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Abstract: This study investigated the influence of rice straw ash (RSA), rice husk ash (RHA), and
silica fume (SF) on alkali activated slag (AAS) systems. RSA, RHA, and SF were treated with sodium
hydroxide to improve their reactivity in AAS systems. Although addition of SF in AAS systems
increased compressive strength, samples containing RSA or RHA had higher compressive strength
than those having SF. Treated RSA or RHA further increased compressive strength of AAS samples.
It was shown that samples containing treated ash samples had similar compressive strength to those
made with sodium silica activator. Therefore, it is suggested that treated ash samples could be used
as alternative sources of silica for AAS. Drying shrinkage of AAS samples increased considerably
when treated RSA or RHA were used as partial replacement of slag. This could be attributed to
higher silica modulus (SiO2/Na2O) ratio of samples containing treated ash, which in turn would
lead to a finer pore size structure compared to control samples. However, SF significantly reduced
drying shrinkage of AAS. This could be because SF reduces the permeability and porosity of AAS
samples.

Keywords: alkali activated slag; silica fume; rice husk ash; rice straw ash; sodium silicate

1. Introduction

Concrete is the most used substance in the world after water [1]. The production
of portland cement, which is an essential ingredient of concrete, is an energy intensive
process. This process is responsible for approximately 8% of the global carbon dioxide
(CO2) emission [2,3]. Most of this CO2 emission comes from calcination of limestone during
the portland cement production process [1,2].

Several possible methods, techniques, and materials have been suggested to mitigate
the environmental impact of concrete production [1,4]. Increasing the efficiency of cement
production process, improving the efficiency of cement in concrete, facilitating the partial
replacement of cement in concrete, increasing concrete durability, and using alternative
cementitious materials are among the plausible strategies to reduce the carbon footprint of
concrete [1,4]. Alkali activated binders, also called alternative cementitious materials, are
believed to be viable cementing materials for many concrete applications [2,5]. Granulated
Blast Furnace Slag (slag hereinafter) was first used in 1940 to develop alkali activated
binders [6]. Alkali activated binders are prepared by mixing an alkaline solution, such
as sodium hydroxide (NaOH), with a solid alumino-silicate material, such as slag. The
alkaline solution, which is referred to as the activator, is responsible for the cementing
reaction of alkali activated systems. It has been shown that alkali activated materials,
particularly alkali activated slag, could be produced with a comparable performance to that
of the conventional concrete [7]. Studies have also revealed that alkali activated materials
could be used as repair materials [8,9].

It is believed that alkali activated binders have lower environmental impact than that
of the portland cement [2,5,7,10]. However, the environmental impact of alkali activated
materials depends on several factors. The type and production process of alumino-silicate
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materials as well as type of activators are some of the influential factors on the environ-
mental impact of alkali activated binders [2,5,10].

The performance of alkali activated binders is influenced by several factors such as
Na2O content and SiO2/Na2O ratio (silicate modulus) of the activator solution [11–14].
For a given Na2O content, a higher silicate modulus increases compressive strength and
autogenous shrinkage of alkali activated systems. Similarly, for a given SiO2/Na2O ratio,
an increase in Na2O content improves compressive strength. An increase in Na2O results
an increase in sodium hydroxide concentration; and an increase in silicate modulus leads
to a higher silica content of the activator solution. Both of these factors, an increase in
SiO2/Na2O ratio or in Na2O content, lead to a higher negative environmental impact of
alkali activated binders, especially if sodium silicate is used as a silica source in activator
solutions. Researchers have studied the usage of environmentally friendly materials to
improve alkali activated binders’ properties.

Zhang et al. [15] showed that partial replacement of fly ash with waste glass powder
in alkali activated systems improves compressive strength. Similarly, sugar cane straw
ash (SCSA) has been shown to increase the compressive strength of alkali activated slag
when added as a partial replacement of slag [16]. Furthermore, another study dissolved
waste glass in activator solutions to improve alkali activated slag properties [17]. Mejia
et al. [18] used rice husk ash (RHA) as an alternative source of silica in activator solutions.
However, they found that for a given SiO2/Na2O ratio sodium silicate showed superiority
over RHA.

This study investigated the impact of Rice Straw Ash (RSA), Rice Husk Ash (RHA),
and silica fume (SF) on the compressive strength, heat of hydration, and drying shrinkage
of alkali activated slag systems. Both treated and untreated SF, RSA, and RHA were
used. The performance of systems containing these materials was compared with systems
prepared with sodium silicate solutions. The objective of this research was to determine
whether RSA, RHA, and SF could be used as effective sources of silica for alkali activated
systems.

2. Materials and Methods
2.1. Materials

The chemical compositions of grade 120 slag, RSA, RHA, and SF used in this study
are shown in Table 1. The chemical compositions of materials were obtained using X-ray
fluorescence. ASTM standard graded sand was used for preparing mortar cubes [19]. ASC
grade NaOH was used to make sodium hydroxide activator solution. Technical grade
sodium silicate (28% silica, 9% sodium oxide, 63% water) was used.

Table 1. Chemical composition of the materials used.

SF RHA RSA Slag

SiO2 % 98.5 93.8 87.0 31.9
Al2O3 % 0.2 0.1 0.4 11.6
Fe2O3 % 0.14 0.14 0.46 0.71
CaO % 0.0 0.0 1.2 38.3
MgO % 0.2 0.4 0.9 7.6
SO3 % 0.05 0.04 0.18 3.98
LOI % 2.3 4.0 4.6 3.8

Na2O % 0.10 0.15 0.60 0.16
K2O % 0.60 0.62 1.60 0.28
P2O5 % 0.10 0.33 0.78 0.00

2.2. Methods

Rice husks and rice straw were sourced locally. Rice hulls and rice straw pretreated
with water prior to burning in order to produce ash with high amorphous silica and low
loss on ignition [20,21]. Water pretreatment was done by soaking 1360 g of rice hulls or
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907 g of rice straw in a 19-litter (5-gallon) bucket for 24 h. The bucket was filled with tap
water. After 24 h, the biomass (rice hulls or rice straw) was rinsed out twice. The biomass
was then dried in an oven at 100 ◦C. The dried rice hulls and rice straw were initially
burned in a steel container. The resulted ash (with high loss of ignition) was then burned at
600 ◦C for one hour in a gas-fired pottery kiln to produce the final ash. This ash was then
grinded in a laboratory ball mill to produce powder RHA and RSA. To grind the ash, 80 g
of the ash was placed in a one-litter ball mill with twenty-five 1 cm grinding media; the ash
was ground for one hour. Figure 1 depicts the production process of RHA and RSA. The
chemical composition of RSA and RHA is given in Table 1.

Materials 2021, 14, x FOR PEER REVIEW 3 of 14 
 

 

Rice husks and rice straw were sourced locally. Rice hulls and rice straw pretreated 
with water prior to burning in order to produce ash with high amorphous silica and low 
loss on ignition [20,21]. Water pretreatment was done by soaking 1360 g of rice hulls or 
907 g of rice straw in a 19-litter (5-gallon) bucket for 24 h. The bucket was filled with tap 
water. After 24 h, the biomass (rice hulls or rice straw) was rinsed out twice. The biomass 
was then dried in an oven at 100 °C. The dried rice hulls and rice straw were initially 
burned in a steel container. The resulted ash (with high loss of ignition) was then burned 
at 600 °C for one hour in a gas-fired pottery kiln to produce the final ash. This ash was 
then grinded in a laboratory ball mill to produce powder RHA and RSA. To grind the ash, 
80 g of the ash was placed in a one-litter ball mill with twenty-five 1 cm grinding media; 
the ash was ground for one hour. Figure 1 depicts the production process of RHA and 
RSA. The chemical composition of RSA and RHA is given in Table 1.  

 
Figure 1. Rice husk ash (RHA) and rice straw ash (RSA) production process; (a) Water pretreatment; (b) initial burning; 
(c) ash after initial burning; (d) ash after final burning in the kiln. 

Sodium hydroxide activator solutions were prepared at three different molarities of 
2 M, 4 M, and 6 M. Mortar samples were prepared for determining compressive strength, 
flow, and drying shrinkage. A liquid/solid (activator/cementitious materials) ratio of 0.7 
(by mass) and a sand/cementitious material ratio of 2.75 were used for preparing mortar 
mixtures. A liquid/solid ratio of 0.6 were used for paste samples. This high activator (liq-
uid) content was used to ensure samples containing RHA and RSA addition were worka-
ble. Mortar cubes were prepared and tested in accordance with ASTM C305 and C109 [22], 
respectively. Flow of mortar samples was determined following ASTM C1437 procedure 
[23]. To prepare paste samples, the activator and solid material were mixed at 600 rpm for 
2 min followed by a one-minute rest, and then one minute of final mixing. An overhang 
mixer was used to mix paste samples.  

The drying shrinkage of mortar were measured according to ASTM C596 [24]; a de-
viation from the standard procedure was that samples were moist cured (instead of satu-
rated lime water) in a curing room for two days before being subjected to drying. Heat of 
hydration of paste samples were measured using a four-channel isothermal calorimeter 
(Calmetrix, Boston, MA, USA). Approximately 35 g of paste were used for each measure-
ment. Mortar and paste samples with and without silica fume, RHA, or RSA were pre-
pared. SF, RHA, and RSA were added at three different replacement levels of 5%, 10%, 
and 15% of slag mass.  

Both treated and untreated SF, RSA and RHA were used. Untreated RSA or RHA 
refers to RSA or RHA being added to the mix without any further process after grinding. 
To treat RSA, RHA, or SF, the material was immersed in the activator solution for 24 h 
before being mixed with slag. The amount of activator used to soak the ash was three 
times the mass of the material (RSA, RHA, or SF) needed for a mixture; this amount was 
deducted from the total amount of activator of the mix to keep the liquid/solid ratio the 
same for all mixtures. Samples treated by this method are named RSA-T, RHA-T, or SF-T. 

Figure 1. Rice husk ash (RHA) and rice straw ash (RSA) production process; (a) Water pretreatment; (b) initial burning;
(c) ash after initial burning; (d) ash after final burning in the kiln.

Sodium hydroxide activator solutions were prepared at three different molarities of
2 M, 4 M, and 6 M. Mortar samples were prepared for determining compressive strength,
flow, and drying shrinkage. A liquid/solid (activator/cementitious materials) ratio of 0.7
(by mass) and a sand/cementitious material ratio of 2.75 were used for preparing mortar
mixtures. A liquid/solid ratio of 0.6 were used for paste samples. This high activator
(liquid) content was used to ensure samples containing RHA and RSA addition were
workable. Mortar cubes were prepared and tested in accordance with ASTM C305 and
C109 [22], respectively. Flow of mortar samples was determined following ASTM C1437
procedure [23]. To prepare paste samples, the activator and solid material were mixed at
600 rpm for 2 min followed by a one-minute rest, and then one minute of final mixing. An
overhang mixer was used to mix paste samples.

The drying shrinkage of mortar were measured according to ASTM C596 [24]; a
deviation from the standard procedure was that samples were moist cured (instead of
saturated lime water) in a curing room for two days before being subjected to drying. Heat
of hydration of paste samples were measured using a four-channel isothermal calorimeter
(Calmetrix, Boston, MA, USA). Approximately 35 g of paste were used for each measure-
ment. Mortar and paste samples with and without silica fume, RHA, or RSA were prepared.
SF, RHA, and RSA were added at three different replacement levels of 5%, 10%, and 15% of
slag mass.

Both treated and untreated SF, RSA and RHA were used. Untreated RSA or RHA
refers to RSA or RHA being added to the mix without any further process after grinding.
To treat RSA, RHA, or SF, the material was immersed in the activator solution for 24 h
before being mixed with slag. The amount of activator used to soak the ash was three
times the mass of the material (RSA, RHA, or SF) needed for a mixture; this amount was
deducted from the total amount of activator of the mix to keep the liquid/solid ratio the
same for all mixtures. Samples treated by this method are named RSA-T, RHA-T, or SF-T.
Figure 2 shows the treatment process. Sodium silicate (Na-Si) was used to prepare activator
solutions with SiO2/Na2O ratios of 0.29 and 0.58 for comparison with solutions made with
treated ash or silica fume.
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Figure 2. Ash treatment process (this process was used for SF-T, RSA-T, and RHA-T); (a) ash being soaked in NaOH; (b) ash
after 24 h soaking; (c) dispersed treated ash in the activator solution.

Table 2 shows modulus ratios sodium oxide contents of activator solutions prepared
by using 4 M sodium hydroxide. It should be noted that SiO2/Na2O ratios and Na2O
contents shown is based on assumption that 100% of silica content of treated materials
would dissolve in sodium hydroxide activator.

Table 2. Modulus ratios (SiO2/Na2O) and sodium oxide content of activator solutions.

Solution Type (SiO2/Na2O) Na2O %

NaOH (4 M) 0.00 8.68
NaOH + 5%RSA-T 0.28 8.68

NaOH + 10%RSA-T 0.56 8.68
NaOH + 5%RHA-T 0.30 8.68
NaOH + 10%RHA-T 0.60 8.68

NaOH + 5%SF-T 0.32 8.68
NaOH + 10%SF-T 0.63 8.68

12.5% Na-Si 0.29 8.38
20% Na-Si 0.58 8.52

3. Results and Discussion
3.1. Impact of RSA, RHA, and SF on Hydration Kinetics

It has been shown that the main hydration product of alkali activated slag is calcium
silicate hydrate which incorporates a significant amount of aluminum (C(-A)-S-H) [6,25,26].
The heat of hydration of paste samples were measured to investigate the impact of RSA,
RHA, and SF on hydration kinetics of alkali activated slag. The heat of hydration graphs
for samples containing SF, RSA, and RHA are shown in Figures 3–5, respectively. Control
samples (100% Slag) showed a similar hydration graph commonly seen for portland
cement such that induction, acceleration, and deceleration periods are all visible and
distinguishable. However, samples containing either SF, SF-T, RSA, or RSA-T did not
show any induction period. This could be attributed to the ability of SF and RSA to
provide nucleation sites for C(-A)-S-H formation; also, dissolution of silicon ions from SF
and RSA into the pore solution could also speed up formation and growth of hydration
products. These factors could eliminate the induction period. Therefore, adding SF or RSA,
particularly when they are treated, in alkali activated slag systems could accelerate the set
time and early strength gain.
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Figure 3. Hydration heat of samples containing silica fume. (A) heat flow, and (B) total hydration heat.
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Figure 4. Hydration heat of samples containing rice straw ash. (A) heat flow, and (B) total hydration heat.
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Figure 5. Hydration heat of samples containing rice hulls ash. (A) heat flow, and (B) total hydration heat.

All samples containing either SF, RSA, or RHA showed higher heat of hydration
compared to the control sample. When comparing samples that contained SF, it can be
seen from Figure 3B that sample with 5%SF had the highest heat of hydration. The sample
containing 5% treated RSA (Slag + 5%RSA-T) had the highest heat of hydration among
samples that contained RSA (Figure 4B). However, comparing samples containing RHA,
Figure 5B shows that Slag + 10%RHA-T had the highest amount of hydration heat. Samples
containing SF showed almost no induction period (Figure 3A). A similar trend was seen in
samples containing RSA (Figure 4A). It seems like the heat of hydration of AAS samples
containing treated samples does not correlate to the compressive strength for the highest
compressive strength was achieved in samples that contained 10% of SF-T, or RSA-T, or
RHA-T. This could be because treated samples were immersed in the activator solutions
for 24 h; during this stage, some heat could have been released by the materials. Therefore,
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the amount of hydration heat of samples containing treated samples would be lower than
those containing untreated ones.

3.2. Impact of RSA, RHA, and SF on Mortar Flow

The influence of RSA, RHA, and SF on mortar workability was investigated with the
4M activator solution. The addition of RSA, RHA, and SF as partial replacement of slag
had variable effects on alkali activated slag mortar flow. The samples containing RSA or
RHA decreased the flow, as shown in Table 3. However, the samples containing 5%SF or
5%RHA-T had a higher flow compared to the control (slag) sample. The lowest flow was
recorded for samples containing 10%RHA-T while sample containing 5%SF had the highest
flow. It has been shown that SF when used up to 15% in ultra-high performance concrete
increases workability [27,28]. This has been attributed to lubrication effect of silica fume.
Higher flowability of samples containing 5% SF or 5%RHA-T could be the lubrication effect
of SF and RHA-T. However, the decrease in flow of samples containing RSA, RHA, RSA-T,
or SF-T could be attributed to a couple of factors: (1) the absorption of activator solution by
these materials due to their high surface areas [20,27]; (2) the faster formation and growth
of hydration products in these samples.

Table 3. Flow of alkali activated slag mortars prepared with 4M NaOH.

Sample ID Flow (%) Sample ID Flow (%) Sample ID Flow (%)

Slag 144 Slag 144 Slag 144
Slag + 5%RSA 136 Slag + 5%RHA 134 Slag + 5%SF 152

Slag + 10%RSA 132 Slag + 10%RHA 132 Slag + 10%SF 144
Slag + 5%RSA-T 110 Slag + 5%RHA-T 150 Slag + 5%SF-T 128

Slag + 10%RSA-T 90 Slag + 10%RHA-T 57 Slag + 10%SF-T 131

3.3. Impact of RSA, RHA, and SF on Compressive Strength

The impact of activator concentration on compressive strength of alkali activated slag
mortar samples was measured in order to obtain the optimum activator concentration
(molarity). Activator solutions at three different concentrations (2 M, 4 M, and 6 M) were
used. As shown in Figure 6, the compressive strength of control sample increased with
an increase in the activator concentration. However, samples containing RSA or RSA-T
performed best at 4M concentration. A decrease in the activator concentration increases
the modulus ratio (SiO2/Na2O) and a decrease in Na2O % of the solution. Therefore, 4 M
NaOH activator gives the optimum modulus ratio and sodium oxide content for samples
containing RSA (treated or untreated).

The performance of samples containing RSA and RSA-T were compared to those
containing sodium silicate (Na-Si). Sodium Silicate was added at 12.5% and 20% replace-
ment of 4 M NaOH solution to prepare activator solutions with SiO2/Na2O ratios of 0.29
and 0.58, respectively. The samples containing sodium silicate (Slag + 12.5% Na-Si and
Slag + 20%Na-Si) had higher compressive strength that those containing RSA, as shown in
Figure 7. However, sample containing 5%RSA-T showed a higher compressive strength
than the sample prepared with 12.5%Na-Si. Compressive strength of Slag + 20%Na-Si was
higher than Slag + 10%RSA-T. However, the compressive strength of samples containing
15%RSA-T was slightly higher than the one made with 20%Na-Si. Figure 7 also shows
that sample containing 15%RSA had similar compressive strength to the one made with
12.5%Na-Si.

The compressive strength of samples containing RHA or SF is shown in Figures 8 and 9,
respectively. As it can be seen in Figure 8, the compressive strength increased with an
increase in RHA content. The compressive strength of samples containing treated RHA
(RHA-T) was 50% higher than of those containing RHA (untreated). Furthermore, the
samples containing 10%RHA had similar strength to the one made with 20%Na-Si. A com-
parison of results in Figure 7 with those presented in Figure 8 shows that the compressive
strength of samples containing RHA or RHA-T is slightly higher than those containing
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RSA or RSA-T. This can be attributed to the higher silica content of RHA compared to RSA
(see Table 1). Nevertheless, treated RSA or RHA (RSA-T or RHA-T) significantly increased
the compressive strength compared to untreated ash samples.
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For a given replacement level of slag, samples containing SF showed a similar com-
pressive strength to those having RSA or RHA. However, samples containing SF-T had
a much lower strength compared to those made with RSA-T or with RHA-T. Neverthe-
less, treating SF increased the reactivity of SF as samples containing SF-T had a higher
compressive strength that those containing SF, as indicated in Figure 9.

It has been shown that the main hydration product of alkali activated slag is calcium
silicate hydrate which incorporates a significant amount of aluminum (C(-A)-S-H) [6,25,26].
In slag systems activated with NaOH, C(-A)-S-H forms around slag grains [26,29]. This
is proposed to suppress the dissolution of slag which slows the formation of hydration
products down. In contrast, in slag systems activated with sodium silicate hydration
products do not form on slag grains surfaces [26,29]. This promotes slag dissolution and
hydration products formation, which leads to a higher compressive strength [13].
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The addition of RSA, RHA, or SF in alkali activated slag could have a couple of effects
on the hydration process. These materials could supplement the amount of reactive silica
in the system which would lead to a higher amount of silicon ions in the pore solution;
this also increases the silica modulus of the solution. On the other hand, RSA, RHA, and
SF could provide nucleation sites for C(-A)-S-H and other hydration products formation
which will in turn enhance the dissolution of slag. Both mechanisms promote hydration
process and increase compressive strength. The higher compressive strength of samples
containing RSA, RHA, or SF, as shown in Figures 7–9, compared to control samples (slag
only) could be due to the two aforementioned mechanisms. Similarly, it can be suggested
that treating RSA, RHA, or SF with NaOH would dissolve silicon ions. Therefore, samples
containing RSA-T, RHA-T, or SF-T have higher initial silicon content than those containing
untreated materials; this would lead to higher initial silica moduli. Besides, RSA-T, RHA-
T, or SF-T would provide more nucleation sites for hydration products. Consequently,
samples containing RSA-T, RHA-T, or SF-T have higher compressive strengths than those
containing untreated materials.

It has been suggested that silica content of RHA dissolves in high pH solutions [18]. If
it is assumed that all the silica of RSA or RHA dissolve as a result of treatment, samples
containing 5% of RSA-T (5% RHA-T) and samples containing 10% of RSA-T (10%RHA-T)
would have a silica modulus of 0.29 and 0.58, respectively. The samples containing SF-T
would have slightly higher silica moduli. Samples prepared with 12.5%Na-Si and 20%Na-Si
had a silica modulus of 0.29 and 0.58, respectively. As presented in Figures 7 and 8, samples
containing 5% RSA-T or 5%RHA-T outperformed the sample containing 12.5%Na-Si; this
suggests that RSA-T or RHA-T could be used as sodium silicate in alkali activated systems.
As it was mentioned earlier, for a given age and replacement level, samples containing
SF-T had lower compressive strength than those containing RSA-T or RHA-T. This could
be because RSA and RHA have higher internal surface areas than silica fume [20]. This
could reduce the amount of silicon ions dissolved from the silica fume. Lower surface area
would also mean that there are fewer number of nucleation sites in the system. Both factors
could contribute to the compressive strength reduction.

3.4. Impact of RSA, RHA, and SF on Drying Shrinkage

The drying shrinkage of AAS mortar samples is shown in Figure 10. Addition of
RSA in mixtures reduced the drying shrinkage; however, samples containing RSA-T had
a higher drying shrinkage compared to the control samples. Adding RHA or RHA-T
to AAS mixtures increased the drying shrinkage. However, the addition of either SF or
SF-T substantially reduced the drying shrinkage. Among all samples prepared, those that
contained 10% treated ash samples (10%RSA-T or 10%RHA-T) showed the highest drying
shrinkage (about 60% more than the control sample). The lowest drying shrinkage was
obtained for sample containing 5% SF (75% reduction in drying shrinkage).

It has been shown that alkali activated slag has a much higher drying shrinkage
than portland cement [7,30,31]. This has been attributed to the finer pore structure and
lower stiffness of AAS compared to that of portland cement systems [30,32]. Li et al. [33]
suggested that a high pore pressure resulted due the fine pore structure of AAS leads to
higher shrinkage of AAS samples. It has also been shown that an increase in the silica
modulus will increase the pore structure fineness that leads to a higher drying shrinkage of
AAS [31,34]. The increase in drying shrinkage of samples containing RHA and treated ash
samples could be attributed to the higher silica modulus in these samples as ash samples
contain a high amorphous silica content. It could be also possible that addition of ash
samples further reduces the stiffness of the AAS pore structure due to the higher silica
modulus. Although silica fume also contains a very high amount of amorphous silica, it
did not increase drying shrinkage when added in AAS samples. This could be attributed to
the fact that SF reduces permeability and porosity of AAS samples when added as partial
replacement of slag [35]. Since silica fume has a lower surface area compared to the ash
samples [20], dissolution of the SF would be lower than RSA or RHA in AAS systems. This
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in turn would lead to a lower silica modulus in AAS samples containing SF compared to
those containing RSA or RHA; and a lower silica modulus would lead to a lower drying
shrinkage of AAS samples.
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4. Conclusions

This research study investigated the impacts of Rice husk ash (RHA), rice straw ash
(RSA), and silica fume (SF) on alkali activated slag (AAS) properties. A new method of
application of these materials, in which RSA, RHA, and SF were treated with NaOH, was
used in this study. The heat of hydration results indicated that AAS samples containing
RSA, RHA, or SF generated more heat of hydration compared to the control sample.
Furthermore, the induction period of AAS hydration was significantly shorted when
RSA, RHA, or SF were added to the system; the impacts of treated materials were even
more noticeable. Therefore, adding SF or RSA, particularly when they are treated, in
AAS systems could accelerate the set time and early strength gain of the systems. It was
found that addition of RSA, RHA, or SF in AAS mortar samples would decrease mortar
workability.

It was shown that adding RHA and RSA as partial replacement of slag improves
the compressive strength of AAS. Samples containing SF showed a lower compressive
strength compared to those containing RHA or RSA. It was found that treating RSA and
RHA significantly improved their performance in AAS systems. Results indicated that
AAS samples containing treated RSA or RHA had a comparable compressive strength to
those containing sodium silicate. It was also found that SF considerably reduced the drying
shrinkage of AAS samples. However, treated RSA and RHA significantly increased the
drying shrinkage of the AAS mortar samples.
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