJ ⊗ ΔRIJ.
But, dyads only have three degrees of freedom because they
can be fully specified by a vector ΔRIJ.
This simple counting argument teaches an important lesson:

the QDNs which arise from the harmonic expansion of ENMs
are of a very special form, a form we are generally not
guaranteed if we create QDNs in some other way. And indeed,
coarse-graining an hENM via eq 14 destroys that special form.
In a nutshell, the functional form of the interactions obtained
by exactly coarse-graining an hENMa general quadratic
formis different from that obtained when linearizing a CG
ENMa dyadic form.
This technical point has an important consequence: the

ultimate goal is to systematically construct a CG-ENM,
exploiting the fact that the microscopic ENM can be expanded
into a linearized hENM, for which one can perform an
analytically closed bottom-up coarse-graining procedure; but
the trouble is that the resulting coarse-grained QDN is no
longer the harmonic expansion of a CG-ENM. However, we
show how to make use of this discrepancy to identify the
optimal subset of particles that will be retained from the fully
atomistic ENM (that is, the set of {ri}A). The idea is to
minimize an appropriate measure quantifying the deviations
between the coarse-grained hENM resulting from combining

eqs 10 and 14 and a true hENM satisfying the additional
constraints eqs 4−7.

2.4. Reconstructing an Approximate CG-ENM from
the CG-hENM. Because the 3 × 3 sub-blocks in the coarse-
grained matrix HCG from eq 14 are not dyads, an exact back-
translation into an ENM is not possible. However, these blocks
might be close to dyads, in the sense that one of their
eigenvalues strongly dominates the other two. To quantify this,
let us consider the three eigenvalues of each (K, L) sub-block
of HKL

CG. The form of eq 14 makes it evident that the whole
matrix HCG is symmetric as long as H is, but this property does
not extend to its 3 × 3 sub-blocks, whose eigenvalues need not
be real. Hence, we consider a symmetrized version of the
matrix, defined as

S H H
1
2

( )KL KL LK
CG CG= +

(16)

which has real eigenvalues λKL
(i) by construction. We then

order these three eigenvalues of each SKL by magnitude,

KL KL KL
(1) (2) (3)λ λ λ≥ ≥ (17)

and define the ratio ρKL via

0 1KL
KL

KL

(2)

(1)
ρ

λ
λ

≤ ≔ ≤
(18)

The case ρKL = 0 corresponds to a real bond (the sub-block
is indeed a dyad), while ρKL = 1 deviates maximally from the
“desired” form. From this information on individual pair
interactions, we define an intuitive metric for judging how the
entire matrix fares. This is the average eigenvalue ratio, or AER
for short, defined as

N
AER

1

K L
KL

b
∑ ρ≔

< (19)

where Nb is the total number of bonds lying within the
interaction cutoff. This is to say, only those bonds are
considered that can be replaced by a potential of the form

K R R( )IJ IJ IJ
1
2

0 2− . Other interactions, which arise from the

Boltzmann integration but connect sites farther away than the
cutoff, will not be represented by the CG-ENM, and so they
are not included in the computation of the AER. By
construction, the AER lies in the range [0,1], with 0 being
the best case scenario, and 1 the worst case scenario. In the
following, the AER will be presented in percent to ease the
readability.
Together with this metric, we also need to specify a

prescription on how to define a CG-ENM from a CG-hENM
that is not the expansion of any ENM. Essentially, we need to
decide how to define an effective spring constant KIJ from a
Hessian HIJ

CG whose sub-blocks do not describe springs. We
choose to set

K HTr( )IJ IJ
CG= (20)

This definition implements the assumption that the
anisotropy of the system’s response to the displacement of a
bead can be (almost) completely ascribed to the functional
form of the interaction, while the amplitude of the force is well
approximated by the average over the three Cartesian
directions. This assumption is in part consistent with other
measures of a molecule’s flexibility (e.g., b-factors), and has
been employed in previous works.51,63
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2.5. Optimizing the Selection of Retained Atoms in
the CG-ENM. We employ the AER of a CG-ENM to guide us
to which atoms from the all-atom representation to retain upon
coarse-graining. Fixing a trial set of CG sites, we exactly
integrate out the other degrees of freedom (on the hENM
level). The resulting AER serves as a cost function to be
minimized when repeating this process over a large number of
trial CG sites.
To perform the stochastic search in the space of all possible

subsets of retained atoms, we use Monte Carlo (MC)
simulated annealing.67,68 Despite its efficiency, this process
poses a potential bottleneck, because it requires inverting a
3NB × 3NB matrixsee eq 14. However, if we choose to
employ MC moves that add and delete only a single site per
step, the process can be significantly sped up, because due to
the structure of HCG, this change affects only those matrix
elements directly connected with the removed or added sites.
This allows calculation of the new matrix from the old one by a
process that only needs to invert a significantly smaller matrix.
The molecules examined in this work were small enough for
this trick not to be critical, but it might be quite crucial for
bigger ones, and so we outline its essence in the Supporting
Information.
The following summarizes the workflow of the proposed

algorithm, presented schematically in Figure 1. Starting from
the fully atomistic structure, we equip it with ENM interactions
to construct the reference model, i.e. the AT-ENM. A second
order expansion of this model, as described in eqs 4−7,
provides us with the exactly solvable harmonic ENM, or
hENM, which still preserves the fully atomistic resolution but
allows a simulation-free calculation of the essential dynamics.
Once a subset of atoms has been selected as CG sites, the
others are exactly integrated out, thereby renormalizing the
interactions among the preserved sites. Up to this point, the
model produces the same dynamics of the AT-hENM and,
within the limits of the harmonic approximation, of the AT
ENM. This CG-hENM, however, cannot be identified with the
harmonic expansion of some CG-ENM, because it generally
has a nonzero AER, and so it differs from a model obtained
directly by removing the undesired atoms and building an
ENM potential among them, as alternatively done in the right
half of the workflow. Because for subsequent simulation we
desire a full CG-ENM rather than a harmonic expansion, we
employ the previously described criterion of AER minimization
to guide a stochastic search for the best CG sites.
The parameters of the simulated annealing procedure are the

same for both molecules.
Specifically, we performed 104 Monte Carlo steps: at each

step, one atom, currently being a CG site, is selected to be
neglected (i.e., integrated out), while another atom which is
not a CG site is promoted as such. The ith move is accepted or
rejected based on a Metropolis algorithm, with temperature
decaying with an exponential law:
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The outcome of this procedure is a model featuring the
ideallysmallest AER value. The problem at hand, however,
bears the risk of being characterized by a multitude of (quasi-
)degenerate minima, corresponding to different solutions with
very close AER values. To avoid the risk of picking a
suboptimal model stuck in such a minimum, and to get a

qualitative idea of the free energy landscape structure, we
performed a two-layer set of parallel simulated annealing runs.
The first level consisted of running 18 independent

simulated annealing processes in parallel and selecting as the
optimal model the one with the lowest AER value among
them. The second level is given by running 10 independent
procedures as the aforementioned one to have 10 minimized
AER values. Of these, only the model with the lowest AER is
taken under examination; however, the values of all 10 “local
best” values are considered to assess their dispersion and their
optimality. The latter, in particular, is defined in terms of the
separation between the lowest AER values and the random
model AER distribution, as quantified by the Z-score:

Z
AERopt μ

σ
=

−
(22)

Figure 1. Workflow of the method proposed here to construct a CG-
ENM whose internal dynamics is maximally consistent with that of
the reference AT-ENM. Given a selection of atoms to play the role of
CG sites, the input atomistic structure can be directly decimated to
build an ENM with simple interactions among the surviving atoms,
however, with no a priori guarantee that the emerging dynamics will
match the reference one (right half, red flow). Alternatively, the
harmonic expansion of the AT-ENM can be exactly integrated to
leave out explicitly only the chosen CG sites, while the other ones are
mapped onto the effective interactions (left half, green flow).
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where μ and σ are, respectively, the mean and standard
deviation of the random model AER distribution. This measure
is employed to determine if the model constructed through the
simulated annealing is indeed better, in terms of the AER
value, with respect to a random choice of CG sites, and how
disperse the values obtained from independent optimization
runs are. The results of this analysis are reported in Figure 4
and Table 1.
Once we obtained the model maximizing the consistency

between CG interactions and the corresponding exact effective
ones, we turned our attention to the dynamical properties of
the CG-ENM. In particular, we first compared the harmonic
expansion of the remapped CG-ENM to the CG-hENM from
which it is reconstructed. This comparison is done in terms of
the root weighted square inner product (RWSIP), a measure of
the overall consistency of different dynamical spaces. The
RWSIP extends the concept of scalar product from single pairs
of vectors to pairs of vector sets of equal dimension s and
number Q. Consider two sets of vectors, ul and vm, with
corresponding eigenvalues λl

u and λm
v ; in this context, they

constitute a basis to describe the deformation of a molecule
about a reference structure, and can be either obtained from an
ENM or through principal component analysis of a molecular
dynamics trajectory. Each ul and vm is a complete basis
independent from the other, and as such they span the same
vector space. On one extreme case, each vector of a basis could
have a corresponding partner in the other one, albeit ranked in
a different position; on the other extreme, no pair of vectors
each from one basiscould exist which point in the same
direction. Depending on the strength of the corresponding
eigenvalues, however, the essential spaces (i.e., the subsets of
vectors with highest eigenvalues) of the two bases might
overlap or not. The RWSIP quantifies this overlap by giving
larger weight to the more collective modes. The RWSIP
between subspaces composed of up to a number Q of vectors is
defined as
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and it lies by construction in the range [0,1]. In the case of two
sets of vectors representing the internal dynamics of a molecule
composed of N atoms, one has s = Q = 3N; correspondingly,
the scalars λi

u and λi
v are the eigenvalues of the correlation

matrix, that is, the inverse eigenvalues of the harmonic

Hamiltonian. The measure of the RWSIP between the
harmonic expansion of the CG-ENM and the exactly
integrated CG-hENM provides a measure of how the
properties of the latter are encoded into the former through
the reconstruction procedure introduced in eq 20.
Second, we consider the effectiveness of the various CG

models in terms of the groups of atoms that are ascribed to
specific CG sites, and of their internal dynamics. Specifically,
we partition the atomistic structure of each molecule by means
of a Voronoi tessellation, in which an atom is associated with
the closest CG site (or, in case it is a CG site, to itself). We
then perform a model dynamics exciting the eigenmodes of the
AT-hENM and compute how much of the dynamics, measured
as the mean square fluctuation about the reference structure,
can be ascribed to the motion of these groups of atoms relative
to each other, and how much to the motion internal to each
group.16,18 The intrablock dynamics fraction (IBDF) is thus
defined as follows.
Let each atom i ∈ {1, ..., Natoms} of the molecule be assigned

to one and only one Voronoi group I with I ∈ {1, ..., Ngroups},
such that
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Furthermore, consider the two sets ri i I
{ }∈ and ri i

0
I

{ }∈ of
coordinates belonging to atoms i I∈ , in their present and
reference configuration, respectively. We now define the mean
square fluctuation σI

2 of these atoms with respect to their
reference positions in the group as the residual of a Kabsch
alignment procedure69 carried out independently for each
frame of the model dynamics. This procedure minimizes the
mean-square deviation between the sets ri i I

{ }∈ and ri i
0

I
{ }∈

under all rotation-translation operations :
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Similarly, one can define the residual mean square
fluctuation for the whole molecule as
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With these local and global fluctuation measures in place, we
can now define the IBDF as
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Table 1. Summary of Data Pertaining to the Properties of the Various Models Discussed in the Texta

AKE CA AKE CB AKE OPT RNA P RNA C1′ RNA C2 RNA OPT

number of CG sites 214 194 214 70 71 71 70
AER (%) 43.549 47.737 34.564 57.895 53.692 55.075 37.646
Z-score 4.493 2.599 19.705 3.170 1.837 0.270 20.952
RWSIP CG ex-CG approx 0.991 0.996 0.928 0.906 0.891 0.897 0.658
fraction of intrablock dynamics (%) 3.00 3.05 2.30 88.52 88.28 88.24 87.02

aFor each CG model of both ake and add, we report the number of coarse-grained sites employed, the value of the average eigenvalue ratio (AER,
in percent), the Z-score of a given model with respect to the reference random distribution, the root weighted square inner product (RWSIP)
between the exactly integrated CG model and the approximated model, and the fraction of intrablock dynamics not captured by the model (in
percent).
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Let us reiterate that the difference between the numerator
and the denominator in eq 27 is that in the former the
contribution from the relative motion among the groups is
absent. Hence, if the fluctuations within each group are
negligible, the IBDF is small, even if different groups move
significantly with respect to each other. The IBDF thus
provides a measure of the viability of these groups as quasi-
rigid units in which the molecule can be decomposed. While
these quasi-rigid units are formally similar to the ones
customarily considered in the literature, they are different in
spirit: the latter are in fact groups of amino acids which provide
a very coarse representation of the molecule in few large,
function-oriented subunits; here, on the other hand, we
consider groups of atoms purveying a low-level coarse-graining
alternative to the conventional choice of one or two beads per
amino acid.
Finally, we analyze the structure of the molecules in terms of

various observables, namely: the structure of the interaction
network, the distribution of local density of particles in
proximity of an atom or CG site, and the size distribution of
the Voronoi blocks associated with each CG site. Taken
together, these properties offer a detailed, qualitative, and
quantitative picture of the various models and their differences.
The main steps of the algorithm described above are

illustrated schematically in Figure 2, which highlights the
stochastic character of the coarse-grained model generation
procedure and the selection based on an optimality criterion.
In the following, we describe and discuss the results of

applying our optimization procedure to the two molecules
depicted in Figure 3, namely adenylate kinase (ake)70 and the
adenine riboswitch (add).71 These two molecules are similar in
size (∼1500 atoms) and both undergo large-scale conforma-
tional rearrangements upon binding with their respective
substrates. Their biological function thus largely relies on their
internal, collective dynamics. Consequently, it is reasonable to
expect that functional units can be identified in their structure,
whose role and properties acquire meaning at an intermediate
level between the atomic and the whole-protein ones. The
process of coarse-graining should thus serve a twofold purpose:
on the one hand, it should highlight the existence of these
emergent structures; on the other hand, it would provide the
“language” to express them, i.e. the interaction potentials
among the coarse-grained constituents of the molecule. As it

will subsequently become evident, this expectation may or may
not be met, depending on specific intrinsic properties of the
system under examination.

3. RESULTS AND DISCUSSION
Adenylate kinase, represented in Figure 3 (left), is a globular
protein of 214 amino acids (1656 atoms), responsible for the
energy balance in the cell. Its relatively small size, biochemical
relevance,72 and flexible structure16 make it a perfect candidate
for the application of our approach. We investigated three
different kinds of CG models: two “standard” ones, namely the
one employing only the 214 Cα atoms, which are typically
chosen as effective interaction centers in simplified models of
polypeptides, and a model using only the 194 Cβ atoms; and
the optimized model having 214 CG sites, as many as the α-
carbons. The interaction cutoff for all these models is set to 1
nm, a typical value for protein ENMs.33,38,73

In Figure 4 (left) we report the distribution of AER values
for models of ake having 214 CG sites. In these models the
sites are selected at random; the resulting AER distribution is
bell-shaped, with average and standard deviation being,

Figure 2. Schematic of the main steps underlying the construction process of the coarse-grained model. Starting from a fully atomistic
representation of the molecule, an atomistic elastic network model is constructed; from this, a selection of coarse-grained models is obtained by
randomly choosing a set of coarse-grained degrees of freedom and exactly integrating out all the others. These models are assessed by a cost
function that is optimized in a simulated annealing procedure. The CG model with the lowest value of the cost function is retained and used for all
subsequent analyses.

Figure 3. Two molecules employed here to validate the proposed
approach. Left: cartoon representation of adenylate kinase (PDB
code: 4AKE). Right: ribbon representation of adenine riboswitch
(PDB code: 1Y26).
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respectively, 46.203% and 0.591%. The same figure also shows
the AERs for the 10 independent simulated annealing
minimizations. It is immediately evident that these values lie
very far away from the average distribution: their average Z-
score is 18.860, while for the best one, which has an AER of
34.564%, the Z-score is as large as 19.705. For comparison,
standard CG models having only Cα or Cβ atoms feature Z-
scores no larger than 4.5, as reported in Table 1.
We now turn our attention to the model with the lowest

AER and its dynamical properties. From Table 1 we see that
for the various models under examination, the remapped CG-
ENM shares a large dynamical consistency, as captured by the
RWSIP, with the exactly integrated CG-hENM. The Cα-only
model has a value as high as 0.991, while the Cβ-only model is
even slightly higher with 0.996. The RWSIP between the
reference CG-hENM and the harmonic expansion of the
optimized model is not as high; however, it is well above 0.9.
This result indicates that the criteria employed here to select
the CG sites and to remap the interactions into a “conven-
tional” CG-ENM guarantee a large overlap between the low-
energy dynamical spaces of the model and the reference.
The second dynamical measure we employ is the fraction of

dynamics that can be ascribed to the fluctuations internal to
the Voronoi groups. Comparing the values reported in Table 1,
the model with the lowest AER also emerges as the one with
the lowest IBDF value. In Figure 5 we show the comparison of
the IBDF of the various models with a reference distribution,
obtained from 1000 models of ake in which the 214 CG sites
have been randomly assigned. All three CG models under
examination feature an IBDF well below the average, with the
Cα-only and Cβ-only models very close to each other; the
optimized model, though, features an even lower value,
highlighting its statistically relevant extremality.
This suggests that the CG site selection and remapping

algorithm favors the construction of models in which the
effective sites are representative of more rigid, i.e. more
collectively fluctuating groups of atoms. This result is doubly
interesting: on the one hand because it was not sought after
nor encoded in the modeling strategy; on the other hand,
because it is at odds with the dynamical properties of the
models as measured by the RWSIP. The picture that emerges

thus hints at the (not entirely unsurprising) fact that which
model performs best depends on the metric one chooses to
quantify performance.
How nontrivial the choice of CG sites is that results from the

optimization procedure can be illustrated by looking at the
local density distribution, reported in Figure 6. The local
density is computed as the number of atoms within the
interaction cutoff divided by the total number of particles:
these are atoms in the all-atom model (yellow, filled
histogram) and CG sites for all three CG models under
examination (green, empty histogram); the former distribution
does not depend on the CG model and is the same in all three
plots. There appears to be no appreciable difference between
the density distribution for the Cα-only and Cβ-only models;
both are also fairly consistent with the background all-atom
distribution, highlighting the uniformity of the assignment of
these specific CG sites. This can also be seen from the
networks reported in Figure 7: in particular, the network of the
Cα-only model strictly follows the peptide backbone, drawing a
tube-like interaction pattern, while in the Cβ-only model the

Figure 4. AER values for randomly selected as well as optimized models. Left: ake. Right: add. The distribution, in purple, is obtained by
constructing 1.8 × 105 models with a fixed number of CG sites (214 for ake, 71 for add) randomly selected among all atoms. The green vertical
lines indicate the positions of the AER values for each of the 10 models obtained via simulated annealing optimization. Of these, only the best, i.e.,
the one with the lowest AER value, is further investigated.

Figure 5. Intrablock dynamics distribution for adenylate kinase,
obtained from 1000 models of ake with 214 randomly assigned CG
sites. The vertical lines indicate the values of the intrablock dynamics
fraction for the Cα-only model (full blue line), the Cβ-only model (full
orange line), and the optimized model (dashed green line).
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network looks even more compact and uniform. The
optimized model, on the other hand, favors a more
inhomogeneous distribution, i.e. the occurrence of both
“dense clusters” and “voids”. This impression is consistent
with the network shown in Figure 7, where fairly large “holes”
in the interaction pattern can be seen especially in the protein’s
head; however, a more quantitative picture would be helpful.

Such a picture is once again provided by the Voronoi-like
tessellation of the molecule, which allows for its decomposition
in terms of groups of atoms each represented by the nearest
CG site. We can then measure the distribution of the number
of atoms included in such groups. A regular, homogeneous
distribution of CG sites is associated with a fairly peaked atom
number distribution, indicating that each block contains
roughly the same number of particles; on the other hand, if
the CG sites are allocated in a less homogeneous manner, a
broader distribution will emerge.
In Figure 8, we report the distribution of atoms in the

Voronoi blocks for the three models of ake under examination.
The Cα-only and Cβ-only models indeed exhibit peaked
distributions, indicating that a CG site has typically 8
neighboring atoms, with deviations in the number of ±4
atoms. The optimized model, on the other hand, features a
much broader distribution covering the whole range from a
single neighboring atom up to 30, with a peak for 5 atoms.
This behavior substantially departs from the standard cases as
well as from a random assignment of CG sites: the latter, in
fact, gives rise to the “Maxwellian” distribution reported in
Figure 8, which is similar in shape to the optimized model
distribution, however with substantially different average and
width. The observed pattern is consistent with a nontrivial
disposition of CG sites in the optimized CG model, where
both rather “high-resolution” and “low-resolution” regions can
be found. The most striking feature of this model can thus be
identified in the nonuniform character of the CG site
distribution across the structure.
Our second case study is the adenine riboswitch add,

pictured in Figure 3 (right). This 71-bases-long RNA molecule,
similar in size to ake with 1499 heavy atoms, undergoes large-
scale conformational changes upon binding to adenine. The
internal dynamics of this class of molecules has been little
investigated by means of ENM-like models, with a few notable
exceptions;74−77 thus, it not only represents an interesting case
study for our method but also allows a direct comparison with
pioneering studies in the field of RNA ENM-based modeling.
As a reference, we consider models that employ the same atom
from each base, specifically the phosphorus atom P, the C1′
carbon atom, and the C2 carbon atom from the phosphate,
sugar, and base moieties of the nucleic acid, respectively. The
interaction cutoff is set to 2 nm: this value was found in
previous work76 to provide the best results for P-only RNA
hENM’s. Smaller optimal cutoff values were found for the
other two model types; however, we decided to employ the
largest among them for simplicity and to provide the most
uniform and consistent set of parameters across different
models. We point out that, in spite of a rather similar number
of atoms between the two molecules under examination, the
CG-sites-to-atoms ratio for add (1:20) is almost three times
smaller than that of ake. This is the case because the numbers
of amino acids and nucleic bases in the two molecules differ in
the same proportion. The aim of the present work is to
perform a comparison among different models of the same
system while preserving the same overall level of coarse-
graining within each case. This makes a direct comparison
between ake and add necessarily unfair in terms of CG-sites-to-
atoms ratio, however maintaining the rule of thumb one atom
per polymeric unit valid for both.
The same dynamical analysis performed for ake was carried

out for add, the results being reported in Table 1. In this case,
we notice a qualitative behavior consistent with the one

Figure 6. Local normalized density distribution of particles in the all-
atom model (yellow, filled boxes) and CG sites (green, empty boxes)
for adenylate kinase. The all-atom density distribution is the same in
all cases; the CG density distribution is given for the various models
as follows. Top: Cα-only atoms; center: Cβ-only atoms; bottom:
optimized model.
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previously described, however, with a few remarkable differ-
ences. First, the RWSIP between the harmonic expansion of
the remapped CG-ENM and its reference CG-hENM obtained
via exact Boltzmann integration is substantially lower for the
optimized model than for the standard one-atom choices for
CG sites (P, C1′, and C2 atoms): this is qualitatively the same
trend observed for ake, but the gap is wider. Furthermore, also
for the “standard”, better performing CG models, the best
being the P-only model, the RWSIP is 10% lower than the best
model of ake, and they all have very similar values of RWSIP.
The closeness of these values makes it difficult to rank the
same-atom coarse-grained representations in terms of their
representativeness of the reference, all-atom system. Previous
work by Pinamonti et al.76 investigated these three models
using a Hessian network model and found that the C1′-only
model performed best at reproducing the fluctuations of all-
atom reference simulations employing realistic force fields.
This was followed by the C2-only model and, finally, by the P-
only model. Similarly, Setny and Zacharias74 observed better
performing ENMs when the effective interaction center was
placed in the ribose ring rather than the phosphorus atom. If
we look at the data in Table 1, we find that the P-only model
has the highest RWSIP; however, the small (∼1%) differences

among the three conventional representations do not justify
their ranking.
It also deserves to be noted that the model ranking proposed

by Pinamonti et al.76 is based on differences among the
models’ RWSIP that do not exceed 0.05−0.06, thus consistent
with the ones observed in this work and compatible with a
substantial equivalence within deviations that can depend on
several factors (model parameters, numerical accuracy,
measure of dynamical consistency, etc.). A second observable
employed in ref 76 comparing the dynamical properties of the
ENM’s to those of reference, all-atom simulations with
accurate force fields clearly indicates the P-only CG model
as poorly performing; however, the other two models are again
quantitatively very close to each other.
Second, we note that the fraction of motion internal to the

Voronoi block is, for all models, much larger than what was
observed for ake, with all values in the range 87−88.5%. A high
fraction of intrablock fluctuation is suggestive of a poorly
collective dynamics: this behavior is markedly at odds with
adenylate kinase, which on the contrary is thoroughly
characterized by a highly modular, function-oriented dynam-
ics.16,40 Indeed, add also undergoes large-scale motions upon
binding;76,78−80 however, these are qualitatively different from
those of ake, in that they largely consist of sequence

Figure 7. Structure of adenylate kinase (leftmost column, in licorice representation) from three orthogonal perspectives, compared to the atom
selections discussed in the text. From left to right: all-atom representation, Cα atoms only, Cβ atoms only, and all those atoms included in the
optimal model by the simulated annealing approach. In all figures except the ones in the first column, the all-atom structure is provided as a faint
line representation in the background for the sake of comparison, while the network of ENM interactions among CG sites is shown in pink.
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rearrangements and base-pair breakage/formation. The large
flexibility necessary to perform this dramatic structural rewiring
is encoded, at least at a very basic level, into the contact
network, and hence into a model as simple as an ENM. The
large amount of molecular fluctuation within a compact group
of atoms makes this lack of collectivity and directed dynamics
manifest.
The typical intrablock dynamics fraction of add, i.e. the

amount of molecule dynamics that cannot be ascribed to the
relative motion among the blocks, is much larger than that for
ake, as it can be seen in Figure 9. The average of the IBDF
distribution, computed over 1000 random CG models, is in
fact ∼88.5%. The standard, same-atom CG models feature
values just at or slightly below the average, in any case well

within the distribution. The optimized model, conversely, lies
about three standard deviations below the average and just
outside of the left tail of the distribution. While, on the one
hand, the optimized model features a statistically significant
improvement of the IBDF with respect to both random and
standard CG models, this improvement is not, on the other
hand, as important as in the case of adenylate kinase.
In summary, the optimized model shows a RWSIP between

exactly integrated and remapped CG-hENM that is substan-
tially lower than the ones observed in the other cases; in
contrast, and consistently with the trends featured by ake, the
fraction of intrablock dynamics is lowest for the optimized
representation, but by a small amount with respect to the other
models. This is a nontrivial result, given the remarkable
structural difference existing among the models. If the CG
models employing the same type of atoms have rather similar
interaction network structures, as it can be seen in Figure 10,
the one of the optimized model deviates remarkably from this
evenness: the distribution of CG sites is highly irregular, as it
can be seen in the interaction network figure as well as in the
Voronoi block size distributions reported in Figure 11. The
intuitive structure of the RNA molecule is lost in favor of a
hollow web of interactions among the CG sites, each being
representative of a group of atomsthe closest ones that have
been integrated outwhose number ranges from a few up to
several tens. The distributions of local atom densities, shown in
Figure 12, are consistent with this trend and in line with the
one observed for ake; that is, a relatively small deviation of the
optimized model with respect to the other ones toward lower
values, compatible with the more inhomogeneous structure of
the CG site network.

4. CONCLUSIONS
Elastic network models represent a milestone in the computer-
aided study of biomolecules in that they enabled the fast,
inexpensive, and remarkably accurate characterization of the
equilibrium, function-oriented dynamics of these systems.
Relying a priori on solid statistical mechanical arguments and a
posteriori on thorough consistency checks and cross validations
against independent data (experiments, atomistic MD
simulations, etc.), ENM’s have been and still are at the heart
of a wealth of methods that require fast access to the large-scale
collective dynamics of proteins and other molecules.
In general, the effective interaction centers employed in an

ENM are a specific subset of a molecule’s atoms, e.g, the Cα

atoms of a protein. In this work, we proposed and tested an
algorithmic procedure to select these centers based on an
extremality criterion. Starting from the harmonic approxima-
tion to an atomistic ENM, we selected a subset of atoms to be
retained as CG sites, thus generating a new harmonic ENM
(hENM). The complementary subset of removed atoms is
integrated out and embedded in effective interactions, whose
functional form, albeit harmonic in the atoms’ displacements, is
not compatible with the straightforward harmonic expansion of
an ENM. This difference can be used to generate the CG ENM
whose harmonic expansion is the closest, according to a well-
defined measure (the AER), to the integrated-out hENM. The
optimal model is defined as the one minimizing the distance
between integrated hENM and ENM harmonic expansion over
all possible removed atom selections. This approach enables
one to remove a given fraction of atoms from a structure
without imposing a prescribed mapping, i.e. allowing each
atom of the molecule to become a CG site.

Figure 8. Distribution of the number of atoms included in the
Voronoi blocks for different models of adenylate kinase: Cα atoms
only (yellow empty line), Cβ atoms only (green empty line), random
CG site assignment (black empty line), and optimized model (full
magenta line). The curves are normalized so that the average number
of atoms, weighted by the distribution, equals the total number of
atoms in the molecule (1656). Note that the right y-axis applies to the
random reference curve only.

Figure 9. Intrablock dynamics distribution for the adenine riboswitch,
obtained from 1000 models of add with 70 randomly assigned CG
sites. The vertical lines indicate the values of the intrablock dynamics
fraction for the P-only model (full blue line), the C1′-only model (full
orange line), the C2-only model (full yellow line), and the optimized
model (dashed green line).
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The method was tested on two case studies, namely
adenylate kinase and the adenine riboswitch. In the case of
ake, the dynamical consistency between the reference,
integrated-out CG-hENM and the remapped coarse-grained
ENM, as quantified by the RWSIP, turned out to be quite high
with the traditional choices of mapping, namely selecting only

Cα or Cβ atoms as CG sites, and only slightly lower when
selecting the CG site subset based on an optimality criterion.
When looking at the atom partition induced by the selection of
CG sites, on the contrary, the optimized model proved more
suited to represent the structure in terms of quasi-rigid groups
of atoms, with small internal fluctuation and larger interdomain
dynamics. From the structural point of view, the optimal model
was characterized by a higher degree of nonuniformity with
respect to the conventional CG models, a property which can
be expected to underlie the improved fraction of intrablock
dynamics.
A qualitatively identical behavior could be seen in the case of

the adenine riboswitch with varying absolute numbers. The
one-atom-type models showed a rather good dynamical
consistency between the exactly integrated CG-hENM and
the remapped one, while the optimized model featured a lower
RWSIP; in both cases, the values were lower than the case of
ake, with a wider gap between conventional and optimized
model. As for the fraction of intradomain dynamics, the
optimized model performed better than the others also in this
case, in spite of generally larger amounts of the system’s
fluctuation within the blocks.
The construction of a simple, efficient, yet accurate coarse-

grained representation of a macromolecule is a difficult task,
whose intricacy does not only lie in the correct parametrization
of the interaction potentials. In fact, two crucial aspects have to
be taken into account, namely the identification of the most
appropriate interaction centers and the intrinsic viability of the
coarse-graining procedure. As for the first aspect, the
appropriateness of one choice of mapping over another largely
depends on what is desired of the model: these are the
characteristics it is expected to entail and the physical
properties it should reproduce. Indeed, a biased selection of

Figure 10. Structure of the adenine riboswitch in the various models. Top row from left: ribbon representation of the all-atom structure; optimized
model. Bottom row from left: P atoms only, C1′ atoms only, and C2 atoms only. In all figures except the first, the all-atom structure is provided as a
faint ghost representation in the background for the sake of comparison, while the network of ENM interactions among CG sites is shown in pink.

Figure 11. Distribution of the number of atoms included in the
Voronoi blocks for different models of adenine riboswitch: P atoms
only (yellow empty line), C1′ atoms only (green empty line), C2
atoms only (red empty line), random CG site assignment (black
empty line), and optimized model (full magenta line). Note that the
random reference distribution is nonzero for values up to 148 atoms.
The curves are normalized so that the average number of atoms,
weighted by the distribution, equals the total number of atoms in the
molecule (1499). Note that the right y-axis applies to the random
reference curve only.
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the CG sites can produce a model which is optimal with
respect to the quantity employed as a bias (the AER in this
case) but whose performance is better or worse than average
depending on the observable used to assess it. This behavior is
inherent in the process of optimization, in that the search for
the model that is optimal in terms of a given property
necessarily drives the solution away from the optimality in
terms of other orthogonal properties. This situation is
reminiscent of the coarse-grained modeling of liquids with
approaches such as iterative Boltzmann inversion,12,57,62 where
a model parametrized to reproduce exactly a single feature (the
radial distribution function) performs well on some properties
(compressibility) and poorly on others (pressure, three body
correlation functions).
The second aspect is related to the extent to which the

system under examination can be coarse-grained. In general, a
model featuring a sensible but quite arbitrary mapping and
interaction forces derived by the multibody potential of mean
force will satisfy all expectations one can have from a coarse-
grained representation because the MB-PMF reproduces the
desired Boltzmann distribution by construction. However, the
typical impossibility in calculating the PMF and, more
importantly, the need to project it onto an efficient and
computable basis set pose severe restrictions on the
effectiveness of this strategy.49 Consistently, the (counter)-
example of the adenine riboswitch showed that, in spite of the

optimization procedure providing results in line with the
trends observed in the case of adenylate kinase, the
performance of the model in absolute terms was not
comparably good. The coarse-graining algorithm “did its
best” to obtain a model with the lowest AER value, succeeding
indeed, however, the result was quantitatively poorer than that
for ake in terms of RWSIP and IBDF.
Even the simplest coarse-grained model, such as an ENM,

entails a great amount of information about the properties of a
system: this information is not only extracted through the
application of the model, i.e. its usage in a calculation or
simulation. Rather, useful insight can emerge from the study of
how given properties depend on the strategy employed to
construct the model. The approach discussed in this work, in
which an algorithmic procedure was presented to identify the
ideal CG sites in a macromolecule based on an optimality
criterion, represents a first step in this direction.
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