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1 DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy, 2 Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORL, Research Unit

for Vegetable Crops, Montanaso Lombardo, Lodi, Italy, 3 Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORA, Research Unit for Vegetable Crops,

Monsampolo del Tronto, Ascoli Piceno, Italy, 4 Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-GPG, Genomic Research Centre, Fiorenzuola d’Arda,

Piacenza, Italy, 5 Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-RIS, Rice Research Unit, Vercelli, Italy

Abstract

In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.)
genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has
hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2

intraspecific population of eggplant bred from the cross ‘305E40’ x ‘67/3’ was phenotyped for 20 agronomically relevant
traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic
variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at
least one major QTL (PV explained $10%) was identified. Although no detectable QTL x environment interaction was found,
some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions,
reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of
the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with
their respective linked markers, may be useful in the context of marker-assisted breeding.
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Introduction

The eggplant (Solanum melongena L.) belongs to the Solanaceae

family and it is cultivated worldwide, particularly in China (about

60% of world production) and India (about 25%). After potato and

tomato, it represents the third most important solanaceous crop

species [1], but unlike the former two, it is an Old World (India

and China) rather than a New World domesticate [2,3].

The inheritance of agronomic traits has been intensively studied

in the solanaceous crops, and a growing number of genes and

quantitative trait loci (QTL) have been identified and even isolated

[4–14]. Much of this effort has been focused on tomato, potato

and sweet Capsicum pepper, leaving the eggplant knowledge base

rather limited. In a survey of trait inheritance in eggplant, Chadha

[15] identified the expected mixture of major genes and polygenes,

while Nunome et al. [16] were able to map a number of fruit trait

QTL. As an interspecific F2 population was the platform for the

mapping of some breeding trait QTL [17,18], the relevance of

these loci for intraspecific improvement is probably rather limited.

Miyatake et al. [19] were able to define two QTL underpinning

parthenocarpy by mapping in an intraspecific population, while

strain-specific wilt (Ralstonia solanacearum) resistance was shown by

Lebeau et al. [20] to be conditioned by a single dominant gene

and QTL which are located in two linkage groups. A densely

populated intraspecific RAD-tag derived marker based genetic

linkage map has recently been used to characterize the genetic

basis of traits associated with anthocyanin content [21].

In this paper, we describe the phenotyping, with respect to 20

yield, fruit and morphological traits, of a previously genotyped

mapping population bred from a cross between a doubled haploid

derivative of the interspecific somatic hybrid S. aethiopicum gr. gilo(+
)S. melongena [22] and ‘67/3’, an F8 selection from an intra-specific

cross in S. melongena [23]. The intention was to locate relevant

QTL and to explore the possibility of using known syntenic

relationships between the eggplant and the tomato genome to infer

potential candidate genes underlying some of the major QTL

identified.

Results

Phenotypic Variation and Inter-trait Correlations
Trait codes, their performance and broad sense heritability are

presented in Table 1. The parental lines contrasted for most of the

traits at both sites (Table 1). Compared to ‘67/3’ plants, ‘305E40’

plants set longer, narrower and lighter fruits, which developed on a

longer peduncle and formed fewer seed locules and a green ring in

the flesh next to the skin; its habit was upright and a higher

number of flowers were formed per inflorescence, both the flower

calyx and the leaves were prickly (Figure 1). Despite the lower
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Table 1. List of the traits and their units of measurement, mapping population means, standard deviations (SD), coefficients of
variation (cv) and broad sense heritabilities.

Trait Code Env Parents means ± SD F1 F2 population cv Skewness SE Kurtosis SE Heritability

305E40 67/3 mean ± SD

Total yield
(gr)

ty ML 30886494.01 5325.2561113.38 * 8166.756777.78 7912.6162783.32 0.35 20.24 0.19 20.06 0.39 0.84

MT 2624.256600.71 37836783.7 * 4342.256460.49 4389.5261561.29 0.36 0.24 0.19 20.43 0.39 0.42

Total yield
fruit number

tyfn ML 22.7564.65 16.2562.62 * 29.2562.75 41.61611.89 0.29 20.47 0.19 20.14 0.39 0.84

MT 21.2563.5 15.7563.09 * 23.562.64 31.6369.78 0.31 0.27 0.19 20.10 0.39 0.49

Total yield av.
fruit weight (gr)

tyfw ML 137.1614.76 326.02620.16 * 279.55615.16 185.90632.07 0.17 0.18 0.19 20.06 0.39 0.91

MT 122.5610.33 240611.77 * 185.0267.10 134.23624.51 0.18 0.71 0.19 1.98 0.39 0.54

Early yield (gr) ey ML 1769.56444 2743.256557.64 * 4403.256940.03 2797.16988.12 0.35 20.18 0.19 20.24 0.39 0.85

MT 15276404.07 1852.56612.62 * 2577.756265.47 2324.656760.73 0.33 0.30 0.19 20.47 0.39 0.18

Early yield
fruit number

eyfn ML 1262.45 861.63 * 14.562.38 14.0664.27 0.30 20.15 0.19 20.24 0.39 0.83

MT 10.2561.71 762.16 11.7561.26 13.1363.79 0.29 0.66 0.19 0.41 0.39 0.68

Early yield av.
fruit weight (gr)

eyfw ML 147.12616.2 343.78623.15 * 301.98618.43 195.3636.17 0.19 0.29 0.19 20.19 0.39 0.86

MT 148.60628.99 264.69620.39 * 219.69610.72 176.73640.66 0.23 0.71 0.19 1.40 0.39 0.86

Fruit weight (gr) fw ML 153.92632.04 392.75670.51 * 383.5665.76 252.33656.48 0.23 0.02 0.19 0.20 0.39 0.84

MT 180.42620.54 294.75644.27 * 304638.46 214.65640.8 0.19 20.01 0.19 20.13 0.39 0.88

Fruit length (cm) fl ML 21.8362.98 9.8860.43 * 1760 14.1561.87 0.13 0.38 0.19 0.38 0.39 0.91

MT 20.3365.57 8.1761.46 * 11.0861.97 11.4661.65 0.15 0.44 0.19 0.96 0.39 0.74

Fruit diameter
1/2(cm)

fd1/2 ML 3.756.031 10.2560.63 * 7.7560.21 6.7060.81 0.14 0.12 0.19 20.21 0.39 0.91

MT 3.6860.57 8.3361.28 * 6.3360.89 5.7760.70 0.12 0.14 0.19 20.19 0.39 0.70

Fruit diameter
3/4(cm)

fd3/4 ML 4.3260.21 8.9260.42 * 7.6560.35 6.660.72 0.11 0.00 0.19 20.22 0.39 0.88

MT 4.4560.40 7.661.36 * 6.1360.81 5.8460.63 0.11 0.11 0.19 20.47 0.39 0.59

Fruit diameter
max (cm)

fdmax ML 4.4060.21 10.5260.75 * 8.0560.35 7.0560.85 0.12 0.13 0.19 20.19 0.39 0.91

MT 4.4560.40 8.3361.28 * 6.3360.89 6.0360.65 0.11 0.15 0.19 20.34 0.39 0.60

Fruit shape fs ML 4.9660.57 0.9460.07 * 2.1160.23 2.0560.4 0.20 0.88 0.19 1.09 0.39 0.96

MT 4.5460.99 0.9860.11 * 1.7460.08 1.9360.37 0.19 0.79 0.19 1.34 0.39 0.92

Peduncle length
(cm)

pedl ML 5.8261.05 2.8760.67 * 4.4361.11 5.7760.99 0.17 0.61 0.19 0.53 0.39 0.90

MT 4.9061.27 3.6361.04 4.3561.56 4.5860.69 0.15 0.35 0.19 0.67 0.39 0.69

Fruit calix
prickliness (0–3)

fcpri ML 1.4260.49 0.560 * 1.560.71 1.0560.45 0.43 0.76 0.19 0.43 0.39 0.86

MT 1.6560.44 0.6360.22 * 1.6260.49 1.2760.39 0.31 0.25 0.19 20.21 0.39 0.64

Outer fruit
firmness (kg/cm2)

outfir ML 2.4260.57 2.1360.22 2.6360.13 2.3260.42 0.18 0.34 0.19 0.55 0.39 0.79

MT 3.0560.61 2.1360.57 * 3.4860.18 2.8160.65 0.23 0.56 0.19 0.67 0.39 0.63

Number of
locules

slon ML 3.6760.58 861.87 * 461.41 4.2960.95 0.22 0.84 0.19 1.28 0.39 0.63

MT 4.1760.75 5.5060.57 * 4.7560.50 4.2360.77 0.18 0.72 0.19 0.69 0.39 0.63

Flesh green
ring (0–1)

gring ML 160 060 * 160 0.6660.47 0.72 20.67 0.19 21.57 0.39 0.98

MT 160 060 * 0.8860.25 0.6160.44 0.72 20.58 0.19 21.56 0.39 0.98

Plant growth
habit (1–3)

hab ML 360 160 * 260 2.2560.72 0.43 20.46 0.19 21.14 0.39 0.80

MT 360 160 * 260 2.1160.82 0.50 1.44 0.19 6.30 0.39 0.42

Leaf prickliness
(0–3)

lepri ML 2.8360.29 060 * 0.560.1 0.0960.17 0.38 1.70 0.19 1.67 0.39 0.71
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number of fruits produced per plant, the total and early yield of

‘67/3’ was higher than the equivalents in ‘305E40’. The first flush

of fruit in both parental lines was larger than the fruit produced

later. At both sites, the F1 hybrid was intermediate for almost all

the traits (Table 1), and F1 performance was significantly superior

to the better performing parent only with respect to ty and ey in

ML (data not shown). In the F2 generation, transgressive

segregation (as calculated from the raw phenotypic data) with

respect to ‘67/3’ was observed in ML for ty (99 plants), tyfn (two

plants), ey (21 plants), eyfn (two plants), outfir (seven plants) and

fcpri (seven plants) and, with respect to ‘305E40’ were observed for

ty (four plants), tyfn (125 plants), tyfw (two plant), ey (four plants),

eyfn (40 plants), pedl (three plants) and slon (two plants). In MT,

Transgressive phenotypes were found for ty (three plants), tyfn (95

plants), tyfw (17 plants), eyfn (66 plants), fw (seven plants), outfir

(four plants), and hab (two plants) towards 305E40 and for ty (43

plants), tyfn (one plant), ey (29 plants), eyfw (two plants ), slon (one

plant) towards 67/3 parent (a rough estimation about the number

of transgressive individuals can be deduced from Figure S1). The

broad sense heritability values were generally higher at ML than at

MT. The range was from 0.18 (ey at MT) to 0.98 (gring at both

locations) (Table 1). Significant inter-trait correlations (p,0.05)

were detected both within and across sites (Table 2). In both ML

and MT, production traits (fw, fl, fd1/2, fd3/4, fdmax, tyfn, ty,

tyfw, eyfn, ey and eyfw) were uniformly positively correlated with

one another, while fs was negatively correlated with fruit weight

and diameters. The correlations across sites ranged from +0.285

for slon to +0.897 for fw.

Identification of QTL Clusters
In all, 105 QTL (of which 65 explained at least 10% of the

phenotypic variance (PV), these are hereafter referred to as

‘‘major’’ QTL) were identified and mapped onto ten of the 12

eggplant chromosomes (Table 3), while no QTL were identified to

E06 and E09. At ML, 62 QTL (33 major) were identified, while at

MT, there were 43 QTL (32 major). Among the major QTL, 24

were expressed at both sites, eight were only detectable in ML and

two only in MT; finally seven appeared as a major QTL in one of

the sites but was retained as a minor one in the other. The

genomic locations of these QTL are shown in Figure 2. Between

one and four major QTL underlay the variation in each trait.

Clustering of the QTL was common, and present on almost each

chromosome. The high inter-trait correlations between some of

the traits controlled by a cluster of QTL (Table 2) suggested that

these clusters reflected either a set of closely linked loci or, more

likely, a single pleiotropic locus. In the cluster on chromosome

E02, the QTL were associated with early and total yield, as well as

with several fruit traits (weight, length, diameters, peduncle

length); the same region is known to harbor a major gene

controlling resistance against Fusarium oxysporum [24]. The other

major cluster was on chromosome E12, comprising QTL for eyfw

and tyfw, fw, diameters, fs, slon and flwin. A smaller cluster was

mapped to chromosome E01, comprising major QTL for fl and fs,

although only the latter locus was expressed in both environments;

the same chromosome also harbored other major QTL for hab

and outfir (in MT). The two clusters present on chromosome E03

were associated with fruit diameters, fw, tyfw and eyfw, and the

other to fl and fs, along with minor QTL for tyfw, fd1/2 and

outfir. The chromosome E07 cluster involved fl, fs and ey, together

with minor QTL for fruit diameters and a major one for fcpri. At

the top of chromosome E08, one cluster of QTL determining

lepri, fs fl and pedl was linked to a second one determining habit

and effect on the green ring. Finally, the chromosome E11 cluster

involved major QTL for fruit shape and diameters, and two minor

QTL for tyfw and eyfw.

QTL Determining Agronomic Traits in Eggplant
All the QTL detected in the mapping population, their statistics

and associated markers are reported in Table 3.

Traits related to total (ty, tyfn, tyfw) and early (ey, eyfn,

eyfw) yield. A particularly large effect ty QTL (tyE02) explained

53.0% of the PV in ML (23.7% of the PV in MT), and mapped to

the same E02 region (8.8 cM) as major QTL for tyfw (tyfwE02.ML,

responsible for 31.0% of the PV) ey (eyE02.ML) and eyfn

(eyfnE02.ML), as well as fwE02 and eyfwE02 both of which were

expressed at both sites. The confidence interval (CI) associated

with all of these QTL was just 0.3 cM. In MT, tyE02 mapped to

position 5.9 cM with a CI of 5.0–7.1 cM, overlapping with

tyfnE02.ML, eyE02.MT and eyfnE02.MT. A further major QTL for

tyfw (also expressed at both sites) mapped on E12 at 94.7 cM,

underlying the marker 15702_PstI_L354, and explaining 15.4% of

the PV in ML and 18.0% in MT. Three additional tyfw QTL

were detected on E03, E08 and E11; tyfwE03 and tyfwE08 were

both coincident with an fd QTL. Apart from tyfwE08.ML, all the

positive alleles for traits related to total yield (ty, tyfn and tyfw)

derived from ‘67/3’.

In ML, the unique major QTL associated to ey trait (eyE02)

explained 24.4% of the PV and mapped to E02 at 8.8 cM within

the major yield-related traits QTL cluster. In MT, the same QTL

explained 21.5% of the PV and was located at 5.9 cM. A minor,

but in this case MT-specific, ey QTL (eyE07.MT) was located on

E07, explaining 9.2% of the PV. Positive alleles at some ey QTL

were inherited from ‘67/3’ (eyE02), but others from ‘305E40’

(eyE07.MT). The major eyfn QTL (eyfnE02) co-localized with

tyfnE02.ML; in ML it explained 45.6% of the PV, and in MT

17.7%. The positive allele was inherited from ‘67/3’. A second,

MT-specific, eyfn QTL mapped to E10 (eynfE10.MT), explained

12.1% of the PV and had inherited the positive allele from

Table 1. Cont.

Trait Code Env Parents means ± SD F1 F2 population cv Skewness SE Kurtosis SE Heritability

305E40 67/3 mean ± SD

MT 360 060 * 0.560 0.1360.2 0.27 1.37 0.19 0.72 0.39 0.64

Nu of flower/
inflorescence

flwin ML 460 160 * 260 2.9361.2 0.46 0.01 0.19 20.61 0.39 0.33

MT 5.560.71 160 * 260 3.0661.51 0.31 0.55 0.19 20.18 0.39 0.47

Significant mean differences between parental performance (Wilcoxon test) are indicated (*p,0.05), along with any skewness and kurtosis (with associated standard
error (SE).
doi:10.1371/journal.pone.0089499.t001
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‘305E40’. A major eyfw QTL mapping to E02 at 8.8 cM (eyfwE02)

explained 23.2% of the PV at ML and 12.8% at MT. Its location

coincided with that of the fw, ey and ty QTL described above. A

second eyfw locus was detected on E12 at 94.7 cM, linked to the

marker 15702_PstI_L354, and explaining 11.5% of the PV in ML,

but less than 10% in MT. Additional minor eyfw QTL mapped to

E03 (both sites), E08 and E11 (ML only) and E12 (only in MT).

The loci eyfwE03 and eyfwE08.ML clustered with QTL controlling

fd and tyfw. With the exception of eyfwE08.ML, the positive alleles

were all inherited from ‘67/3’.

Fruit weight (fw). Three fw QTL were mapped in ML and

four in MT. The major QTL fwE02 was expressed at both sites,

and explained 40.0% of the PV in ML and 34.7% in MT. Its

location coincided with ty, ey and a fd QTL. The fwE03 locus

explained 12.8% of the PV in MT, but ,10% in ML. The

remaining two QTL were both minor; fwE12 was expressed at

both sites but fwE04.MT was specific for MT. With the exception

of fwE04.MT, the positive alleles were all derived from ‘67/3’.

Fruit length (fl). Six fl QTL were detected in ML,

distributed over E01, E02, E03, E07, E08 and E11. The two

largest effect loci flE03 and flE11 explained respectively 17.8%

and 10.1% of the PV, and were detected at both sites; flE01.ML

and flE02.ML, although of equivalent effect, were ML-specific.

flE07 was a minor QTL in ML, but explained 10.0% of the PV in

MT, while the minor locus flE08.ML was ML-specific. With the

exception of flE02.ML, all the positive alleles were derived from

‘305E40’.

Fruit diameter (fd1/2, fd3/4, fdmax). The three fd

parameters were highly inter-correlated (Table 2). Considered

separately, in ML three to seven QTL were mapped to E02, E03,

E04, E07, E11 and E12. While in MT a major QTL for each fd

trait was located on each of E02 and E03. In ML, the set of QTL

having the largest effect on fd were fd1/2E02, fd3/4E02 and

fdmaxE02, explaining, respectively 21.7%, 38.2% and 30.2% of the

PV. The fd3/4E02 and fdmaxE02 loci were also detected as major

QTL in MT. The segment containing these E02 loci also

influenced fw, ty, ey, tyfw and pedl. The fd1/2E03, fd3/4E03

and fdmax.E03 loci had a less marked effect in ML than did the

E02 ones, and were also detected in MT, where they explained,

respectively, 23.9%, 17.5% and 19.5% of the PV. For all the

detected QTL, positive alleles were contributed by ‘67/3’.

Fruit shape (fs). Four fs QTL were detected in ML,

mapping to E01, E03 (two loci) and E07; three of these were

also expressed in MT. The two loci fsE03b.ML and fsE04MT were

site-specific and minor. The locus fsE03a explained 16.3% of the

PV in ML and 28.2% in MT. The positive alleles at each QTL

were inherited from ‘305E40’.

Peduncle length (pedl). Five pedl QTL were mapped in ML

(E01, E02 (two loci), E04 and E08). Although the proportions of

PV explained and the additive effects were approximately the

same for all of them, the decreasing alleles from E02 was inherited

from ‘67/3’, while the others derived from ‘305E40’. Three of the

loci (pedlE02b, pedlE04 and pedlE08) were also confirmed in MT.

Fruit calyx prickliness (fcpri). fcpriE07 mapped at

30.1 cM, and was expressed in both sites (responsible for 11.8%

of the PV in ML and 12.8% in MT). The locus was linked to the

marker (9876_PstI_L439) and the allele for increased prickliness

derived from ‘305E40’.

Resistance to mechanical penetration (outfir). Four out-

fir QTL were detected in ML, mapping to E02 (outfirE02a/b), E03

and E05. outfirE02a.ML and outfirE05 were both major QTL and

explained, respectively, 14.6% and 15.0% of the PV. The latter

locus was also expressed in MT (16.8% of the PV). An additional

major locus (12.0% of the PV) on E01 was detected only in MT.

With the exception of outfirE02b and outfirE03, all the positive

alleles were inherited from ‘305E40’.

Number of seed locules (slon). A single major QTL was

detected on E12 in both environments at 94.7 cM. It explained

15.7% of the PV at ML and 23.9% at MT. The ‘67/3’ allele was

associated with an increased number of locules.

Green ring (gring). A single major QTL (gringE08) was

identified for the presence of the green ring in the flesh. It was

linked to the marker 35002_PstI_L402, and explained nearly all of

the PV at both sites (93.7% at ML, 89.2% at MT). The ‘305E40’

allele was associated with the green ring’s presence.

Plant growth habit (hab). Three major hab QTL, all

explaining a similar proportion of the PV and all associated with

similar additive effects, were located on E01, E08 and E10

exclusively in ML. The only major effect QTL detected in MT

mapped to E10 and explained 14.2% of the PV. All prostrate habit

associated QTL alleles were inherited from ‘67/3’.

Leaf prickliness (lepri). The single lepri major QTL

lepriE08 was expressed in both sites, where it explained 16.2%

(ML) and 14.6% (MT) of the PV. As for fcpri, the positive allele

was derived from ‘305E40’.

Number of flowers per inflorescence (flwin). The single

QTL flwinE12 explained 16.8% of the PV at ML and 18.2% at

MT. The allele from ‘305E40’ was associated with a greater

number of flowers per inflorescence.

Epistasis
Epistatic interactions were evaluated by considering the two

sites as independent replicates (Table 4, Figure 2). In ML, epistatic

interactions were observed for fl and hab. For the former trait, a

pair of previously detected QTL (flE01.ML* and flE07.ML*)

displayed a significant level of additive x dominant epistasis, with

an individual variance of 1.3%. Meanwhile, for hab, habE01.ML*

and habE08.ML* both displayed significant additive x additive

interaction with an individual variance of 3.2%. In MT, epistatic

interactions were observed for fs and tyfw. For fs, the two QTL

fsE03.MT* and fsE07.MT* both displayed significant dominance x

dominance epistasis, with an individual variance of 2.3%. For

tyfw, the already identified QTL tyfwE12.MT*, together with a de

novo QTL (eptyfwE02b.MT) displayed a significant degree of

additive x additive epistasis. The combined site analysis showed

that none of the additive effect x site or dominance effect x site

interactions were statistically significant at p,0.05.

Candidate Gene Identification based on Orthology with
Tomato

The tomato fruit weight QTL fw2.4 [6] lies in a region which is

syntenic to a part of eggplant E02 where several fruit dimension

QTL proved to be clustered (Figure 3). Similarly, the location of

tomato fw3.2 [13] corresponds to the E03 region harbouring fruit

weight and diameters QTL, while flE03 and fsE03 may well be

orthologous to the tomato fs3.a locus described by Grandillo et al.

[6] The region harbouring sun in tomato, a gene required for the

production of an elongated fruit [25,26] is syntenic to the

chromosome E07 region harbouring fl and fs QTL. This is the

same region identified as carrying the eggplant fruit shape QTL

fs7.1 [16] and QTL involved in fruit set [17]. The tomato fruit

shape QTL fs8.1 [3] region is represented in eggplant by an E08

region harbouring fl and fs QTL, at least expressed in ML. The

tomato fruit weight associated genes FASCIATED (FAS) and

fw11.3 [14] lie on a part of T11 syntenic with a segment of E12

harbouring QTL controlling diameters, fw, fs, slon and tyfw.

Search for other candidates of the eggplant QTLs was

conducted by analyzing the tomato genes included in the syntenic

Key Agronomic QTL in Eggplant
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Figure 1. Parental and F2 progeny phenotypes for some of the traits considered. a) Morphological features of the parental lines 305E40
and 67/3, and of the hybrid F1. For each parental lines are shown: whole plant where the different growth habit can be appreciated, a detail of the
principal apical shoot with leaves and flowers (where also multiple inflorescence in 305E40 and single flower/inflorescence in 67/3 can be noted),
fruits (where colour, dimensions, peduncle length and prickles can be noted), a section of the fruit (where the green ring and number of seed locules
can be distinguished) and a flower (presence/absence of prickles). For the hybrid, flower, fruit and fruit section are shown. b) Some morphological
features of the segregating F2 progenies. b1: an overview of fruit diversity among the entire progeny with respect to the parental lines (from the left:
305E40, HF1, 67/3); b2: detail of an F2 plant during the harvesting season: the abundance of fruits of this genotype overcome the parental lines (one
of the transgressive genotype for yield); b3 and b4: detail of fruit produced by different F2 plants showing variability for colour, dimensions, shape,
calyx prickles and peduncle length roughly grouped according to the long (b3) and oval (b4) typologies; b5: a view of F2 field-grown plants after an
harvesting; b6: flowers differing for colour and presence of prickles; b7: example of some fruit calyxes differing for colour and presence of prickles.
doi:10.1371/journal.pone.0089499.g001
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region defined by the CI of each QTL. The green ring locus on

E08 is marked by 35002_PstI_L402, the sequence of which is

similar to that of tomato Solyc08g077050, encoding for a ferredoxin

family protein. In Arabidopsis thaliana this protein is a component of

Photosystem I chlorophyll production [27]. A similar analysis of

the markers included in fcpriE07 CI identified three potential

candidate sequences, namely Solyc07g049700.1 (encoding a disease

resistance protein), Solyc07g051820 (encoding cellulose synthase),

Solyc07g045290 (encoding a long chain fatty acid-CoA ligase

involved in the suberin pathway). For lepriE08, possible candidate

genes identified were Solyc08g005120.2 (encoding a cinnamoyl-

CoA reductase-like protein involved in the lignin pathway),

Solyc08g005170.2 (encoding a heat stress transcription factor) or

Solyc08g005280 (encoding a cellulose synthase-like protein). For

peduncle length, a search in the region harbouring pedlE02b

identified Solyc02g088690 (encoding a UDP-glucose 6-dehydroge-

nase involved in the formation of hemicellulose and pectin),

Solyc02g089130 (encoding a COBRA-like protein, which has a

major role in the cell wall synthesis) and Solyc02g089640 (encoding

a cellulose synthase-like C1–2 glycosyltransferase family 2 protein).

Finally, for the slon and flwin QTL on E12, the possible

candidates identified in the CI were Solyc11g068620 and

Solyc11g068750 (both encoding NAC domain proteins).

Discussion

Phenotyping, QTL Mapping and Clustering of Agronomic
Trait Loci

Increasing the weight of the fruit, improving its shape, and

minimizing prickliness have provided the focus of much of the

selection pressure applied to eggplant in the process of its

domestication [17]. Although fruit size in cultivated types can

vary by at least an order of magnitude (from 20–30g to 600–700g),

total yield tends nevertheless to be correlated with the number of

fruits produced by each plant. In a previous study heterosis for

total yield was detected in ten eggplant hybrids obtained by

crossing germplasm accessions, which was comparable to the one

detected in commercial hybrids. However no significant heterosis

was observed for some quality traits as well as fruit weight, thus

yield was mainly attributed to the increase in fruit set [28]. Our

results, together with those obtained previously, are of particular

interest to address future eggplant breeding programs designed at

selecting high yielding genotypes.

Prickliness is an important quality trait, as during handling the

prickles can damage the skin of the fruit or even harm the

personnel involved in harvest and post-harvest operations [29].

Despite this, types with a very prickly calyx are preferred in some

regions, like Nagpur (India), on the basis of its perceived

association with better organoleptic quality. Fruit firmness is

important for storage purposes, while an upright plant habit is

beneficial as it eases harvesting. The number of flowers formed per

inflorescence is clearly correlated to the number of fruit set and

therefore to yield potential. In most cultivars, this number lies in

the range 1–3, but can reach 9–10 in some forms. However, since

the largest fruits develop from the most important flower, a

common, but costly practice is the manual removal of secondary

flowers (or the primary flower in the case of cluster types

cultivation). The abundance of seeds locules has significance

because the presence of seeds within the fruit reduces its

commercial value. Finally, the presence and thickness of the

green ring inside the skin is regarded as a negative trait by most

consumers because it gives the impression that the fruit is still

unripe.

Although the major quality traits are well recognized by

eggplant breeders, few attempts have been made to date to

elucidate their genetic basis. The earliest investigations described

QTL for fruit shape and pigmentation [16], while Frary et al. [18]

exploited an interspecific F2 population to identify QTL under-

lying 18 morphological traits. Cross species comparisons within

the Solanaceae have suggested that 12 of these QTL have

probable orthologues in at least one of the species. Doganlar et al.

[17] focused on the inheritance of various fruit traits and

anthocyanin pigmentation, while most recently, Barchi et al.

[21], using the same F2 population as here, located QTL

associated with anthocyanin content and identified syntenic

relationships between the eggplant and tomato genomes. A

common feature of many QTL studies is that phenotype interacts

with the environment, producing QTL x environment interactions

which are difficult for the breeder to handle. However these were

not evident in the present study, and most of the traits proved to be

highly heritable (Tables 1 and 2). Clustering of fruit-related QTL

was commonplace, reflecting linkage and/or (more likely) pleiot-

ropy; for example alleles influencing fl or fd are naturally likely to

and also affect fs, while alleles influencing fl and fd can also be

expected to influence fw. Four chromosomal regions (on E02, E03,

E11 and E12) appear to harbour the major QTL underlying fruit

dimension, size and yield. A particularly important region is the

E02 segment between 5 and 10 cM, which therefore represents an

excellent target for developing markers for yield.

The number of fruit produced per plant is a key component of

yield potential. In this population, a single major tyfn QTL

expressed at both sites was uncovered and the same chromosomal

region also harboured an eyfn QTL, at least at MT. At ML the

QTL position was shifted by 3–4 cM to a region containing major

QTL underlying ty and tyfw at ML, as well as fw and several other

fruit-related traits at both sites. The co-location of these QTL

offers an attractive molecular breeding opportunity. The substan-

tial positive correlation between ey and ty implies furthermore that

any selection pressure applied on yield at the first few harvests will

apply a similar pressure on overall productivity; this would allow

for a marked reduction in the labour and cost required for yield

selection, given that the crop produces fruit over a prolonged

period.?QTL underlying related traits have a proven tendency to

co-localize [17], and the present experiment produced plenty of

examples of this tendency. Thus, for example, the E02 and E03

QTL controlling seven yield-related traits were all clustered, as

were the QTL determining three different fruit shape-related traits

on E07 and E11, and those controlling four fruit shape-related

traits on E12. The E07 and E11 clusters are very likely the same

loci as those identified by Doganlar et al [17]. In contrast, the lepri

and fcpri QTL were scattered over two chromosomes, and there

were also examples of linkage between QTL controlling quite

unrelated traits (for example flE08.ML, fsE08.ML, pedlE08 and

lepriE08, and flwinE12 with various E12 fruit dimensions and

weight loci). An unanticipated linkage between anthocyanin

content and prickliness QTL was also encountered by Doganlar

et al [17], who concluded that negative selection imposed on leaf

prickliness may also have affected loci controlling pedl, fl and fs,

while selection for fs acted simultaneously on flwin. While

Doganlar et al. [17] defined a major QTL located on chromo-

some E06 controlling the prickliness of the leaf, stem, petiole and

fruit calyx, in the present population control of these characters

mapped to locations on E07 and E08, and there was little

correlation between fcpri and lepri, presumably resulting from the

different parental lines used to generate the F2 population.

Doganlar et al [17] used an interspecific map while an intraspe-

cific one was employed in the present work; maybe the prickliness

Key Agronomic QTL in Eggplant
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genes of the wild species used by Doganlar et al. [17] are not the

same than those of our population. In fact, when crossing two

cultivated non-prickly species (e.g., S. melongena with S. aethiopicum

or S. macrocarpon) the interspecific hybrid is frequently prickly [30],
which suggests that different (recessive) genes are present in each

species conferring absence of prickles). From a breeding point of

view selection for reduced prickliness in the fruit calyx cannot

indirectly be performed by an early selection for absence/low

prickles in the leaves; in addition, markers for both the traits are

needed to apply MAS for these features.

Collard et al. [31] have suggested that a QTL can be classified

as major only if it explains at least 10% of the PV, although a more

nuanced definition also requires a demonstration of stable

expression over time and space [32–34]. On the latter basis, of

the 62 QTL expressed in ML and the 43 in MT, at least one per

trait was a major locus. The LOD score associated with the least

convincing of these was just over 4 (fcpriE07) while the most

convincing was .90 (gringE08); the PV explained varied from

,10% (flE11) to ,94% (gringE08). The stability of most of these

QTL is particularly promising in terms of their exploitation in the

context of marker-assisted selection. Some of the major fruit

dimension QTL (e.g., flE07, fd1/2E03 and fd3/4E03) explained

quite a divergent proportion of the PV in the two environments,

which presumably reflects the consequence of the different

growing conditions at the two sites. A number of the minor

QTL, as classified on the basis of the proportion of the PV

explained (e.g. fwE12, tyfwE03, fsE12 and pedlE08), were stably

expressed, while others were site-specific (e.g. fwE04.MT, fd1/

2E04.ML). This phenomenon is a commonplace of QTL related to

yield in a number of different species [35].

Parental Alleles, Transgressive Segregation and Epistasis
In the majority of cases, the parental origin of the QTL alleles

reflected the performance of the parents; thus, for example, most

of the positive alleles at fw, fd and ty were inherited from ‘67/3’,

while those at fl, fs, fcpri, lepri, hab and flwin were derived from

‘305E40’. Transgressive segregation arises where a progeny of a

cross has inherited a non-parental combination of alleles acting

towards the same direction [36]. The transgressive progeny with

respect to pedl in ML fitted this model, as they carried two

segments carrying a positive QTL allele, one inherited from each

parent. However, the model failed with respect to many of the

traits (ty, tyfn, tyfw, eyfn, outfir, fcpri and slon in ML, and ty, ey,

fw, tyfn, outfir, slon and hab in MT); this was taken to imply that

some (minor) QTL still remain to be identified.

A number of environmental-specific examples of epistasis were

identified, although none of these explained a substantial

proportion of the PV (1.3–3.6%). Presumably the analysis of data

generated from both sites hampered the detection of epistatic

interactions, an effect explainable by invoking interference from

other QTL in the background [35]. Overall, the lack of epistasis (it

only affected four of the 20 traits) is a positive outcome as it greatly

simplifies the exploitation of the QTL in a breeding context.

Although the analysis carried out with QTLNetwork 2.1 [37] on

the combined data set produced no significant QTL x Environ-

ment interactions, some identified QTL with the MQM approach

were location-specific: for this reason we cannot rule out the

presence of QTL x Environment interaction.

Synteny and Putative Orthologous QTL
The genetic basis of fruit weight and dimension has been widely

explored in the Solanaceae, especially in tomato and sweet pepper

[6,8,10,13,14,23,38]. Extensive synteny do exist between the

tomato and eggplant genomes, thereby allowing genetic inferences
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to be made in eggplant based on the much greater knowledge for

the tomato genome [21,39,40]. Specifically, the gene content of an

eggplant genomic region harbouring a particular QTL can be

assumed to be similar to that in the orthologous segment of the

tomato genome. Examples of this are provided firstly by the

chromosome T02 gene/QTL fw2.4 identified by Grandillo et al.

[6] in the context of the yield-related QTL located here to

eggplant chromosome E02; and secondly the T03 region

harbouring fw3.2 and fs3.a [6,13] in relation to the E03 QTL

underlying fruit weight, dimension and yield.

In tomato, fruit shape is under the joint control of ovate on

chromosome T02, sun (T07) and fs8.1 (T08). The former gene

encodes a protein which negatively regulates plant growth [41],

while sun of is only effective in post fertilization [25,26]. The QTL

fs8.1 is responsible for the slightly elongated shape of processing

tomatoes [5]. In the present eggplant population, fruit shape QTL

were identified in the regions orthologous to those harboring sun

and fs8.1, but not ovate. Among other genes involved in the

determination of tomato fruit weight/shape, FAS, which encodes a

transcription factor controlling locule number and thereby fruit

mass [42], is tightly linked to the fruit weight QTL fw11.3 [14];

this location suggests possible orthology with the E12 fl, fd, fs, tyfw

QTL cluster. On the other hand, no eggplant equivalent of either

LOCULE NUMBER [43] or fw2.2 [18] were evident. Using a

different mapping population, however, Doganlar et al. [17] were

able to identify a possible orthologue of fw2.2. The failure in the

present case to do so may well reflect the lineage of the parental

line ‘305E40’, which is known to carry a segment derived from S.

aethiopicum, including the Rfo-sa1 locus conferring resistance to the

soil-borne Fusarium oxysporum f. sp. melongenae, and located in the

distal portion of its chromosome E02 [24]. The marker genotype

in this chromosome region is identical to that of the S. aethiopicum

progenitor from position 0 cM (locus em133) to position 10.4 cM

(30889_PstI_l365) (Table S1).

The tomato genome annotation also allowed for a presumptive

identification of a candidate gene for the green ring locus gringE08,

namely a member of the ferredoxin gene family. Ferrodoxins are

involved in chlorophyll synthesis, and the green pigment is known

to be chlorophyll. Association between this tomato locus and the

expression of the green ring in eggplant flesh may be gathered

through a deep functional analysis of the cloned gene(s)

underlining the QTL together with a biochemical characterization

of the composition of the flesh. A similar analysis of the fcpriE07

QTL identified as possible candidates genes encoding a cellulose

synthase, a long chain fatty acid-CoA ligase 3, a cinnamoyl-CoA

reductase-like protein and a cellulose synthase-like protein. All of

these proteins are components of the cellulose, lignin and suberin

production pathways, required to form prickles. A possible, but

less plausible candidate genes were encoding either a disease

resistance protein or a heat stress transcription factor, which may

chime with the idea that prickliness is an expression of the

response to stress, and in particular represents a means of reducing

the plant’s palatability to herbivores [29]. The potential candidate

genes for the pedl QTL included encoders of either a UDP-glucose

6-dehydrogenase, a COBRA-like protein or a cellulose synthase-

like C1–2 glycosyltransferase family 2 protein. All these gene

products are connected with cell wall synthesis and thus to

peduncle elongation. Finally, a potential candidate gene for the

flwin and slon QTL was an encoder of a NAC domain protein.

NAC domain proteins are involved in the formation of the shoot

apical meristem, various floral organs and lateral shoots, in plant

hormonal control and in the stress response [44], therefore fulfill

functions coherent with the flwin and slon QTL.T
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Conclusions

We have demonstrated here the utility of the combination of a

densely populated genetic map and an appropriate segregating

intraspecific population for elucidating the genetic basis of

breeder’s traits in eggplant. Major QTL were identified for yield

and its components, as well as for fruit dimension, shape and

firmness, the number of seed locules present, the length of the

peduncle, prickliness and growth habit. A feature of the analysis

was the presence of a number of QTL clusters. The robustness of

many of these major QTL offers the possibility of exploiting them

via marker assisted selection. Finally, it was possible to demon-

strate that a comparative genetic approach relying on the much

larger tomato knowledge base can help to identify potential

candidate genes, which provide an additional genomic resource

relevant for marker assisted selection and for further synteny

studies in the Solanaceae.

Methods

Permission
No specific permits were required for the described field studies,

which took place in two experimental fields at the CRA-ORL in

Montanaso Lombardo and CRA-ORA in Monsampolo del

Tronto (Italy). These field plots were used by the authors of this

paper affiliated to the aforementioned institution (LT, NA, NF,

FF, VB and GLR) for phenotypic characterization of the eggplant

mapping population.

Figure 2. QTL location (only chromosomes harboring QTL are shown). The scale shown on the left indicates the chromosome length in cM.
Marker names are shown to the right; the inclusion of a superscript near a marker name indicates the presence and number of additional co-localizing
markers on the Barchi et al. (2012) map. Map positions of the QTL are given on the left of each chromosome. The length of the vertical bars
represents the QTL confidence interval. QTL shown in blue were detected at ML, and those in red at MT. Epistatic QTL are prefixed by ‘‘*’’ where the
QTL had already been detected by MapQTL software, and by ‘‘ep’’ where the QTL was newly detected.
doi:10.1371/journal.pone.0089499.g002
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Mapping Population and the Evaluation of Phenotype
A population of 156 F2 plants, previously obtained by crossing

the eggplant lines ‘305E40’ and ‘67/3’ [21,23], was employed.

The double haploid female parent ‘305E40’ possesses the

resistance locus to the soil-borne fungus Fusarium oxysporum f. sp.

melongenae Rfo-sa1 [24]. This eggplant genotype was derived from

an interspecific somatic hybrid Solanum aethiopicum gr. gilo(+)S.

melongena cv. Dourga [22], which underwent several cycles of

backcross with recurrent eggplant genotypes (lines DR2, and

Tal1/1) prior to selfing and anther culture. The ‘67/3’ line is an F8

selection from the intra-specific cross cv. ‘Purpura’ x cv. ‘CIN2’.

The mapping population was grown, along with both parents

and the F1 hybrid, in the field at two sites, namely ML (Montanaso

Lombardo 45u209N, 9u269E) and MT (Monsampolo del Tronto

42u539N; 13u479E) in 2009. Each F2 individual was replicated by

establishing vegetative cuttings. At both sites, the material was

arranged as a set of two randomized complete blocks with two

replicate plants per entry per block. The 20 traits scored are

detailed in Table 1, and were measured in the fashion defined by

IBPGR [45] and the ECPGR eggplant descriptors [46]. Twelve

weekly fruit harvests were made starting in mid July and lasting

until early October. The number of fruits harvested per plant (tyfn)

and their mean weight (tyfw) allowed for the calculation of total

yield (ty). The first five harvests were combined to give early yield

(ey), number of early fruit (eyfn) and mean early fruit weight (eyfw).

Two representative fruits per plant picked between the first and

fourth harvests were chosen to characterize fruit weight (fw), fruit

length (fl), the diameter sampled in three parts of the fruit (fd1/2,

Table 4. Epistatic effects detected at p,0.05.

Trait QTL_i position_i range_i QTL_j position_j range_j AA PV(AA) % AD PV(AD) % DA PV(DA) % DD PV(DD) %

fl flE01.ML* 119.3 117.2–
129.1

flE07.ML* 69.7 63.8–73.4 0.81 1.28

fs fsE03.MT* 88.7 81.7–96.7 fsE07.MT* 64.8 62.8–72.7 20.29 2.26

hab habE01.ML* 12.0 0.0–24.0 habE08.ML* 10.4 0.0–14.5 20.34 3.19

tyfw eptyfwE02b.MT 33.4 29.4–34.5 tyfwE12.MT* 95.7 91.6–102.7 12.70 3.62

AD, DA DD: additive x dominant, dominant x additive, dominant x dominant interactions, respectively. PV(AD), PV (DA) and PV (DD)%: the contribution of, respectively,
the AD, DA and DD interaction.
doi:10.1371/journal.pone.0089499.t004

Figure 3. Synteny between eggplant chromosomes E2, E3, E7, E8b and E12 and parts of tomato chromosomes T2, T3, T7, T8 and
T11. The physical locations of the tomato genes FW2.4, fs3.a, fw3.2, sun, fs8.1, FAS and fw11.3 are shown in italics and in red. ‘QTL’ shown in a blue
box indicate a cluster of eggplant yield, fruit dimension and weight QTL. The scale on the left indicates the length of eggplant chromosomes in cM,
while distances on the tomato chromosome segments derived from their physical position on the genome [54].
doi:10.1371/journal.pone.0089499.g003
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fd3/4 and fdmax), peduncle length (pedl), fruit shape (fs) (the ratio

between fl and fdmax), calyx prickliness (fcpri) (scored on a zero

(no prickles) to three (many strong prickles) scale). Resistance to

mechanical penetration (outfir) was measured by inserting a

manual penetrometer halfway between the peduncle and the distal

end of the fruit. The fruit was cut transversely in the seed region to

ascertain the number of seed locules present (slon) and the

presence/absence of a green ring (gring) inside the skin. Whole

plant traits were measured prior to the first harvest; these

comprised growth habit (hab), scored on a scale from one

(prostrate) to three (upright), leaf prickliness (lepri) (scored in the

same way as for calyx prickliness) and the number of flowers per

inflorescence (flwin), estimated from a count of the flowers present

in five inflorescences.

Statistical Analyses and QTL Detection
Statistical analyses were performed using R software [47]. A

conventional analysis of variance was applied to estimate genotype

and environment effects based on the linear model Yij = m+gi+bj+eij,

where m, g, b and e represent, respectively, the overall mean, the

genotypic effect, the block effect and the error. Broad-sense

heritability values were given by s2
G/([s2

G+s2
E]/n), where s2

G

represented the genetic variance, s2
E the residual variance and n

the number of blocks. Correlations between traits were estimated

using the Spearman coefficient, and normality, kurtosis and

skewness were assessed with the Shapiro-Wilks test (a= 0.05).

Segregation was considered as transgressive when at least one F2

individual recorded a trait value higher or lower by at least two

standard deviations than the higher or lower scoring parental line.

QTL detection was based on the Barchi et al. [21] map,

constituted of 415 markers (339 SNPs, 2 HRMs, 3 CAPSs, 11

RFLPs, 33 SSRs and 27 COSII) and spanning 1,390 cM. Putative

QTL location was determined by both interval [48] and MQM

[49–51] mapping, as implemented in MapQTL v5 software [52].

QTL were initially identified using interval mapping, after which

one linked marker per putative QTL was treated as a co-factor in

the approximate multiple QTL model. Co-factor selection and

MQM analysis were repeated until no new QTL could be

identified. LOD thresholds for declaring a QTL to be significant at

the 5% genome-wide probability level were established empirically

by applying 1,000 permutations per trait [53]. Additive and

dominance genetic effects, as well as the percentage of the PV

explained by each QTL were obtained from the final multiple

QTL model. The program QTLNetwork 2.1 [37] was used to

analyse each set of environment’s data separately to identify

epistasis, and was then extended across both environments to

identify any QTL x environment interactions present. QTL effects

were estimated on the basis of the Markov Chain Monte Carlo

(MCMC) method. A type I error level of 0.05 was applied. The

genome scan employed a 10 cM window and a 1 cM walk speed.

Critical F values were obtained by 1,000 permutations and a

threshold of 0.05 was applied to assign significance to a QTL or to

an epistatic effect. Individual QTL were prefixed by a trait

abbreviation, followed by the relevant chromosome designation,

and were suffixed ‘‘a’’ or ‘‘b’’ where more than one QTL mapped

to a single linkage group; ML or MT was added as a suffix where

the QTL was expressed in a site-specific manner. Epistatic effects

were indicated by adding ‘‘*’’ to the label of a major established

QTL, while ‘‘ep’’ was added to a newly detected QTL. MapChart

v2.1 software [54] was draw the resulting maps. Syntenic regions

of the genome tomato (sequence build 2.40; [55]) were accessed to

identify candidate genes co-localizing with the eggplant QTL.

Initial searches were conducted using 20-kb sections and, for

sections of interest, additional searches were performed using

10 kb sections. Putative tomato orthologs of the eggplant genes

were identified by Blast search in the tomato gene indices at DFCI

[56].

Supporting Information

Figure S1 The distribution of phenotype over the mapping

population for each trait at each site. Parental (‘305E40’, ‘67/3’)

and the F1 hybrid (‘F1’) performance indicated by arrows.

(PDF)

Table S1 Haplotype variation within the 0–10.4 cM region of

chromosome E02, showing the presence of a Solanum aethiopicum

chromosome segment in ‘305E40’.

(XLSX)
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