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Vitamin D was discovered 100 years ago and since then multiple studies have

consistently proved its effect on bone health and mineral metabolism. Further research

has also explored its so-called “non-classical” biological effects, encompassing immune

regulation and control of cell proliferation and differentiation. Vitamin D downregulates

pro-inflammatory immune cells and subsequently their cytokine production, while

enhancing the anti-inflammatory subsets, thus mediating inflammation and fostering a

more tolerogenic environment. Its biological action is exerted through the vitamin D

receptor, a nuclear receptor that mediates gene transcription and is expressed in most

cells from the innate and adaptive immunity. Owing to its immune-modulatory properties,

its role in cancer pathophysiology, hematology disorders and stem cell transplantation

has also been investigated. Vitamin D deficiency causes immune imbalance and cytokine

dysregulation, contributing to some autoimmune diseases. In the hematopoietic stem

cell transplant setting this could lead to complications such as acute and chronic

graft-versus-host disease, ultimately impacting transplant outcomes. Other factors have

also been linked to this, including specific polymorphisms of the vitamin D receptor in both

stem cell donors and recipients. Nevertheless, studies thus far have shown conflicting

results and the use of vitamin D or its receptor as biomarkers has not been validated

yet, therefore there are no evidence-based consensus guidelines to guide clinicians

in their day-to-day practice. To gain more insight in this topic, we have reviewed the

existent literature and gathered the current evidence. This is an overview of the role

of serum vitamin D and its receptor as biomarkers for clinical outcomes in patients

undergoing hematopoietic stem cell transplantation. Further prospective studies with

larger cohorts are warranted to validate the viability of using serum vitamin D, and its

receptor, as biomarkers in potential stem cell donors and patients, to identify those at

risk of post-transplant complications and enable early therapeutic interventions.

Keywords: supportive care, Vitamin D, hematopoietic stem cell transplantation, 25(OH)D3, post-transplant

complications, graft-versus-host disease

INTRODUCTION

Vitamin D has received considerable attention in recent years due to its non-skeletal functions
(1, 2), particularly immune regulation (3). Vitamin D receptor-mediated signaling promotes innate
immunity and modulates adaptive immune responses (4–8). This has reinvigorated the interest in
vitamin D in the field of hematopoietic stem cell transplant (HSCT) (9–14), where recipients are
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at high risk of vitamin D deficiency (15–20). Since this can lead
to complications post-HSCT, including graft-versus-host disease
(GvHD), identifying patients at risk of vitamin D deficiency is
crucial to enable prompt therapeutic interventions and reduce
transplant-related morbidity and mortality (9, 19).

At the beginning of the twentieth century, rickets had become
a major public health issue due to its high incidence in the UK
population. At the University of Sheffield, Professor Sir Edward
Mellanby performed extensive research on dogs with rickets
that led to the discovery of vitamin D in 1919. It was called
the “antirachitic accessory factor,” “antirachitic vitamin,” or “fat-
soluble vitamin” (as it was contained in butter and animal fat)
(21, 22). In cooperation with his wife, MayMellanby, they studied
puppies and found that the cod-liver oil had a fundamental role
in bone calcification (23).

Professor Mellanby extrapolated his research to humans,
where lower-social-class children with a diet rich in milk
(included those who were breastfed), eggs, or fish had a lower
incidence of rickets, better jaws and teeth compared to those from
the high class, whose diets were lacking in these aliments (21).

Vitamin D Metabolism
Vitamin D is a fat-soluble secosteroid (steroid with a “broken”
ring) (8, 24) mainly synthesized in the skin (70–80%) (25). The
remaining 20–30% is consumed with diet: Mushrooms, egg yolk,
and oily fish (mackerel, sardines, herrings and salmon) contain
high concentrations of vitamin D (8). For decades, cod liver oil
has been regularly used for both the prevention and treatment
of infectious diseases, such as tuberculosis (26, 27). When taken
with the diet, both vitamin D2 and vitamin D3 are absorbed in
the small bowels similarly to lipids and then transported to the
liver through the lymphatic vessels (28).

When the solar ultraviolet light B radiation (spectrum 280–
320 UVB) hits the epidermis, the 7-dehydrocholesterol (also
called pro-vitamin D) is transformed into pre-vitamin D3 (29).
Immediately after, a thermal reaction produces the isomerization
of this into vitamin D3, or cholecalciferol, the inactive form of
vitamin D. The higher the UVB intensity, the higher the quantity
of vitamin D3 is synthesized. This process takes up to 3 days after
the skin has been exposed to sunlight. Consecutively, the vitamin
D3-binding protein (DBP; an alpha-1 globulin plasma carrier)
bounds to vitamin D3 and releases it into the bloodstream (30).

The first hydroxylation is held in the liver, and the main
enzyme is 25-hydroxylase (CYP2R1) (6). The quantity of
25(OH)D3 or calcidiol hydroxylated is proportionate to the
total amount of vitamin D both synthesized and ingested
with the diet, thus making this the most reliable marker
of vitamin D serostatus (31). This is still inactive but has
a longer lifespan (between 2 and 3 weeks) than its active
counterpart (32). The second hydroxylation takes place primarily
in the kidney by 1α-hydroxylase (CYP27B1) (6). Calcitriol or
1,25(OH)2D3 is the biologically active hormone (24). CYP27B1
is also found in other organs, including skin, lymph nodes,
colon, central nervous system, adrenal glands, pancreas, placenta,
sweat glands and the immune cells (6, 7, 33, 34). Finally, 24-
hydroxylase (CYP24A1) catabolizes 1,25(OH)2D3 into calcitroic
acid, functionally inactive. This is excreted through the bile and

subsequently the faeces, as well as the urine, avoiding toxic levels
(35). This reaction occurs in cells that possess the vitamin D
receptor (VDR) (1, 6, 24). Interestingly, CYP24A1 is upregulated
in tumor cells to abrogate the vitamin D–related anti-tumor
effects (36).

Vitamin D Receptor (VDR)
Vitamin D acts as a ligand-inducible transcription factor binding
to the VDR, a member of the nuclear hormone receptors
superfamily. It is located inmost of the cells in humans, including
those within the immune system (7).

VitaminD, as a lipophilicmolecule, passes through the cellular
membrane and binds the VDR in the nucleus. The vitamin
D–VDR complex forms a heterodimer with the Retinoid X
Receptor (RXR), which is subsequently bound to the Vitamin-
D-Responsive Elements (specific sequences of DNA in the
promoter region of the vitamin D responsive genes), controlling
the transcription of these genes (32, 37). On the one hand,
some genes can be upregulated by 1,25(OH)2D3 itself, including
those encoding CYP24A1, leading to an increase catabolism
of 1,25(OH)2D3, or CAMP, that enhances the production of
cathelicidin, an antibacterial peptide. On the other hand, it
downregulates genes, such as those of IL-2 and IFN-γ (interferon
gamma) in T cells (7). Interestingly, VDR in osteoblast mediates
between the nervous system and the bone marrow niche,
promoting stem cells mobilization after G-CSF (granulocyte
colony stimulating factor) administration (38).

Vitamin D Function
The biological functions of vitamin D are divided into classical
(32, 39, 40) and non-classical (1, 6, 24), as displayed in Figure 1.

FIGURE 1 | Classical and non-classical functions of vitamin D.
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EFFECT OF VITAMIN D IN THE IMMUNE
SYSTEM

VDR is found in cells from innate (3, 41–46) and adaptive
(3, 42, 47–50) immunity. Vitamin D exerts its immune-
regulatory function, inhibiting the pro-inflammatory cells with
a subsequently downregulation of their hallmark cytokines
while enhancing the anti-inflammatory subsets, maintaining
the immune tolerance (4–8). As an example, pro-inflammatory
cytokines, such as TNF-α (tumor necrosis factor alpha), IL-1 and
IL-6 decrease during summer months, when vitamin D reaches
its peak level in blood (4, 6, 8).

Immune cells can transform 25(OH)D3 into its active form
because they express the enzyme CYP27B1 (8, 42, 51, 52). In
addition, they control the local metabolism of vitamin D self-
consuming themanufactured vitamin or secreting to the adjacent
cells (8, 33). However, for optimal modulation of immune
responses, this system relies on the availability of systemic
25(OH)D3, as 1,25(OH)2D3 has a very short half life (8).

Innate Immunity
Vitamin D targets antigen-presenting cells as follows:

In neutrophils, vitamin D contributes to tissue preservation
hampering IL-1b, a pro-inflammatory cytokine synthesized by
neutrophils (53). In addition, an in vivo study showed that
1,25(OH)2D3 acts as a differentiation agent in leukemic retinoic
acid-resistant promyelocytes into mature granulocytes (54).

Moreover, a link between 1,25(OH)2D3 and early neutrophil
recovery post-HSCT suggest the potential role of this vitamin in
immune reconstitution (10).

The production of 1,25(OH)2D3 increases throughout the
maturation of dendritic cells (DCs) due to a higher expression of
CYP27B1 (8). However, 1,25(OH)2D3 keeps DCs in an immature
state to preserve immune tolerance (43, 55, 56). From the DCs
perspective, 1,25(OH)2D3 hampers interaction and priming of T
cells inhibiting expression of receptors CD40, CD80, and CD86
in the DCs’ surface (55, 56), diminishing the secretion of IL-
12 and concurrently of IFN-γ (19, 33, 55–57), and suppressing
DCs’ migration to lymph nodes due to reduction of CCL21
and its receptor CCR7, blunting antigen presentation to T-cells
(43, 44). It mainly impacts on the myeloid DCs, which interact
and activate naïve T cells (57).

Vitamin D fosters macrophage maturation and enhances
phagocytosis (3, 51). During infections, CYP27B1 is upregulated
by viruses, cytokines, such as IFN-γ or lipoproteins from
the Mycobacterium membrane, resulting in an increase of
1,25(OH)2D3 synthesis. In addition, vitamin D regulates the
expression of specific endogenous antimicrobial peptides, such
as cathelicidin (8, 26, 51, 58), which has also been found
to possess tumoricidal activity against high-grade lymphoma
cells, contributing to rituximab-mediated cytotoxicity (59).
Furthermore, vitamin D downregulates the expression of MHC
(major histocompatibility complex) class II on the macrophage
surface, hindering T-cell activation (41) and decreasing the
pool of circulating CD16+ monocytes and their secretion of
TNF-α (60).

Natural killer cells (NK) proliferation and cytotoxic function
is abrogated by 1,25(OH)2D3, inhibiting the secretion of TNF-α
and IFN-γ (46, 61). In the innate NK cells, it also upregulates the
secretion of IL-4 (62).

Adaptive Immunity
VDR is also upregulated in activated B lymphocytes (63),
inhibiting the synthesis of immunoglobulins (6, 47) and
decreasing B cell proliferation and differentiation into plasma
cells (64). Moreover the expression of CYP24A1 enables B cells
to degrade 1,25(OH)2D3 into calcitroic acid and subsequently to
eliminate it (42).

Vitamin D blunts inflammation and alloreactivity because
it reduces the pool of activated T lymphocytes (50) and the
production of TNF-α, as shown in a study carried out in HSCT
patients (64). VDR is upregulated in the activated T cells as well
as in the naïve and early memory subsets, acting as a subrogate
marker of T-cell activation (50, 65). To ensure sufficient supply
of 1,25(OH)2D3 is provided to the neighboring cells (8, 62),
CYP27B1 is upregulated, as well as 24α-hydroxylase to avoid an
overproduction of this vitamin (52).

In CD4+, on the one hand, 1,25(OH)2D3 downregulates the
production of IL-2 and IFN-γ by Th1 (52, 64–66) and impairs
IL-17 secretion by Th17 (62, 67). On the other hand, it helps
expanding the pool of Th2 cells, with a subsequent upregulation
of their landmark cytokines. One of them, IL-4, also triggers 24α-
hydroxylase to prevent supra-physiological levels (51, 67). Part
of the immune-modulatory effect of 1,25(OH)2D3 is due to the
enhancement of the IL-6 secretion, which abrogates the Th1 cells,
skewed in favor of the anti-inflammatory and pro-tolerogenic
Th2 subset (55).

Some studies have found contradictory results on the effect
of vitamin D in CD8+ T-cell proliferation, thus currently, no
conclusions can be drawn (49, 64, 68).

Despite controversy in this matter (52, 68), preclinical studies
have shown that 1,25(OH)2D3 triggers secretion of IL-10 by
CD4+ T cells (69) and TGF-β (transforming growth factor beta)
by DCs (55, 57, 67, 70), which ultimately enhance the recruitment
of Foxp3+ CD25+ regulatory T cells (Treg) (59, 66). These CD4+

lymphocyte subset impairs the expansion of alloreactive donor
T cells in GvHD-target tissues and subsequently the synthesis of
their pro-inflammatory cytokines, including IL-2 (71). Alongside
this, 1,25(OH)2D3 downregulates the expression of skin and gut-
homing molecules (cutaneous lymphocyte-associated antigen
and chemokine receptor CCR9, respectively) in the T cell surface,
with a subsequent impairment in T cell trafficking (52, 68). This
contributes to abrogate GvHD and foster a more tolerogenic
immune environment (62, 70, 72).

Moreover, a preclinical study postulated that a population of
IL-10-secretor B cells could act as regulatory immune cells, but
data is limited so further research is needed (52).

VITAMIN D DEFICIENCY

Currently, vitamin D deficiency is considered a pandemic disease
(73). Although its prevalence in higher latitudes is well known, it
can also affect individuals living in areas closer to the Ecuador
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(74). It can also affect individuals living in areas closer to the
Ecuador (25, 74–76).

Many factors have been identified to contribute to it: age
(77), low sunlight exposure (25), skin pigmentation, obesity and
decrease of cutaneous synthesis of vitamin D. HSCT recipients
can also suffer from malnourishment (31), malabsorption, or
gut GvHD (35), which can have a detrimental impact on
absorption of vitamin D-enriched aliments. In addition, vitamin
D metabolism can be altered by immunosuppression (35, 78–
80) or as a consequence of kidney (35) or liver (79) impairment.
Moreover, some genetic polymorphisms in genes related to the
vitamin D metabolism have been identified in individuals at risk
of vitamin D insufficiency (81).

The half life of the inactive metabolite 25(OH)D3 has been
estimated to be between 2 and 3 weeks. It identifies individual
adequacy or insufficiency, making it the most useful marker of
the vitamin D body stores (32).

For over a century, most of the research performed regarding
the vitamin D has been looking into its effect on bone health
(23). Thus it is not surprising that the cut-off established for
vitamin D deficiency has been based on the optimal serum levels
of 25(OH)D3 required to prevent bone loose while maintaining
calcium homeostasis (79). Nevertheless, little is known about
the levels needed to enhance immune-regulation and forestall
complications following HSCT (4, 6, 8), and so a threshold that
can be applied into the HSCT setting has not been validated yet
(9, 82–84).

In the general population, studies regarding this have shown
remarkable discrepancies: whereas the Institute of Medicine
advocates for a cut-off of 30 nmol/L (12 ng/mL) (24), NICE
guidelines and the Endocrine Society Task Force on Vitamin D
established it below 25 nmol/L (10 ng/mL) (78, 85), and even one
report has set it below 50 nmol/L (20 ng/mL) (86). Therefore, it is
not possible to suggest a cut-off that defines vitamin D deficiency
in recipients of HSCT based on the evidence published so far.

Moreover, the non-skeletal functions of vitamin D have
reinvigorated its interest as potential modulator in a broad
spectrum of diseases and therapeutical procedures, as follows:

Autoimmune Diseases
Despite some clinical studies focused on the role of vitamin D
deficiency have revealed its contribution to the pathophysiology
of some autoimmune diseases, including multiple sclerosis,
systemic sclerosis, rheumatoid arthritis, insulin-dependent
diabetes and systemic lupus erythematous (4, 7, 45, 87), others
could not reproduce these results (88, 89).

Asthma
Interestingly, studies performed in patients with asthma showed
that patients with lower serum levels of vitamin D were less
responsive to steroids than those with higher levels. The reason
for this is the impaired steroid induction of IL-10 secretion
by CD4+ T cells, leading to a poor recruitment of Tregs.
However, it can be restored with vitamin D supplementation:
Due to its immunomodulatory properties, vitamin D enhances
the secretion of IL-10 by CD4+ T cells, increasing the pool of
both population of circulating Tregs (Foxp3+ and IL-10 Tregs)

in vitro and contributing to the control of the disease, as seen in
clinical studies (66, 70, 72, 90).

Infectious Diseases
Vitamin D has been used as a biomarker for critically ill patients
with sepsis, whom levels of 25(OH)D3 were lower than those
from patients also admitted in Intensive Care Unit but without
sepsis (58). However, despite the evidence found in a few
preclinical studies about the effect of 1,25(OH)2D3 fostering
macrophage activity against Mycobacterium tuberculosis (49)
or downregulating cytokine production during viral infections
(91), data regarding infections is still controversial, including
studies in HSCT patients (11, 49, 92, 93). Similarly, in a
clinical study where vitamin D supplementation was given as
adjunctive therapy to vaccinations, it did not show any clinical
relevance (91).

Cancer
In vitro studies have shown that 1,25(OH)2D3 inhibits cellular
proliferation (downregulating BCL-2 expression and telomerase
activity) and angiogenesis (inhibiting VEGF, vascular endothelial
growth factor), and acts as a pro-apoptotic and differentiation-
inducing agent in a range of malignant cells (1, 6, 36, 54, 94–
96) because these cells possess VDR (97). In clinical studies,
vitamin D serostatus has been linked to solid tumors, including
melanoma (98–100), breast (6, 101, 102), colon (6), prostate
(102), and lung cancer (103). Furthermore, this anti-tumor
effect has also been investigated in hematology disorders, such
as myelodysplastic syndrome (96), myeloid leukemias (95, 96),
and multiple myeloma (104). In some reports, higher levels of
1,25(OH)2D3 have been found to impact favorably in survival
(97, 99, 103, 105). However, there has been some discrepancy in
lymphoid malignancies, as a few studies found a positive impact
of 1,25(OH)2D3 in outcomes (95, 97, 106) whereas others did
not (107, 108). Moreover, Hansson et al. showed that patients
withmalignant hematological disorders and vitaminD deficiency
before transplantation could have higher relapse rate compared
to those patients whom levels were higher (10). Supporting this,
another paper mentioned similar results in patients with myeloid
malignancies (109), whereas another failed to reproduce the same
results (64).

Solid Organ Transplantation
Vitamin D deficiency is highly prevalent in heart and liver
transplant recipients, predominantly in the latter because end-
stage liver failure alters vitamin D3 first hydroxylation (110).
Furthermore, nearly 50% of lung transplant recipients are
vitamin D deficient, as reported by one single center study.
In this population, low levels of 25(OH)D3 were linked to
worse pulmonary function tests and higher graft rejection (111).
Moreover, recent reviews have reported how chronic kidney
disease and kidney transplant can aggravate hypovitaminosis D
and how patients with lower 25(OH)D3 serum levels were more
likely to suffer from secondary tumors and graft rejection, leading
to a poorer survival after transplantation (104, 112). In this
context, vitamin D supplementation can play a reno-protective
role (113).
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FIGURE 2 | Effect of vitamin D in the hematopoietic cells. Vit D, vitamin D; +, activation; –, inhibition; MHC II, major histocompatibility complex class II; APCs, antigen

presenting cells; Th2, T helper lymphocytes 2; IL, interleukin; Treg, regulatory T cells; TNF-α, tumor necrosis factor α; IFN-γ, interferon γ; CD8+ and CD4+, T

lymphocytes CD8+ and CD4+, respectively.

IMPACT OF VITAMIN D IN HSCT

Vitamin D deficiency can contribute to the imbalance of immune
homeostasis, shifting from a tolerogenic to a pro-inflammatory
status (89, 113). In the allogeneic HSCT, this can have an
impact on complications post-transplantation, and potentially on
survival outcomes (9, 11, 114, 115).

Immune Reconstitution Post-HSCT
(Figure 2)
Early immune recovery is characterized by neutrophil
engraftment. At this stage, 1,25(OH)2D3 may enhance neutrophil
recovery, as shown in a pediatric study where patients with higher
levels of 25(OH)D3 had a higher neutrophil count at the time of
engraftment (10). Nevertheless, other studies have failed to prove
this (11, 82). Moreover, two reports suggested the contribution
of donors’ VDR genotype in the late immune reconstitution of T
cells (116, 117), but data is still limited to draw any conclusion.

Beyond its immune-modulatory properties, 1,25(OH)2D3

stimulates proliferation and differentiation of CD34+

hematopoietic stem cells (118–120). It also inhibits
secretion of pro-inflammatory cytokines, such as IL-6 and

subsequently hepcidin production, resulting in stimulation of
erythropoiesis (121–123). However, little is known of its effect on
thrombopoiesis (124).

Graft-versus-Host Disease
GvHD is a major complication following allogeneic HSCT and
one of its main causes of death (125). Clinical studies have
suggested the link between vitamin D deficiency and GvHD
(9, 69, 82, 84). Acute GvHD (aGvHD) pathophysiology is
characterized by a strong inflammatory reaction (126), while
chronic GvHD (cGvHD) shares features of autoimmunity (127,
128). Vitamin D deficiency causes immune imbalance and
cytokine dysregulation, with expansion of autoreactive T cells,
enhancing the response of these immunologically competent cells
against host antigens, and blunting vitamin D–mediated immune
homeostasis (113, 129).

Surprisingly, vitamin A has also been suggested to be involved
in GvHD pathogenesis (130), but its potential mechanistic effects
of on GvHD are yet to be properly characterized (131).

Three clinical studies have linked 1,25(OH)2D3 serostatus and
acute GvHD (aGvHD): Urbain et al. demonstrated that patients
with moderate to severe aGvHD had lower levels of 25(OH)D3
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TABLE 1 | Observational studies correlating vitamin D status with outcome post-HSCT*.

References Study design Age

population

(N**)

VDD

threshold

VDD

pre-HSCT

VDD

post-HSCT

GvHD Outcomes

Kreutz et al. (82) NR NR (48) <25 nmol/L Serum

25(OH)D3: 36.4

(±2.2 nmol/L)

Serum

25(OH)D3: 27.8

(±1.3 nmol/L)

Lower levels of

25(OH)D3 in grade III

and IV aGvHD (P =

0.031)***

NR

Joseph et al. (18) Prospective Adult (72) <20 ng/mL 70% 58% NR NR

Sproat (20) Retrospective Adult (58) <20 pg/mL NR 59% NR NR

Comment: 21% of

patients on VD

supplements

Urbain et al. (69) Prospective Adult (102) <10 ng/mL 23.5% NR Weak association in

patients with lower

levels of 25(OH)D3 on

day + 100 and

aGvHD (P = 0.066)

NR

Glotzbecker et al.

(84)

Retrospective Adult (53) <25 ng/mL 60% NR No significant

differences in aGvHD

2-years CI of cGvHD:

63.8% in VDD

patients compared to

23.8% in sufficient VD

patients (P = 0.02)

Extensive cGvHD at

2-years was 54.5% in

VDD patients

compared to 14.3%

in sufficient VD

patients (P = 0.009)

No impact on OS

(P = 0.57) nor PFS

(P = 0.61)

Simmons et al.

(77)

Prospective Pediatric (22) <15 ng/mL 27% NR NR NR

Hansson et al. (10) Prospective Pediatric (123) <50 nmol/L 69% NR More frequent in

patients with

sufficient VD

compared to VDD

patient (47 vs. 30%;

P = 0.05)

No significant

differences in cGvHD

Lower OS in patients with

malignancies and VDD

compared to those VD

sufficient (50 vs. 87%;

P = 0.01)

Relapse rate higher in

VDD compared to normal

VD levels (33 vs. 4%)

(P = 0.03)

No significant association

with CMV and

EBV reactivation

Wallace et al. (12) Prospective Pediatric (135) <20 ng/mL NR 23% No significant

differences in

a/cGvHD

Lower OS in VDD***

(P = 0.044)

16% patients on VD

supplements pre-HSCT

Von Bahr et al. (9) Retrospective Adult (166) <25 nmol/L 11% NR No association

between 25(OH)D3

serum levels and

aGvHD

Strong correlation of

cGvHD with

25(OH)D3 serostatus

(RR 2.66)

Decreased 2-years OS in

VDD patients compared

to sufficient VD patients

(63 vs. 76%) (P = 0.03)

VDD pre HSCT was

associated with increased

CMV disease (P= 0.005)

No association with

2-years DFS

(Continued)
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TABLE 1 | Continued

References Study design Age

population

(N**)

VDD

threshold

VDD pre-HSCT VDD

post-HSCT

GvHD Outcomes

Florenzano et al.

(19)

Retrospective

(36%

autologous

and 64%

allogeneic

HSCT)

Adult (46) <20 ng/mL 17% 85% NR NR

Comment: 53% of

patients on VD

supplements (but not an

interventional study)

Myers et al. (140) Retrospective Pediatric (64) <30 ng/mL NR 73% NR NR

VD, vitamin D (25(OH)D3 ); VDD, vitamin D deficiency; OS, overall survival; aGvHD, acute graft-vs.-host disease; cGvHD, chronic graft-vs.-host disease; NR, not reported; RR, relative

risk; DFS, disease-free survival; PFS, progression-free survival; CI, cumulative incidence; CMV, cytomegalovirus; EBV, Epstein-Barr virus.

*Studies performed in allogeneic HSCT unless otherwise specified.

**N, number of participants tested for 25(OH)D3.

***Number patients affected NR.

after HSCT (69). Kreutz et al. correlated a higher grade of aGvHD
with vitamin D deficiency (82). Finally, Ganetsky et al. found that
those patients with vitamin D deficiency had an increased risk of
grade II–IV skin GvHD (132). Nevertheless, these results could
not be reproduced in other studies (10, 69, 84, 115).

Glotzbecker et al. reported that patients with lower levels
of 25(OH)D3 prior to HSCT had a higher cumulative
incidence of Chronic GvHD (cGvHD) and extensive
cGvHD compared to those with higher levels (84).
Supporting this, another clinical study showed that cGvHD
developed in patients with lower 25(OH)D3 serum levels at
transplantation (9). In contrast, other clinical studies failed
to find any correlation between vitamin D serostatus and
cGvHD (10, 115, 132).

Currently there is controversy in the evidence of the impact
of vitamin D deficiency within the GvHD pathophysiology.
Therefore, further studies with larger sample size to confirm this
are warranted.

Resistance To Steroids in GvHD
More than 50% of patients treated with steroids for GvHD are
resistant to this immunosuppressive treatment (133–135). The
cause for this remains unknown but there is strong evidence
linking this to a poorer chance of survival in these patients (136).

In the field of asthma, recent studies have linked vitamin
D serostatus with steroid resistance: lower levels of serum
25(OH)D3 were associated with poorer steroid response (72,
137). Nevertheless, treatment with 1,25(OH)2D3 overcame this,
resulting in clinical improvement of asthma severity (66, 70, 72,
90). Vitamin D replacement enhanced the expansion of Treg due
to the increased secretion of IL-10 by CD4+ T cells, previously
unresponsive to steroids (70, 72, 138).

In the steroid-resistant GvHD setting, one preclinical study
suggested that synergism between vitamin D supplementation
and steroids could abrogate themonocyte-induced release of pro-
inflammatory cytokines and therefore mitigate the tissue damage
by GvHD (139).

These findings serve as a rationale for treating or preventing
vitamin D deficiency by upholding normal levels of vitamin D in

order to enhance the immunosuppressive effect. Since vitamin D
may overcome the resistance to immunosuppression in GvHD,
further research in this field is needed to confirm this hypothesis
and potentially to reduce the morbidity and mortality associated
to this disease.

Outcomes Post-HSCT (Table 1)
As previously described, vitamin D has an immune-modulatory
role, and it may protect against infections and blunt tissue
damage on the course of HSCT (54, 91). Owing to this,
recent studies have tried to elucidate its role in outcomes
following allogeneic HSCT, with conflicting results: A prospective
study performed in pediatric patients revealed that vitamin
D deficiency post-HSCT was associated with a lower overall
survival (OS) (114), as seen in other studies evaluating OS at
different time points (9, 11, 115). Nevertheless, further research
could not prove the link between vitamin D serostatus and
progression-free survival (84, 115), 2-years disease-free survival
(9), or OS (84, 132, 141), thus no definitive conclusions can be
drawn from them.

VDR as Biomarker in HSCT
The VDR gene is located in chromosome 12 (142). Specific
single nucleotide polymorphism (SNPs) in this gene, such
as Fokl FF and ApaI aa reflect upregulation of the VDR
activity, whereas ApaI AA downregulates it, impacting on the
activity of Th1 and Th2 on the early immune reconstitution
following HSCT (116, 143). Furthermore, other SNPs in
the VDR and CYP2R1 genes can increase the concentration
of 25(OH)D3 in serum following supplementation with
vitamin D (144, 145).

The association of VDR gene polymorphisms with major
clinical outcomes following HSCT has been investigated in
different studies with inconclusive results (116, 143, 146–150).
Therefore, further research in this field is warranted with larger
study samples, including more recipients of different donor types
(unrelated, haploidentical).
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MANAGEMENT OF VITAMIN D
DEFICIENCY IN HSCT

A recent survey performed across European HSCT centers
described discrepancies in monitoring and replacement of
vitamin D deficiency in HSCT patients: Half of the centers
requested vitamin D prior to transplantation whereas nearly
80% followed this practice after it. The main reason for this
could be that guidelines only recommend measuring vitamin
D in the post-HSCT setting, aiming to prevent bone loss
and fractures. Moreover, the cut-off for serum 25(OH)D3

to commence on vitamin D therapy varied across centers
depending on geographical location, ranging from 25 to 100
nmol/L (14). Awareness of the immune-regulatory properties of
vitamin D and its potential impact on immune reconstitution
post-HSCT and GvHD were acknowledged by a minority of
centers (24 and 17%, respectively), being the main reason to
commence on vitamin D therapy the maintenance of calcium
metabolism and bone health (62%). Since the optimal dose
of vitamin D replacement has not been standardized yet in
the HSCT population and this differs between pediatric and
adult population (ranging from 1,000 IU per day to 600,000 IU
per week) (11, 64, 141, 151–155), dosage prescribed by HSCT
clinicians varied greatly across centers (14).

In summary, these findings reflect the lack of consensus in this
topic within the HSCT community, so recommendations were
provided to standardize criteria and harmonize the management
of the aforementioned deficiency, encouragingmonitoring serum
25(OH)D3 prior and after HSCT, and commence on replacement
therapy if clinically indicated. Nevertheless, no conclusions were
reached regarding the ideal threshold for vitamin D deficiency
due to the lack of robust studies including HSCT patients (14).
Different studies have used different cut-offs, which can mislead
clinicians when implementing the management of vitamin D
deficiency in their day-to-day clinical practice. Therefore, clinical

outcomes may differ among studies and this can complicate the
use of serum 25(OH)D3 as a biomarker in the HSCT landscape.
Since this is the only survey performed in the allogeneic HSCT
landscape and the recommendations provided are based on up-
to-date clinical evidence, it seems reasonable to follow them.

CONCLUSIONS

VitaminD is a potent regulator of immune responses with impact
in HSCT (9–13). Nevertheless, there are no clinical guidelines
focusing on vitamin D status and its optimal levels required for
prevention of post-transplant complications and enhancement of
the immunosuppressive therapy. As a consequence, monitoring
vitamin D can be easily neglected in the management of these
complex patients.

The high incidence of vitamin D deficiency in allogeneic
HSCT patients, alongside the current controversy (9, 11, 84, 114,
115, 132, 141), emphasizes the need for further studies on the
impact of vitaminD deficiency and VDR gene polymorphisms on
clinical outcomes to define its role as a biomarker in this setting.

Vitamin D deficiency may be the first potential easily
modifiable host factor associated with post-allogeneic HSCT
outcomes, thus identifying patients at high risk and optimizing
its management to enable prompt therapeutic intervention
is encouraged.
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