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Abstract

Bacopa monnieri is a plant used as a nootropic in Ayurveda, a 5000-year-old system of tradi-

tional Indian medicine. Although both animal and clinical studies supported its role as a

memory enhancer, the molecular and cellular mechanism underlying Bacopa’s nootropic

action are not understood. In this study, we used deep sequencing (RNA-Seq) to identify the

transcriptome changes upon Bacopa treatment on SH-SY5Y human neuroblastoma cells.

We identified several genes whose expression levels were regulated by Bacopa. Biostatisti-

cal analysis of the RNA-Seq data identified biological pathways and molecular functions that

were regulated by Bacopa, including regulation of mRNA translation and transmembrane

transport, responses to oxidative stress and protein misfolding. Pathway analysis using the

Ingenuity platform suggested that Bacopa may protect against brain damage and improve

brain development. These newly identified molecular and cellular determinants may contrib-

ute to the nootropic action of Bacopa and open up a new direction of investigation into its

mechanism of action.

Introduction

Bacopa monnieri (Bacopa), also known as Bacopa monniera, Herpestis monniera, water hyssop

or Brahmi, has long been used in Indian traditional medicine (Ayurveda) as a brain tonic to

enhance memory performance, learning and concentration [1, 2]. These traditional claims

have recently been supported by several animal and clinical studies. Animals treated chroni-

cally with Bacopa showed better acquisition and improved retention in learning tasks [3–11].

Similarly, clinical studies and a meta-analysis of randomized control trials also demonstrated

that chronic oral administration of Bacopa (over a period of more than 12 weeks) to healthy

subjects resulted in improvements in the subjects’ information processing speed, free recall,

verbal memory and learning. Bacopa treatment also resulted in a decrease in anxiety, which
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improved learning [12–19]. With its low toxicity risks and apparent beneficial effects as a noot-

ropic [20–22], Bacopa has been extracted and marketed as a dietary supplement (KeenMind or

CDRI08, Soho Flordis International) and its production and imports are tightly inspected by

the Food and Drug Administration (FDA) (https://tinyurl.com/ybkmhfes). Notwithstanding

its wide availability, the mechanisms of action of Bacopa have yet to be delineated. Several

mechanisms have been proposed concerning the nootropic effects of Bacopa. These included

alteration of the levels of several neurotransmitters, including serotonin (5-hydroxytrypta-

mine, 5-HT) [6, 23, 24], acetylcholine [4, 13, 25] and dopamine [6, 20, 24, 26]. Elevation of the

neurotransmitter 5-HT resulted in activation of cAMP response element-binding protein

(CREB) and subsequent changes in transcription, protein phosphorylation and histone modi-

fication [8, 23, 27]. Other research groups have suggested that Bacopa regulate pre- and post-

synaptic proteins [9] and induce the formation of new dendrites [11, 28]. These proposed

mechanisms are not mutually exclusive and the discrepancies could be attributed to a selective

bias in the targets that were investigated by each research group.

In order to better define the molecular and cellular components of Bacopa action, we have

applied a deep sequencing technique, RNA-Seq, to identify the changes in the transcriptome

upon Bacopa treatment. We have performed both a transcript level and gene level analysis to

investigate the changes in gene expression caused by Bacopa. These experiments have sug-

gested underlying mechanisms of action for Bacopa, the biological pathways altered by this

plant extract and the potential upstream mediators for these processes.

Materials and methods

Cell culture, differentiation of SH-SY5Y cells and Bacopa treatment

The human neuroblastoma cell line, SH-SY5Y, was purchased from the American Type Cul-

ture Collection (ATCC CRL-2266). Cells were cultured in DMEM/F12 (Sigma) supplemented

in 10% (v/v) fetal bovine serum (FBS, Gibco) and 1% (v/v) penicillin/streptomycin (P/S, JR

Scientific). This medium will be referred to as Complete Medium henceforth. Subculturing was

performed as per manufacturer’s instructions (ATCC). In brief, as the SH-SY5Y cells grow as a

mixture of floating and adherent cells, care was taken to ensure the floating cells in the

medium were collected and recovered by centrifugation. These collated floating cells would be

combined with trypsinized adherent cells and subcultured. Cells were also passaged less than

three times to ensure that the cells remained neuroblast-like [29] (Fig 1A and 1C). For experi-

ments involving undifferentiated SH-SY5Y cells, the plating density was 0.4 x 106 cells/cm2. To

differentiate SH-SY5Y cells, they were plated at a density of 0.5 x 106/cm2 on culture surfaces

coated with 10 μg/ml laminin (Sigma) and maintained in Complete Medium for 18 h. After

which, they were maintained in serum-free Complete Medium. 50 nM of human insulin-like

growth factor-I (IGF-1) (Sigma) was added to promote differentiation [30]. 48 h after the

switch to serum-free Complete Medium and the addition of IGF-1, the medium was replen-

ished. Bacopa treatment was carried out 72 h after the start of differentiation. Undifferentiated

and differentiated cells were treated with 3 μg/ml Bacopa for 24 h or 10 μg/ml Bacopa for 4 h,

or with vehicle controls. For all experiments, we used a standardized extract of Bacopa (CDRI-

08), containing no less than 55% bacoside A and bacoside B as its bioactive components that

was extracted by ethanol extraction (Laila Impex, Vijaywada, India) [31, 32].

Hydrogen peroxide (H2O2) toxicity assay

Undifferentiated or differentiated SH-SY5Y cells were exposed to different concentrations of

H2O2 for 24 h. Number of live cells were measured using the LIVE/DEAD assay (Invitrogen)

using high-content screening (HCS) microscopy platform (MetaXpress, Molecular devices).
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Fig 1. Differentiation of SH-SY5Y cells using laminin and IGF-1. SH-SY5Y cells were plated on laminin and grown for 24 hours in DMEM/F12

supplement and 10% FBS. To induce differentiation, FBS was removed and 50 nm IGF-1 was added; cells were allowed to grow for 72 hours. (A)

Differential interference contrast (DIC) image of the undifferentiated controls. Red arrows marked the neurites in undifferentiated cells that were

characteristic for neuroblast-like cells. (B) DIC image of the differentiated cells. The increase in neurite length upon differentiation was marked out

by the green arrow heads. (C and D) To quantify the change in the length of the neurites, two days into the differentiation protocol, cells were

transfected with GFP cDNA and imaged on day 3 using fluorescence microscopy. Transfecting with GFP highlighted the neurites among the

confluent cell layers, allowing for easy quantification. (C) An overview of the undifferentiated controls. Red arrows marked out the neurite of each

GFP transfected cells. (D) Differentiated cells displayed long neurites as outlined by green arrow heads. (E) The increase in the length of the

neurites upon differentiation was statistically significant (unpaired t-test, **** indicates P-val < 0.0001).

https://doi.org/10.1371/journal.pone.0182984.g001
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High (10 μg/ml) and low concentration (1 μg/ml) of Bacopa were supplemented during the

addition of H2O2 for investigation of neuroprotective effects of Bacopa.

RNA sample preparation, library construction and RNA sequencing

RNA was harvested from treated SH-SY5Y cells using the NucleoSpin RNA/Protein kit

(Macherey-Nagel GmbH). Library construction and RNA sequencing were performed by the

Duke-NUS Genome Biology Facility (DGBF). Briefly, 2.2 μg of RNA was sent for library con-

struction. Quality of RNA was analyzed with the Agilent Bioanalyzer and RNA with RIN > 9

was used. Following poly-A enrichment, recovered RNA was processed using the Illumina

TruSeq RNA Sample Preparation Kit v2 protocol (non-stranded) to generate adaptor-ligated

libraries. A total of six samples were sequenced, obtained from undifferentiated and differenti-

ated SH-SY5Y cells treated with (i) vehicle-treated control, (ii) 3 μg/ml Bacopa for 24 h, and

(iii) 10 μg/ml Bacopa for 4 h. Samples were sequenced using two lanes of an Illumina

HiSeq2000 sequencer using 76-bp paired-end reads.

Computational analyses of RNA-sequencing data

RNA-Seq data was mapped to the human genome using Partek Flow (version 4.0.15.0406) and

Partek Genomics Suite (version 6.15.0327). After the adaptor sequences were trimmed away,

reads were mapped to the Homo sapiens genome (hg38) with TopHat2 (version 2.0.8). Local

alignment was performed on the unaligned reads from TopHat2 to the human genome (hg38)

with Bowtie2 (version 2.1.0). Aligned reads from the TopHat2 and Bowtie2 alignment were

combined in Partek Flow. Post-alignment QA/QC was performed after each alignment step

and aligned reads had an average quality Phred score above 30. The unique paired reads were

used for gene expression quantification. Reads were assigned to individual transcripts of a

gene based on the Expectation/Maximization (E/M) algorithm [33]. In the Partek Genomics

Suite software, the E/M algorithm was modified to accept paired-end reads, junction aligned

reads, and multiple aligned reads if these are present in the data. RNA expression was calcu-

lated as fragments per kilobase of transcript per million mapped reads (FPKM) values of the

human RefSeq genes for paired-end sequencing. To identify differentially expressed genes,

Partek’s Gene Specific Analysis (GSA) algorithm was used. Read counts between samples were

normalized with the Upper Quantile method and analysis was performed at the transcript

level. A cutoff value of multimodal P< 0.05 and fold change > 2 or< -2 were set. A gene

ontology analysis was conducted using Partek Genomics Suite.

Functional class scoring using gene-set enrichment and over-

representation analysis

To identify biological functions affected by differential gene expression, evidence for func-

tional class enrichment involving biological pathways or gene-sets was sought via two indepen-

dent methods. First, pathway enrichment analysis was conducted via the Gene Set Enrichment

Analysis tool using the “pre-ranked” option [34]. For this analysis, a total of 10744 genes with

a FPKM� 5 in at least 1 sample were included, and ranked by their fold-change in expression

between the control and Bacopa treated samples. The ranked gene-list was used to query path-

ways from Gene Ontology-Biological Process and Gene Ontology-Molecular Function,

(downloaded from the Molecular Signatures Database, MSigDB, [35], as well as custom path-

ways (Reactome pathways plus user-defined gene-sets for brain-specific functions) for statisti-

cally significant enrichment of higher or lower ranked genes. Significance estimates were

adjusted for multiple testing via the false discovery rate (FDR).
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Over-representation analysis (ORA) of biological functions and putative upstream regula-

tors was carried out by subjecting a pre-filtered list of 576 differentially expressed genes

(FPKM� 5 in at least 1 sample and absolute fold-change� 1.5) to QIAGEN’s Ingenuity Path-

way Analysis tool (IPA, QIAGEN Redwood City, https://www.qiagenbioinformatics.com/

product-login/). First, reference gene-sets corresponding to ‘biological functions’ (as defined

in the Ingenuity Knowledge Base), were analyzed via Fisher’s exact test for statistically signifi-

cant over-representation in the list of differentially expressed genes. Additionally, predictions

of changes in the activity status of ‘upstream regulators’ (specifically, transcription factors),

that could putatively explain the observed gene expression changes due to Bacopa treatments,

was also carried out. An ORA was first performed to determine whether an upstream regulator

was enriched for differential expression of its target genes (the list of regulators and their target

genes were, again, obtained from the Ingenuity Knowledge Base). The overall activation or

inhibition status of the regulator was then inferred from the degree of consistency (up- or

down-regulation) in the expression patterns of its target genes, expressed as a z-score. Regula-

tors with z� 2 or z� −2 were considered to be activated or inhibited, respectively.

cDNA synthesis and quantitative Real-Time Polymerase Chain Reaction

(qRT-PCR)

RNA was harvested using the NucleoSpin RNA/Protein kit (Macherey-Nagel GmbH). The

amount of RNA was measured spectrophotometrically using a Nanodrop ND-1000 Spectro-

photometer. cDNA was generated from 2 μg of RNA using the iScript cDNA synthesis kit (Bio-

Rad Laboratories). Random hexanucleotides were annealed for 5 min at 25˚C. cDNA synthesis

was performed for 30 min at 42˚C, followed by an enzyme inactivation step for 5 min at 85˚C.

cDNA was stored at -20˚C until use. 1 μl of the cDNA reaction mix was used for qRT-PCR,

which was performed using iQ SYBR green reagents (Bio-Rad Laboratories) on the iQ5 Multi-

color Real-Time PCR Detection System (Bio-Rad Laboratories) with the following PCR profile:

95˚C for 3 min, 40 cycles of 95˚C for 10s and 55˚C for 30 s. After the completion of the PCR,

melt curve analysis was performed using the following paradigm: 95˚C for 1 min, 55˚C for 1

min followed by ramping up the temperature from 55˚C to 95˚C. RPL19 was used as a control.

Results

Characterization of SH-SY5Y cells

The goal of these experiments was to characterize the effects of Bacopa on functional proper-

ties and gene expression profiles of SH-SY5Y human neuroblastoma cells. In the presence of

serum, undifferentiated SH-SY5Y cells can be propagated indefinitely, while they can be made

to terminally differentiate by withdrawing serum, plating on a properly coated surface and

addition of differentiating factors. SH-SY5Y cells (passage number 27, www.atcc.org) were dif-

ferentiated by plating them on laminin-coated coverslips, using a protocol optimized by

Dwane et al [30], which consisted of removing fetal bovine serum (FBS) and adding 50 nM

Insulin Growth Factor 1 (IGF-1). Cells showed a differentiated neuronal phenotype (forma-

tion of extensive neurites) after 3–5 days (Fig 1B). In order to obtain a better visualization of

the individual cells, we transfected the cultures with a cDNA encoding Green Fluorescent Pro-

tein (GFP) and used fluorescence microscopy to document the differentiation (Fig 1D and

1E). Fig 1 illustrates the results of differentiation on the morphology of SH-SY5Y cells. Upon

differentiation, there was a significant 3.4 fold increase in the neurite length in the SH-SY5Y

cells (undifferentiated cells: 19.4 μm; differentiated cells: 66.2 μm, student t-test, P-

val = 0.0001) (Fig 1E).

Effect of Bacopa on gene expression in human neuroblastoma cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0182984 August 23, 2017 5 / 21

https://www.qiagenbioinformatics.com/product-login/
https://www.qiagenbioinformatics.com/product-login/
http://www.atcc.org
https://doi.org/10.1371/journal.pone.0182984


RNA-Seq analysis

In order to understand the changes in gene expression levels caused by Bacopa, we performed

a comprehensive RNA-Seq analysis for both undifferentiated and differentiated SH-SY5Y neu-

roblastoma cells. Two different concentrations and treatment times were used: 10 μg/ml for 4

hours and 3 μg/ml for 24 hours. These concentrations were determined in pilot experiments to

be the highest concentrations that were not deleterious to the cells. Vehicle (DMSO) was used

as a control for the Bacopa effect. In addition, we evaluated the effect of differentiation itself.

For each condition, the sequence of 50 million mRNA fragments (“reads”) was obtained

which were then mapped to the human genome, as described in the Methods section, resulting

in a relative abundance for all mRNAs expressed at a reasonable level. For each “treatment”, a

list of differentially expressed mRNAs was generated, using a P-value smaller than 0.05 and an

absolute fold-change of at least 2. Table 1 summarizes the results.

Effect of differentiation

Differentiation of SH-SY5Y cells was accomplished by growing them on laminin and replacing

serum with IGF-1. Cells showed a differentiated phenotype (formation of extensive neurites)

after 3–5 days (Fig 1B, 1D and 1E). The RNA-Seq analysis detected 31,500 different transcripts

in SH-SY5Y cells. Due to alternative splicing, the number of distinct mRNAs in a cell is typi-

cally larger than the number of genes (~23,000) in the human genome. The differentiation pro-

tocol resulted in a change of 502 mRNA levels, of which 78 could be classified as transcribed

from ‘neuronal’ genes (S1 Table). The results indicated that (1) our differentiation protocol

was effective in altering the gene expression profile towards a more neuronal phenotype, and

(2) the RNA-Seq approach can be used to identify changes in mRNA levels in an un-biased

manner and at a genome wide scale.

Effect of Bacopa treatment: Individual transcript level analysis

Table 1 summarizes the effect of four different Bacopa treatment protocols (2 concentrations/

durations in undifferentiated and differentiated SH-SY5Y cells) on the mRNA profile of the

neuroblastoma cells. The 4-hour treatment with Bacopa altered the expression of more

mRNAs than the 24-hour Bacopa treatment: 57 and 66 vs. 37 and 29 altered mRNAs in undif-

ferentiated and differentiated cells, respectively (Table 1). This indicated that the effect of

Bacopa on gene transcription seen after 4 hours subsides after one day for many of the affected

transcripts. 4 hours of Bacopa on differentiated cells was most effective, with 66 mRNAs being

altered at least 2-fold (Table 1). This data set was therefore selected for further analysis. A gene

ontology analysis was conducted using Partek Genomics Suite. Fig 2 illustrates the results,

Table 1. Number of mRNAs altered by differentiation and Bacopa treatment.

Effect of # mRNAs with fold change > 2 # neuronal mRNAs

Differentiation (laminin, IFG-1) 502 78

10 μg/ml Bacopa 4 hours (Undifferentiated) 57 1

3 μg/ml Bacopa 24 hours (Undifferentiated) 37 4

10 μg/ml Bacopa 4 hours (Differentiated) 66 20

3 μg/ml Bacopa 24 hours (Differentiated) 29 4

We considered mRNA levels to be altered if the P-value was smaller than 0.05 and the absolute value of the fold change was larger than 2. Four hours of

Bacopa on differentiated cells was most effective (highlighted in bold and italics).

https://doi.org/10.1371/journal.pone.0182984.t001
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listing the biological processes, cellular components and molecular functions affected by

Bacopa treatment. Many of the affected biological processes referred to functions that were of

critical importance in the central nervous system. Table 2 summarizes the mRNAs altered by

Bacopa treatment encoded by genes with a neuronal function. The most striking finding was

the Neuroplastin gene (NPTN), because a single nucleotide polymorphism (SNP) in the Neu-

roplastin locus associates with cortical thickness and intellectual ability in adolescents [36].

Neuroplastin is a synaptic glycoprotein involved in long-term potentiation (LTP) in hippo-

campal CA1 synapses that modulates neuritogenesis and neuronal plasticity [37, 38].

Effect of Bacopa treatment: Gene level analysis

The analysis described above was based on mapping the reads to individual transcripts of the

human genome (see Materials and methods). Because of the extensive alternative splicing seen

for many genes, a process that is most prominent in the brain, mapping the reads is a difficult

process and bound to be error-prone. We have therefore used an additional analysis, which is

more robust, in which the reads mapped to all exons belonging to a gene were combined to

provide a gene level statistic. Several additional genes regulated by Bacopa were identified this

way, as summarized in Table 3.

Fig 2. Results of the gene ontology analysis by Partek Genomics Suite. The bar graphs indicate the percentage of transcripts

that belong to Biological Processes (blue), Cellular Components (red) and Molecular Functions (green) that were most affected by

Bacopa treatment.

https://doi.org/10.1371/journal.pone.0182984.g002
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Table 2. Summary of neuronal genes whose mRNAs were altered by Bacopa treatment of SH-SY5Y cells.

Gene

Symbol

Gene name Fold

change

Function

HNRNPC Heterogeneous nuclear ribonucleoprotein C 19.7 Promotes APP translation by competing with FMRP for APP mRNA

recruitment to P bodies

CIB2 Calcium and integrin binding family member 2 6.7 Role in Ca2+ homeostasis and Ca2+ regulation in the mechano-transduction

process; Mutations cause deafness

NPTN Neuroplastin 6.6 Regulation of long-term neuronal synaptic plasticity, cytosolic Ca2+ ion

concentration, neuron projection development; SNPs associated with

cognitive abilities in adolescents

COMMD6 COMM Domain Containing 6 6.4 NF-KappaB binding; Regulates transcription factor activity, gene expression

NDUFA5 NADH Dehydrogenase 1 Alpha Subcomplex 5 (4.7) Mitochondrial transport

CHAC1 ChaC Glutathione-Specific Gamma-

Glutamylcyclotransferase 1

4.0 Negative regulator of Notch signaling pathway involved in embryonic

neurogenesis; Promotes neurogenesis in embryos

AP2S1 Adaptor-Related Protein Complex 2, Sigma 1

Subunit

3.8 Synaptic transmission; Regulates EGFR, TRK receptor, ephrin receptor

pathway

KCNMA1 K Channel, Ca Activated Large Conductance M

Alpha 1

(3.3) Regulation of membrane potential; Synaptic transmission

NGFR Nerve Growth Factor Receptor 3 Mediates cell survival and cell death of neural cells; Necessary for circadian

oscillation in suprachiasmatic nucleus

STRN3 Striatin-3 2.6 Glutamate regulation of dopamine D1A receptor signaling

PRKACB Protein Kinase, CAMP-Dependent, Catalytic,

Beta

(2.6) Mediates signaling through cAMP; Involved in neuronal structure and

signaling

LDHA Lactate Dehydrogenase A (2.5) Substantia nigra development

MTMR2 Myotubularin Related Protein 2 2.3 Mutations result in Charcot-Marie Tooth disease type 4B, an autosomal

recessive demyelinating neuropathy

VCL Vinculin 2.3 Involved in regulation of actin cytoskeleton, axon and neuron projection

extension; Has a negative regulation on cell migration

WDR1 WD Repeat Domain 1 2.3 Involved in sensory perception of sound, regulation of oligodendrocyte

differentiation or gliogenesis and neurogenesis

DBI Diazepam Binding Inhibitor (GABA Receptor

Modulator, Acyl-CoA Binding Protein)

(2.3) Modulates signal transduction at GABAA receptors; Displaces diazepam

from the benzodiazepine recognition site in GABAA receptor

EFNB2 Ephrin-B2 (2.3) Mediate development of the nervous system; Crucial for migration, repulsion

and adhesion during neuronal development

ACTB Actin, Beta 2.2 Involved in axonogenesis, axon guidance, neuron projection

morphogenesis, substantia nigra development, ATP-dependent chromatin

remodeling, ephrin receptor signaling pathway

ACTG1 Actin Gamma 1 2.2 Associated with DFNA2-/26, a subtype of autosomal dominant non-

syndromic sensorineural progressive hearing loss; Involved in Ras signaling

pathway, axonal guidance

SLC38A1 Solute Carrier Family 38, Member 1 2.2 Glutamine transporter, precursor for the synaptic transmitter, glutamate and

GABA; Involved in synaptic transmission and neurotransmitter reuptake

STMN4 Stathmin-Like 4 (2.2) Involved in neuron projection development, microtubule depolymerization,

neuronal plasticity, rapidly induced after seizure or LTP

CALR Calreticulin 2.1 Major Ca2+-binding protein in the lumen of the ER; Essential for integrin-

mediated signaling and cell adhesion

SLC1A4 Solute Carrier Family 1 (Glutamate/Neutral Amino

Acid Transporter), Member 4

2.1 Associated with Hartnup disorder; Chloride channel activity; Transporter for

alanine, serine, cysteine and threonine, sodium dependent

KLHL24 Kelch-Like Family Member 24 (2.1) Reduces kainate receptor-mediated currents in hippocampal neurons

ATF4 Activating Transcription Factor 4 2 Transcriptional activator; Protects against neuronal death in Parkinson’s

disease; Involved in neurodegeneration; May constrain long-term synaptic

changes and memory formation

NRCAM Neuronal Cell Adhesion Molecule (2.0) Involved in neuron-neuron adhesion; Promotes directional signaling during

axonal cone growth

STMN1 Stathmin 1 (2.0) Required for axon formation during neurogenesis; Involved in the control of

learned and innate fear

(Continued)
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Validation of the RNA-sequencing results: qRT-PCR

Next, we validated the RNA-Sequencing results using qRT-PCR experiments for a subset of

genes. Fig 3 summarizes the results by showing the absolute value of the fold change produced

by Bacopa treatment. In the case of genes with alternatively spliced transcripts, PCR primer

pairs were designed that were unique for the mRNA isoform that was altered by Bacopa. In

some cases, this proved to be hard, since the exon that was unique for the altered transcript

was very short. A case in point is Neuroplastin, which has four mRNA variants, one of which

is affected by Bacopa (NPTN_D). The distinguishing feature of the affected variant is the

absence of exon 2 and that exon 7 is shortened by 12 nucleotides. We were able to validate the

Table 2. (Continued)

Gene

Symbol

Gene name Fold

change

Function

XRCC6 X-Ray Repair Complementing Defective Repair in

Chinese Hamster Cells 6

(2.0) Involved in brain development; Positive regulation of neurogenesis

https://doi.org/10.1371/journal.pone.0182984.t002

Table 3. Genes regulated by Bacopa identified by gene-level analysis of the RNA-Seq data.

Gene

Symbol

Gene name Fold

Change

Function

HBA2 Hemoglobin, Alpha 2 405 Oxygen-transport metalloprotein in the red blood cells

HBB Hemoglobin, Beta 370 Oxygen-transport metalloprotein in the red blood cells

HBA1 Hemoglobin, Alpha 1 292 Oxygen-transport metalloprotein in the red blood cells

ANKRD1 Ankyrin Repeat Domain 1 21.7 Transcription factor involved in development and under conditions of

stress

SLC7A11 Solute Carrier Family 7 Member 11 7.5 Transporter that antiports glutamate for cysteine

SERPINE1 Serpin Peptidase Inhibitor, Clade E 6.8 Serine protease inhibitor that functions as the principal inhibitor of tissue

plasminogen activator and urokinase

WNT8B Wingless-Type MMTV Integration Site Family,

Member 8B

6.8 Wnt isoform specific for the developing brain

HIST1H4K Histone Cluster 1, H4k 5.3 Histone H4 isoform

HIST1H4J Histone Cluster 1, H4j 5.2 Histone H4 isoform

CCL2 Chemokine (C-C Motif) Ligand 2 4.8 Recruits monocytes, memory T cells, and dendritic cells to sites of

inflammation produced by injury or infection

CHAC1 ChaC Glutathione-Specific Gamma-

Glutamylcyclotransferase 1

4.5 Proapoptotic component of the unfolded protein response; Downstream of

the ATF4-ATF3-CHOP cascade

NTS Neurotensin 4.4 Neuropeptide implicated in the regulation of hormone release; Has

interaction with the dopaminergic system

ANGPTL4 Angiopoietin-Like Protein 4 4.0 Induced under hypoxic conditions; Serum hormone directly involved in

regulating lipid metabolism

PTPRH Protein Tyrosine Phosphatase, Receptor Type,

H

(3.8) Ubiquitously expressed; Upregulated in gastrointestinal cancers

TXNIP Thioredoxin Interacting Protein (3.8) Glucocorticoid-regulated primary response gene involved in mediating

glucocorticoid-induced apoptosis

YPEL4 Yippee-Like 4 (Drosophila) (3.6) Nuclear protein; Activates Elk-1 in the MAPK signaling pathway; Possible

function in cell division

CNN2 Calponin 2 3.5 Actin-binding protein implicated in cytoskeletal organization

RAPGEF4 Rap guanine nucleotide exchange factor 4 (3.0) EPAC2; May regulate synaptic plasticity

STON1 Stonin 1 (3.0) Component of the endocytic machinery

FMN1 Formin 1 (3.0) Role in the formation of adherens junction and the polymerization of linear

actin cables

https://doi.org/10.1371/journal.pone.0182984.t003
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effects of Bacopa on the transcripts identified by the gene-level analysis (ANKRD1, SLC7A11,

CHAC1, TXNIP, YPEL4 and STON1) (Table 3). However, for the mRNAs for which only one

or a few of the alternatively spliced variants were affected by Bacopa, the validation was less

successful: the effects were either much smaller than those seen in the RNA-Seq analysis

(HBA1 and HBA2) (Table 3) or there was no measurable effect (NPTN_D) (Table 2).

Fig 3. Absolute values of Fold Change (absFC) caused by Bacopa treatment. RT-PCR was performed on undifferentiated cells and

differentiated cells which were treated with vehicle (DMSO) or with Bacopa for either 4 h (blue) or 24 h (orange). The gray area indicated an

absFC value smaller than 1. Genes marked with * were results from the treatment on undifferentiated cells. (1) NPTN_A and (2) NPTN_A

were results generated from 2 sets of primers priming for NPTN transcript A.

https://doi.org/10.1371/journal.pone.0182984.g003
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Gene Set Enrichment Analysis (GSEA)

The deep sequencing experiments (RNA-Seq) we have performed yielded a set of genes that

were differentially affected by Bacopa treatment. In order to better understand the underlying

biological processes affected by Bacopa, we compared the genes affected by Bacopa to the gene

sets belonging to each of the entries in the Gene Ontology database. A statistical test was per-

formed for each GO term to investigate if it is enriched for the Bacopa-regulated genes. The

Broad Institute has developed a set of tools to query the Molecular Signatures Database

(MSigDB), a collection of annotated gene sets. Table 4 shows the results of a GSEA of three

databases: Reactome, Gene Ontology (Molecular Function: GOMF, Biological Process: GOBP)

and Canonical. Twenty-five gene sets were identified with a significant enrichment score (P-

val< 0.05). Twenty-two of these fell into three broad functional categories: (1) oxidative stress

response, (2) translation regulation, and (3) membrane transport. Fig 4 provide more detailed

results for the ‘Oxidative Stress Response’ gene set, including the Enrichment plot (Fig 4A),

the genes enriched in this pathway (Fig 4B) and the Mean-Average (MA) plot (Fig 4C).

Ingenuity Pathway Analysis (IPA)

With the current results, we were interested to understand the possible upstream biological

causes and potential downstream effects. As such, we performed IPA on the RNA-Seq data for

Bacopa treatment of differentiated SH-SY5Y cells. IPA infers statistically, based on the altered

gene expression in our dataset, the possible downstream effects on biological functions and

association with diseases (Table 5) and Upstream Regulators (Table 6). Table 5 shows four Bio-

logical Functions identified by IPA that were over-represented with differentially expressed

genes in Bacopa-treated vs. Control samples: (1) carbohydrate metabolism, (2) generation of

cells, (3) migration of cells, and (4) cell proliferation. Six Biological Functions were predicted

Table 4. Results from GSEA (Pre-ranked).

Name Pathway Function Size NES P-val Dir Database

Antioxidant activity Oxidative stress 11 1.86 0.038 Up GO

Activation of chaperones by ATF6 alpha Unfolded protein response 11 1.78 0.053 Up Reactome

Cytosolic tRNA aminoacylation Oxidative stress 22 1.97 0.011 Up Reactome

Oxidative stress response Oxidative stress 238 1.44 0.036 Up Custom

Influenza viral RNA transcription and replication Translation regulation 101 -1.52 0.05 Down Canonical

KEGG_ribosome Translation regulation 82 -1.86 0.004 Down Canonical

Peptide chain elongation Translation regulation 86 -1.89 0.004 Down Reactome

3’UTR mediated translational regulation Translation regulation 106 -1.55 0.043 Down Reactome

Structural constituent of ribosome Translation regulation 74 -1.72 0.015 Down GO

tRNA aminoacylation Translation regulation 36 -1.74 0.044 Up Reactome

Amino acid transport across the plasma membrane Transmembrane transport 10 1.86 0.017 Up Reactome

amino acid and oligopeptide SLC transporters Transmembrane transport 14 1.92 0.033 Up Reactome

SLC mediated transmembrane transport Transmembrane transport 96 1.56 0.038 Up Reactome

Transmembrane transporter activity Transmembrane transport 10 1.78 0.051 Up GO

Ligase activity forming carbon oxygen bonds Metabolism 12 1.88 0.027 Up GO

Acetylglucosaminyltransferase activity Metabolism 11 -1.77 0.053 Down GO

Three different databases were used from the MSigDB at the Broad Institute: ‘Reactome’ (674 gene sets), Gene Ontology’ (GO, 396 gene sets), and

‘Canonical’ (1330 gene sets). Size = number of genes in the set, NES = Normalized Enrichment Score, Dir = direction. Only results with P-val < 0.055 are

listed. The identified gene sets could be assigned to one of four biological functions: stress response (blue), translation regulation (grey), membrane

transport (yellow) and metabolism (green). ATF6: Activating transcription factor 6; 3’UTR: 3’ Untranslated region; SLC: solute-carrier.

https://doi.org/10.1371/journal.pone.0182984.t004
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Fig 4. Enrichment Plot, MA Plot and enriched gene list for the ‘oxidative stress response’ pathway. (A)

Enrichment Plot for the designated pathway. The graph represented the incremental change in the

enrichment score for this pathway, when queried along the ranked list of genes during gene-set enrichment

analysis (GSEA). Maximal enrichment score was observed at 0.45. The relative ranks of the genes belonging

to this pathway were indicated by the bars under the graph. Lines clustered to the left (marked in red)

demonstrated strong enrichment of 39 highly ranked genes for this pathway that were upregulated by Bacopa.

(B) The 39 genes (leading up to the maximal enrichment score) that contributed positively to the core

enrichment of the ‘oxidative stress response’ pathway in GSEA. (C) Mean-Average (MA) plot analysis of the

Oxidative Stress Response pathway. The MA plot compares the distribution of differential gene expression as

a function of the magnitude of expression signals. The Y-axis plotted the log ratio of treatment (Bacopa) vs.

Control (DMSO) and X-axis recorded the log of the average FPKM score between the two groups. The

distribution of log ratios for all genes queried by RNA sequencing were shown in light gray circles. Genes

belonging to the Oxidative Stress Response pathway (238 genes) were shown in orange and red circles. The

39 genes contributing to significant enrichment of this pathway (by GSEA) were shown in red whereas the

remaining pathway genes were shown in orange.

https://doi.org/10.1371/journal.pone.0182984.g004
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to be inhibited by Bacopa treatment, including (1) organismal death, (2) damage of brain, (3)

apoptosis and (4) synthesis of reactive oxygen species (ROS), and (5) growth failure. Note that

the activation states of these disease-related categories were decreased by Bacopa treatment.

Many of these Bacopa effects would therefore be expected to contribute to increased brain

health and improved brain development. Table 6 shows the three Upstream Regulators (tran-

scription factors) that the IPA analysis predicted as differentially regulated based on the

observed effects of Bacopa treatment on gene transcription. The transcription factors, Activat-

ing Transcription Factor 4 (ATF4) and Nuclear Factor, Erythroid 2 Like 2 (NFE2L2) were pre-

dicted to be activated, while Forkhead Box O3 (FOXO3) was inhibited. ATF4 is a transcription

factor involved in the endoplasmic reticulum (ER) stress response [39]. It is known to collabo-

rate with NFE2L2 (aka NRF2), a master redox switch that turns on cellular signaling involved

in the induction of cytoprotective genes [40–43]. FOXO3 is a ‘forkhead box’ transcription fac-

tor that regulates autophagy and neural oxidative stress-mediated stem cell homeostasis and

has been associated with longevity in worms [44–48]. Therefore, all three upstream regulators

identified by IPA are transcription factors involved in regulating cellular stress pathways.

Table 5. Ingenuity Pathway Analysis: Over-represented biological functions.

Categories Diseases or function Annotation P-val Predicted activation state

Carbohydrate metabolism Quantity of carbohydrate 6.01E-05 Increased

Cellular growth and Proliferation; Tissue development Generation of cells 1.34E-04 Increased

Cellular movement Migration of stem cells 2.01E-04 Increased

Cellular Development; Cellular growth and proliferation Cell proliferation of breast cancer cell lines 3.38E-04 Increased

Organismal survival Organismal death 6.14E-06 Decreased

Neurological disease; Organismal injury and abnormalities Damage of brain 1.73E-05 Decreased

Cell death and survival; Neurological disease Apoptosis of cerebral cortex cells 6.09E-04 Decreased

Cell death and survival; Neurological disease Apoptosis of cortical neurons 9.93E-04 Decreased

Free radical scavenging Synthesis of reactive oxygen species 1.26E-03 Decreased

Developmental disorder Growth failure 6.61E-03 Decreased

https://doi.org/10.1371/journal.pone.0182984.t005

Table 6. Ingenuity Pathway Analysis: Upstream regulators.

Upstream Exponential Molecular type Predicted Activation Bias-corrected P-val of

regulator log ratio activation state z-score z-score Overlap

FOXO3 n.s. Transcription Inhibited -2.772 -2.841 4.53E-05

regulator

NFE2L2 n.s. Transcription Activated 2.722 2.579 4.18E-04

regulator

ATF4 0.937 Transcription Activated 3.404 3.218 2.62E-19

regulator

IPA identified three transcription factors that each regulated the transcription of genes whose mRNA levels were affected by Bacopa treatment. This

suggests that Bacopa exert its effect by inhibiting FOXO3 and activating both NFE2L2 (NRF2) and ATF4 (CREB2). The transcription level of FOXO3 and

NFE2L2 was not significantly (n.s.) changed by Bacopa, but they were predicted to be functionally inhibited and activated, respectively, by the treatment,

based on the observed transcriptional response of their target genes. ATF4, in contrast, was also transcriptionally regulated by Bacopa (exp. Log

ratio = 0.937).

https://doi.org/10.1371/journal.pone.0182984.t006
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Neuroprotection

To validate the findings obtained from the RNA-Seq data, we have performed a functional oxi-

dative stress assay of Bacopa and studied the neuroprotective properties of Bacopa. SH-SY5Y

cells were first challenged with hydrogen peroxide (H2O2) and the effect was evaluated using a

fluorescence-based live-death assay. Fig 5A and 5B illustrate the concentration-survival curve

for H2O2. H2O2 was quite efficacious in causing cell death. Bacopa was able to partially protect

against H2O2 toxicity, at a concentration of 10 μg/ml, while the lower dose of 1 μg/ml showed

no efficacy in this neuroprotection assay (Fig 5C). Protection was seen at a lower dose than

previously reported for Bacopa in SH-SY5Y cells, in which the lowest dose tested was 25 μg/ml

[49]. This neuroprotective property of Bacopa seen in these functional oxidative stress assays

validated the results and analysis obtained from the RNA-Seq, which suggested an effect of

Bacopa on the oxidative stress response pathway.

Discussion

By identifying changes in the gene transcription profile in human neuroblastoma cells

(SH-SY5Y) using an RNA-Seq approach, we have identified some of the molecular/cellular

components and pathways that underlie the mechanism of action of Bacopa Monnieri
(Bacopa). Changes in mRNA levels produced by Bacopa treatment were validated using

qRT-PCR. A gene ontology analysis of the mRNAs affected by Bacopa indicated effects on

brain development, Ca2+ and K+ ion homeostasis, synaptic function and long-term potentia-

tion (Fig 2), providing the first mechanistic support for the well-published nootropic effects of

Bacopa on cognitive function and memory performance.

The Gene Set Enrichment Analysis (GSEA) performed for the effect of 4 hours of Bacopa

treatment on differentiated SH-SY5Y neuroblastoma cells identified three biological func-

tions/pathways affected by Bacopa: 1) oxidative stress response, 2) transmembrane transport

and 3) translation regulation (Table 4). The first two pathways were upregulated by Bacopa

and the third was downregulated, suggesting an inhibition of general translation. Interestingly,

aminoacylation of tRNAs was upregulated by Bacopa, which would indicate that the levels of

tRNAs will increase, thereby stimulating translation rates. It is possible that the overall effect of

Fig 5. H2O2 toxicity and protection by Bacopa. (A) Using a high-content screening (HCS) microscopy platform (MetaXpress,

Molecular Devices) we measured the number of live SH-SY5Y cells after a 24-hour treatment with H2O2 at the concentrations

indicated. The number of live cells per field of view was normalized to the control value (B) H2O2 survival curve fitted with the

logistics equation: The IC50 (concentration that kills 50% of the cells) was 105 μM. (C) Neuroprotection assay for Bacopa. The bar

graphs represented live cell counts per field of view (means ± SEM) for (i) control cultures (Ctrl), (ii) cells treated with 100 μM

peroxide for 24 hours, and cells treated with the same amount of H2O2 supplemented with a (iii) high and (iv) low concentration of

Bacopa (Bac). The high concentration Bacopa showed significant protection, while the low concentration failed to protect against

peroxide toxicity. * P-val < 0.05, *** P-val < 0.001, one-way ANOVA, Dunnett post-test.

https://doi.org/10.1371/journal.pone.0182984.g005
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Bacopa treatment is an introduction of a selective bias in the translation of a specific class of

mRNAs. This would have to be investigated further.

A second interesting biological function uncovered by the GSEA was the up-regulation by

Bacopa of a select group of members of the SLC family of solute carriers, which consists of

over 300 proteins functionally grouped into 52 sub-families, including facilitative transporters,

primary and secondary active transporters, ion channels, and the aquaporins. Bacopa

increased the expression of 31 (out of 300) SLC family members. Table 7 summarizes the func-

tion of some of these transmembrane carriers by listing the molecules they transport. Many

have critical functions in the central nervous system. For instance, Glutamate, L-DOPA, nor-

epinephrine and monoamines are neurotransmitters, or their precursors. The Na+/Ca2+

exchanger and K-Cl co-transporter are critical for intracellular ion homeostasis and neuronal

excitability. Zinc is a co-factor that regulates NMDA receptor function. Finally, there are trans-

porters for glucose, fatty acids, phosphate and many amino acids, which are required for nor-

mal metabolism. These transporters are heteromeric complexes assembled from multiple

subunits. Bacopa altered the mRNA levels for two and four subunits for the complexes that

transport glucose and Zinc respectively.

Moreover, Bacopa was found to upregulate many genes that respond to oxidative stress,

thereby likely improving the capacity of the cell to properly deal with such insults. Oxidative

damage resulted from reactive oxygen species caused pathological manifestations of aging

resulting in cognitive dysfunction [50]. Overexpression of superoxide dismutase in aged mice

exhibited enhanced hippocampal LTP, better cerebellum-dependent motor learning and better

hippocampus-dependent spatial learning [51]. Similarly, rats exposed to another antioxidant,

Curcumin, also had improved memory retention [52]. Identification of the exact subset of

genes of the oxidative stress response pathway that are controlled by Bacopa (Fig 4) now

enables more mechanistic studies of the neuroprotective effect of Bacopa. This important

Table 7. Summary of SLC-mediated transport functions up-regulated by Bacopa.

Gene Transports

SLC33A1 Acetyl-CoA

SLC27A4 Fatty acids

SLC2A1 Glucose

SLC2A8 Glucose

SLC1A4 Glutamate

SLC38A1 Glutamine

SLC7A5 L-DOPA; Amino acids (W, Y, L, R, F)

SLC8A3 Na+/Ca2+-exchanger

SLC12A5 Neuronal K-Cl cotransporter

SLC6A2 Norepinephrine

SLC20A1 Phosphate

SLCO4A1 Thyroid hormones T3 and T4

SLC35A2 UDP-Galactose

SLC35A3 UDP-N-Acetylglucosamine

SLC18A1 Monoamines (vesicular)

SLC30A1 Zinc

SLC30A5 Zinc

SLC39A3 Zinc

SLC39A6 Zinc

https://doi.org/10.1371/journal.pone.0182984.t007
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finding goes a long way towards understanding the mechanism underlying Bacopa’s neuro-

protection capabilities that others and we have characterized (Fig 5) [24, 25, 53–58].

In addition, the ingenuity pathway analysis (IPA) identified biological functions that were

increased by Bacopa such as cell proliferation and migration; and several neuronal disease-

associated pathways, which were inhibited by Bacopa such as including brain damage, growth

failure, apoptosis of neurons and oxidative stress damage (Table 5). The IPA analysis also iden-

tified three transcription factors which are likely responsible for the changes in gene expression

seen following Bacopa treatment: ATF4 (CREB2), NFE2L2 (NRF2) and FOXO3 (Table 6).

Taken together, the data outlined a specific set of biological pathways altered by Bacopa as well

as the molecular players that mediated these effects. Fig 6 summarizes a working model show-

ing how Bacopa could exert its effects on biological endpoints, neuroprotection and processes

underlying learning & memory and Alzheimer’s disease (AD), by modulating the function of

the identified transcription factors. The link to AD we discovered was unexpected, but there

are a few publications suggesting protective effects of Bacopa in AD models [53, 58]. Further

clinical studies of Bacopa’s therapeutic value in AD seem warranted.

Fig 6. Pathways identified by IPA connects Bacopa to memory, neuroprotection and AD. The light-blue box summarizes the

effect of Bacopa on the three transcription factors identified by the Ingenuity Pathway Analysis (IPA). Bacopa activates ATF4 and

NRF2, while it inhibits the function of FOXO3. The color of boxes and arrows indicates the effects of Bacopa: green indicates

increase/activate, orange indicates decrease/inhibit. Blue boxed are three biological endpoints: learning & memory, neuroprotection,

and Alzheimer’s disease (AD). Explanation of the numbered connections: (1) ATF4 and NRF2 functionally interact with each other

[40–43]. (2) ATF4 is implicated in memory [59–62]. (3) NRF is implicated in memory [63–67]. (4) Translation initiation factor

eIF2-alpha stimulates translation of ATF4 [68–71]. (5) eIF2-alpha is implicated in memory formation [72, 73]. (6) ATF4 has been

implicated in Alzheimer’s disease (AD) [74–78]. (7) NRF2 has also been linked to AD [63, 65, 67, 79]. (8) NRF2 plays a critical role in

neuroprotection [80–83]. (9) FOXO3 mediates oxidative stress-induced neuronal cell death [84–87]. Inhibition of FOXO3 by Bacopa

could explain its neuroprotective effect.

https://doi.org/10.1371/journal.pone.0182984.g006
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In conclusion, the RNA-seq analysis presented here provides a new framework of transcrip-

tion factors and the genes they control that may mediate the nootropic and neuroprotective

effects of Bacopa.
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