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ABSTRACT
Background: Breast invasive carcinoma (BRCA) is a commonly occurring malignant
tumor. Zinc finger proteins (ZNFs) constitute the largest transcription factor family
in the human genome and play a mechanistic role in many cancers’ development.
The prognostic value of ZNFs has yet to be approached systematically for BRCA.
Methods: We analyzed the data of a training set from The Cancer Genome Atlas
(TCGA) database and two validation cohort from GSE20685 and METABRIC
datasets, composed of 3,231 BRCA patients. After screening the differentially
expressed ZNFs, univariate Cox regression, LASSO, and multiple Cox regression
analysis were performed to construct a risk-based predictive model. ESTIMATE
algorithm, single-sample gene set enrichment analysis (ssGSEA), and gene set
enrichment analyses (GSEA) were utilized to assess the potential relations among the
tumor immune microenvironment and ZNFs in BRCA.
Results: In this study, we profiled ZNF expression in TCGA based BRCA cohort and
developed a novel prognostic model based on 14 genes with ZNF relations. This
model was composed of high and low-score groups for BRCA classification. Based
upon Kaplan-Meier survival curves, risk-status-based prognosis illustrated
significant differences. We integrated the 14 ZNF-gene signature with patient
clinicopathological data for nomogram construction with accurate 1-, 3-, and
5-overall survival predictive capabilities. We then accessed the Genomics of
Drug Sensitivity in Cancer database for therapeutic drug response prediction of
signature-defined BRCA patient groupings for our selected TCGA population.
The signature also predicts sensitivity to chemotherapeutic and molecular-targeted
agents in high- and low-risk patients afflicted with BRCA. Functional analysis
suggested JAK STAT, VEGF, MAPK, NOTCH TOLL-like receptor, NOD-like
receptor signaling pathways, apoptosis, and cancer-based pathways could be key for
ZNF-related BRCA development. Interestingly, based on the results of ESTIMATE,
ssGSEA, and GSEA analysis, we elucidated that our ZNF-gene signature had
pivotal regulatory effects on the tumor immune microenvironment for BRCA.
Conclusion: Our findings shed light on the potential contribution of ZNFs to the
pathogenesis of BRCA and may inform clinical practice to guide individualized
treatment.
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INTRODUCTION
Cancer, a significant problem for global health, is the second leading cause of death in
the United States (Malvezzi et al., 2019; Siegel, Miller & Jemal, 2020). The number of
BRCA cases and mortality related to BRCA is globally challenging and affects several
countries (Bray et al., 2018). In order to reduce the global burden that BRCA places, it is
crucial to increase the effectiveness of prognostic models for overall survival (OS) so as
clinical practices may be better guided (Fahad, 2019).

The Zinc-finger (ZNF) protein family, classified by small zinc finger functional
domains, are able to bind: DNA, RNA, proteins, and small molecules (Li et al., 2021).
Through bondage near transcription start sites and to enhancer molecules Zinc
family-mediated gene expression control occurs (Hatayama & Aruga, 2018). Within the
human proteome ZNF domains, found within roughly 5% of human proteins, play a role
in diverse biological processes including telomere and DNA maintenance/repair,
remodeling of chromatin, cell apoptosis, and autophagy (Vilas et al., 2018). Through
further classification and distinction of the large ZNF protein gene class, which relate to a
wide range of abnormal cell functions and instabilities within the genome such as
neurodegeneration, skin disease, and diabetes (Vilas et al., 2018). ZNFs have been the
subject of many studies as it has been suggested that they play a key role in tumorigenesis,
cancer progression, and metastasis in a variety of cancers. Gibbs et al. (2020) reported
that ZNF165, through association with SMAD 3, modulates transcription of TGFβ-
dependent genes and as a result promotes triple-negative breast cancer cells. From this
study it was noted that elevated ZNF165 mRNA expression negatively correlated reduced
BRCA patient survival time, meaning that this specific phenotype correlated with
aggressive tumorigenesis. ZNF143, found in numerous cancers including BRCA, is implied
to play a mechanistic role in tumor development (Zhang et al., 2020a). Specifically, in
BRCA, ZNF143 may contribute to breast cancer cell survival and recurrence-related
dormancy by modulating the autophagic process (Paek et al., 2019). In previous studies, it
was observed that hypermethylation of ZNF154’s promoter occurred in many tumor
cell lines and gene silence was associated with a longer survival rate in resectable pancreatic
cancer (Luo et al., 2018). Additionally, a recent study indicated that ZMYND8 acetylation
mediates HIF-dependent breast cancer progression and metastasis (Chen et al., 2018).

Identification of biomarker signatures represents a valuable approach to mine the
wealth of information contained within biological samples (Yi et al., 2020). Since the
significance of ZNFs in BRCA diagnosis, treatment, and prognosis remains unclear
developing a biomarker signature based on ZNF protein genes might be helpful to guide
decision-making to select appropriate treatments and to predict prognosis for BRCA
patients. Moreover, the prognostic performance of the signature can be enhanced
by constructing nomograms that integrate, along with the gene signature and
clinicopathological features (Sun et al., 2020). Recently, Zhang et al. (2021) constructed a
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ZNF gene-based signature based on seven genes (CLDN9, SRDA3, B4GALT1, PC,
GMPPB, GPC1, B4GALT4, CHST6, and AK4) which predict OS and guide treatment in
patients with bladder cancer. ZNFs role and transcription of BRCA have been studied
previously however, a greater understanding of these relationships is still required.

Therefore, the goal of this study was to build a ZNF gene-based model for patient
stratification, forecasting patient prognosis, and BRCA treatment guidance. Through a
ZNF-gene signature and clinical variable-based nomogram, which we developed, we were
able to assess the signature’s association with stromal and immune cells in the tumor
immune microenvironment (TIME). Based on the expression of signature genes in
low-and high-risk patients, their response to common chemotherapy agents could be
predicted. Our findings shed light on the potential contribution of ZNFs to the
pathogenesis of BRCA and may inform clinical practice to guide individualized treatment.

MATERIALS & METHODS
Sample information and data collection
The transcriptional data and corresponding clinical information of 1066 BRCA samples
and 111 normal bladder control samples were downloaded from the TCGA website
(https://www.cancer.gov/tcga). Gene expression profiles were normalized by the “limma”
R package. The GSE20685 dataset (Kao et al., 2011), containing mRNA expression
profiles from 327 BRCA patients, was downloaded from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/) and used as external validation data. METABRIC dataset
containing mRNA expression profiles from 1900 BRCA patients, was used as another
external validation cohort. The schematic representation of the methodology of this study
is shown in Fig. S1.

Construction and validation of a prognostic model
Differentially expressed genes (DEGs) between tumor and matched normal tissues
were identified in the TCGA cohort via the R Package “limma” R (FDR set to <0.05).
ZNF-coding genes with prognostic value were screened out by univariate Cox analysis of
overall survival and p values were adjusted by Wilcoxon tests. Through Lasso’s penalized
Cox regression analysis a prognostic model was created to reduce the chances of
overfitting. Variable selection and shrinkage of the prognostic model were achieved by
running the LASSO algorithm via R package’s “glmnet”. DEGs with prognostic value
were the Models independent variables, while response variables were OS and patient
status in the TCGA cohort. Result reliability and objectivity were improved via 1,000
cross-validation runs for optimal value determination of the penalty parameter (λ).
Patients’ risk scores were calculated by the normalized expression level of each gene
multiplied by its corresponding regression coefficient. From these values, the median value
was used to stratify patients into either high- or low-risk. To evaluate the predictive
power of the gene signature, a time-dependent ROC curve was built with the “survival
ROC” R package. The following clinical characteristics were obtained from the TCGA
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database: age, stage, and tumor-node-metastasis status. These values, as well as risk
scores, were pipelined into univariable and multivariate Cox regression analysis for
risk-score independence determination. P values less than 0.05 were deemed statistically
significant.

Using the GSE20685 and METABRIC datasets, the prognostic signature (with identical
risk-score formula and threshold) was verified. Performance of the prognostic model
on the validating dataset was represented via risk score-based plots depicting prognostic
gene expression, risk score distribution, and survival status among patients.

Construction of a ZNF-based nomogram
Through the R package “rms”, A nomogram based on the risk score model, described
prior, was constructed. Nomogram discrimination was verified via ROC analysis at 1-, 3-,
and 5-year follow-up data. Predictive accuracy was assessed through a calibration plot
contrasting predicted vs. actual survival.

Immunity-related modules mechanistic prediction
Stromal and immune cells play a fundamental role in shaping TIME. To further
confirm the prognostic value of our signature on tumor progression, the ESTIMATE
algorithm in R was used to assign stromal and immune scores to both groups defined by
our constructed model (Wang et al., 2020).

Correlated pathways to our ZNF signature were explored using gene set enrichment
analysis (GSEA) and a variation of it single-sample gene set enrichment analysis (ssGSEA)
and gene set enrichment analysis (GSEA). Analyses of the Kyoto Encylopedia of Genes and
Genomes (KEGG) were performed via the R package’s “cluster Profiler” based on the
DEGs (|log2FC| ≥ 0.5, FDR < 0.05) between both groups. The Wilcoxon test was
employed to adjust P-values. Within R package’s “GSVA” the ssGSEA was again used to
assess tumor infiltration scores for 16 immune cell types and activation status for 13
pathways related to immunity (Hanzelmann, Castelo & Guinney, 2013).

Survival differences among HNSCC subtypes were assessed using the Java program
GSEA, using Hallmark gene set “h.all.v7.0.symbols.gmt” from the MSigDB, with a 1,000
permutation random sampling. A two subtypes enrichment pathway was determined via a
false discovery rate (FDR) of <0.05 and NES.

Prediction of chemotherapeutic and molecular-targeted therapy
response
The chemotherapeutic response of each BRCA patient in the TCGA cohort was predicted
according to the pharmacogenomic database Genomics of Drug Sensitivity in Cancer
(GDSC), publicly available at: https://www.cancerrxgene.org/. The GDSC database
contains data from a large collection of human cancer cell lines, anticancer compounds,
and experimental data on drug sensitivity. The prediction of drug sensitivity (IC50) values
was conducted using the R package “pRRophetic”, which uses a ridge regression model
based on cancer cell lines’ expression profiles in the GDSC (Yang et al., 2012).
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RESULTS
Identification of differentially expressed ZNFs-related genes in BRCA
To determine the expression patterns of ZNFs-related genes in BRCA, expression levels of
1,818 human ZNFs protein-coding genes retrieved from the UniProt database (Table S1)
were evaluated in the transcriptional profiles of 1,066 BRCA samples and 111 normal
breast samples, available in the TCGA. A total of 171 upregulated and 149 downregulated
ZNF-coding, differentially expressed genes (DEGs) were thus identified (Figs. 1A, 1B
and Table S2).

Construction of a ZNFs-related gene-based risk signature for BRCA
A total of 998 patients, with a >30-day follow-up time, were selected from the
TCGA-BRCA dataset for signature construction. Through Univariate Cox regression, 28
prognostic-associated candidate ZNFs-related genes were obtained, from 320 potential
candidates (Fig. 2A, all P < 0.05; Table S3). A total of 14 significant DEGs (ZMYND10,
SIAH2, ZNF239, ZNF219, TANK, WT1, FGD5, PARP12, SHARPIN, ZBED2, ZBED3,
MECOM, OVOL1, and IKZF3), filtered via LASSO and multivariate Cox regression,
were significantly independently correlated with OS and prognostic value (adjusted
P < 0.05). From these 14 ZNF genes, a signature was built allowing for BRCA survival risk
evaluation (Fig. 2B and Fig. S2).

Patients’ risk scores were calculated in the training set based on the 14-gene signature.
The median cut-off value from these risk-scores in the TCGA-BRCA dataset was used
to stratify patients into groups, high-risk and low-risk (both n = 499) (Fig. 3A). As shown
in Fig. 3B, high-risk patients were more likely to have an early death than low-risk patients.
Consistently, the heatmap of expression profiles in the TCGA-BRCA dataset showed
distinct differences between groups (Fig. 3C and Fig. S3). As shown in Fig. S3, among the
14 ZNF-related prognostic genes, the expression levels of MECOM, OVOL1, WT1,
ZBED2, ZBED3 and ZNF239 were significantly higher in the high-risk group, whereas the
expression levels of IKZF3, PARP12, SIAH2, TANK, ZMYND10, and ZNF219 were
significantly higher in the low-risk group. Through survival analysis, it was observed that
high-risk patients had a significantly poorer OS than low-risk patients (Fig. 3D, P < 0.001).
Further, we performed prognostic analysis of breast cancer subtypes, and the results
indicated that the 14 ZNFs gene-based signature shows good prognostic value in triple
negative breast cancer (TNBC) and non-TNBC (Fig. S4). AUC values for our observed
overall survival groups (1-, 3- and 5-years) and the 14 ZNFs gene-based prognostic
signature were 0.811, 0.638, and 0.639, respectively, illustrating adequate performance
(Fig. 3E).

External prognostic signature validation
Our 14 ZNFs gene-based signature prognostic value was verified using patient data from
the GSE20685 dataset. This served as external testing after high- and low-risk group
categorization via calculated median and cutoff value for the model (Fig. 4A).
The expression profiles corresponding to the signature genes are shown in Fig. 4C. Similar
to that in the previous analysis, the high-risk patient group was associated with earlier
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Figure 1 Identification of DEGs of ZNFs in the TCGA-BRCA dataset. (A) Heatmap depicting the expression levels of ZNFs-related genes in
BRCA (T) and normal (N) samples. (B) Volcano plot representation of DEGs of ZNFs. Full-size DOI: 10.7717/peerj.12276/fig-1
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Figure 2 Univariate and multivariate Cox regression analysis of the TCGA-BRCA dataset illustrated
as a forest plot. (A) Univariate Cox results of differential ZNFs illustrated by forest plot. (B) Forest
plot showing prognostic ZNFs-related genes in BRCA based on multivariate Cox results. � P < 0.05,
�� P < 0.01, ��� P < 0.001. Full-size DOI: 10.7717/peerj.12276/fig-2
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Figure 3 Development of a prognostic signature for BRCA based on 14 ZNFs-related genes. (A) Risk score distribution and median value in the
TCGA-BRCA cohort. (B) Patient survival status in differing risk groups. (C) Expression profile heatmap of the 14 ZNFs-related gene prognostic
signature. (D) Signature-defined risk group survival analysis. (E) Time-dependent ROC curve for prognostic 14-gene signature.

Full-size DOI: 10.7717/peerj.12276/fig-3
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Figure 4 Validation of the 14-ZNF-gene prognostic signature in GSE20685 dataset. (A) Population risk score distribution and the median value
for GSE20685. (B) Survival status of low-risk and high-risk patients. (C) The 14-ZNF-gene signature expression profile heatmap. (D) Signature-
defined risk group survival analysis. (E) Prognostic signature’s time-dependent ROC curve. Full-size DOI: 10.7717/peerj.12276/fig-4
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death, (Fig. 4B) and reduced overall survival time in comparison to the low-risk patients
(Fig. 4D; P < 0.001). Similar results were observed in METABRIC dataset (Fig. S5,
P = 0.023). Within the GSE20685 population the 14 ZNF gene-based signature prognostic
capabilities showed acceptable discrimination, which is illustrated by AUCs values of
0.732, 0.768, and 0.737, for 1-, 3-, and 5-year OS, respectively (Fig. 4E).

Establishment of a ZNF gene-based nomogram
Univariate analyses were performed to examine the prognostic values of several
clinicopathological features (age, tumor stage, T stage, N stage, M stage, and risk score).
Consequently, the 14-ZNFs risk signature was associated with overall survival (hazard
ratio [HR] = 1.154; 95% confidence interval [CI], [1.120−1.189], P < 0.001) (Fig. 5A).
BRCA risk factors also include being older than 56 years, T stage, M stage, and N stage
(Fig. 5A). Through multivariate analyses, it was revealed that risk score (HR = 1.125;
95% CI, [1.091−1.160], P < 0.001) and age >56 (HR = 1.551; 95% CI, [1.073−2.241],
P = 0.020) remained independent prognostic factors (Fig. 5B). The 14-ZNFs risk signature
had greater sensitivity and specificity (AUC = 0.747) than other clinicopathological
features as illustrated by ROC curve analysis (Fig. 5C). This information was pipelined
along with patient clinicopathological data for nomogram construction 1-, 3-, and 5-year
OS forecasting (Fig. 5D). The C-index (Fig. 5E) and calibration plot (Fig. S6) of the
nomogram indicated optimal predictive accuracy, with a close overlap between predicted
and actual survival rates.

The 14 ZNF-gene signature predicts differences in TIME of BRCA
To assess whether the 14 ZNF-gene signature can help distinguish differences in the tumor
microenvironment of BRCA, we employed the ESTIMATE algorithm to compare gene
expression signatures of stromal and immune cells among risk groups. The stromal score
ranged from −2,065.58 to 2,109.48 (Fig. 6A, P < 0.001), the immune score ranged from
−1,182.02 to 3,672.57 (Fig. 6B), and the ESTIMATE score ranged from −2,916.86 to
5,355.63 (Fig. 6C). Compared with the low-risk group, the high-risk group had a
significantly lower Immune Score (Fig. 6B, P < 0.001) and ESTIMATE Score (Fig. 6C,
P < 0.001). From this, we can determine that high-risk patients had lower immune cell
infiltration. It can also be stated that our ZNF-gene signature may be a procrastinator for
TIME status.

Correlation between immune infiltrations and functions and the
ZNF-gene signature
To further investigate the 14 ZNF-gene signature’s risk score relations the following
were quantified via ssGSEA within the TCGA-BRCA database: tumor immune status,
diverse immune cell subpopulations’ enrichment scores, and their related functions or
pathways. The risk score and infiltration level relationships for 16 immune cell types
(dendritic cells (DCs), activated DCs (aDCs), plasmacytoid DCs (pDCs), iDCs, B cells,
CD8 + T cells, T helper cells, T follicular helper cells (Tfhs), Th1 cells, Th2 cells,
tumor-infiltrating lymphocytes (TILs), regulatory T cells (Tregs), Neutrophils, NK cells
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Figure 5 14-ZNF-gene signature in TCGA-BRCA dataset based nomogram. (A) Univariable and (B) multivariable analyses adjusting for risk
score, age, tumor stage, and TNM stage. (C) ROC curve respecting clinical features and risk model. (D) Predictive nomogram for OS in BRCA
patients. (E) C-indes of the nomogram. Full-size DOI: 10.7717/peerj.12276/fig-5
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Macrophages and Mast cells were analyzed in order to estimate the 14 ZNF-gene
signatures effect on BRCA TIME. Risk-score and infiltration levels of the 14 observed
immune cell types were negatively correlated significantly (Fig. 7A, P < 0.05 for all).
On immune function analysis, the low-risk group showed activity enrichment in cytolytic
activity, inflammation-promoting, parainflammation, and higher scores for checkpoint
molecules, HLA, MHC class I, type I, and type II IFN responses (Fig. 7B, P < 0.01 for all).
This result further indicated that our 14 ZNF-gene risk signature was implicated in the
TIME of BRCA.

The 14 ZNF-gene signature predicts chemotherapy and targeted
therapy response in BRCA
Considering that chemotherapy is still the most effective adjuvant measure to treat
BRCA, we accessed the Genomics of Drug Sensitivity in Cancer (GDSC) database to
estimate the response of low-risk and high-risk BRCA patients to commonly used
drugs. The correlation between risk groups and IC50 values for 138 chemotherapeutic
agents was visualized using scatterplots. We found significant discrimination between
groups in the estimated IC50 values of six common chemotherapy drugs (gemcitabine,
vinblastine, vinorelbine, cisplatin, docetaxel, and doxorubicin; Fig. 8A, P < 0.05 for all)
and three molecular-targeted drugs (erlotinib, gefitinib, and sunitinib; Fig. 8B, P < 0.05 for
all) used in BRCA treatment. The estimated IC50 values of these drugs except docetaxel
were significantly elevated in high-risk samples of the TCGA-BRCA dataset (Fig. 8).

Signaling pathways analysis of the ZNF-related signature in BRCA
To gain insight into the functions of the 14 ZNF protein-coding genes included in our
signature, we performed KEGG enrichment analysis based on GSEA enrichment scores.
The results indicated that the expression patterns that conformed to the low-risk
group were enriched in KEGG terms related to tumor progression, such as JAK STAT,

Figure 6 Tumor microenvironment composition group comparison among the TCGA-BRCA dataset. (A) Comparison of stromal
scores between risk groups. (B) Comparison of immune scores between risk groups. (C) Comparison of ESTIMATE scores between risk groups.
��� P < 0.001. Full-size DOI: 10.7717/peerj.12276/fig-6
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VEGF, MAPK, NOTCH TOLL-like receptor, NOD-like receptor signaling pathways,
apoptosis, and pathways in cancer (Fig. 9A and Table S4, FDR q-val < 0.05 for all).
Notably, our ZNF-gene signature was closely correlated with were mainly enriched in
immune-related signaling pathways such as cytokine-cytokine receptor interaction,
natural killer cell-mediated cytotoxicity, antigen processing and presentation, chemokine
signaling pathway, T cell and B cell receptor signaling pathways (Fig. 9B and Table S4, FDR
q-val < 0.01 for all). These results suggest that the ZNF protein genes comprising our

Figure 7 Risk group ssGSEA score comparison in the TCGA-BRCA dataset. (A) A total of 16 immune
cell types scores. (B) Functions enriched in the 14-ZNF-gene signature. �� P < 0.01, ��� P < 0.001.

Full-size DOI: 10.7717/peerj.12276/fig-7
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BRCA signature may also drive the onset or progression of cancers by modulating the
tumor immune microenvironment.

DISCUSSION
BRCA, has the number one cancer-related mortality among women worldwide (DeSantis
et al., 2019), due to its phenotypic and molecular diversity is difficult to accurately
predict disease prognosis. Prognostic model application is essential for clinical decision
guiding and precision medicine. Current prognostic models have flaws due to subtype
misidentification, inadequate risk stratification, and lack of underlying mechanism
characterization. Fixing these issues will allow for precise and personalized therapies and
prolongation of survival time (Zhang et al., 2021).

Here we illustrated expression patterns, prognosticator capabilities, and TIME effects of
ZNF related genes in BRCA. We performed Univariate and multivariate Cox regression
analysis, as well as LASSO regression analyses to identify 14 ZNFs-genes with
prognostic capabilities for BRCA patients from the TCGA dataset. From these 14 genes, an
effective model was developed and tested for clinical outcome prediction in BRCA
patients. Based upon group survival analysis, there were distinct prognoses differences
among BRCA patients. As the 14 ZNF-genes model, showed capable predictive abilities
within the GSE20685 and METABRIC datasets (used for verification), it could be useful in
the clinical field as a predictive model. Through multivariate Cox analyses, the 14
ZNF-genes model could act as an independent prognosticator for BRCA patients.
Comparatively, our current model outperformed traditional clinical factors including age

Figure 8 Chemotherapy therapy and molecular-targeted therapy response predictions for
TCGA-BRCA risk groups. (A) Boxplots exhibiting the estimated IC50 values of six common che-
motherapy drugs for tumor cells from the two risk groups. (B) Boxplots exhibiting the estimated IC50
values of three molecular-targeted drugs for tumor cells from the two risk groups. ��� P < 0.001.

Full-size DOI: 10.7717/peerj.12276/fig-8
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Figure 9 GSEA of the ZNF-related signature in BRCA. (A) Pathways related to tumor progression. (B) Pathways related to TIME.
Full-size DOI: 10.7717/peerj.12276/fig-9
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and TNM stage. Based on the complementary values of clinical characteristics and our
14 ZNF-genes prediction model a novel nomogram was generated that provides superior
OS estimation for BRCA patients. Our nomogram performed well when analyzed with
ROC curve, C-index analysis and calibration plot for 3- and 5-year subgroupings.
The results indicated that our 14 ZNF-genes model is competitive to traditional prognostic
survival prediction models for BRCA.

The 14 genes of our ZNFs-related signature identified in this study included:
ZMYND10, SIAH2, ZNF239, ZNF219, TANK, WT1, FGD5, PARP12, SHARPIN, ZBED2,
ZBED3, MECOM, OVOL1, and IKZF3. Among these, six genes (ZMYND10, SIAH2,
SHARPIN, FGD5, WT1, and OVOL1) have been implicated, as discussed below, in the
tumorigenicity and progression of BRCA. For example, ZMYND10 (zinc finger, MYND
type containing 10) has been labeled as a gene involved possibly in tumor suppression,
making it capable of cell cycle arrest, proliferation and angiogenesis inhibition, as well as
apoptosis induction in multiple tumor types (Wang et al., 2019; Cheng et al., 2015).
ZMYND10 has been observed, by recent studies, to sensitize anticancer activities of
chemotherapeutic agents (gemcitabine (Yoo et al., 2013) and paclitaxel (Park et al.,
2013) to name a few).Wang et al. (2019) revealed that ZMYND10 plays an inhibitory role
within the miR145-5p/NEDD9 signaling pathway, this ultimately leads to suppression of
BRCA tumorigenesis. SIAH2, an E3 ubiquitin ligase, has key functions in multiple
fundamental cellular processes: hypoxia, intracellular signaling, and the unfolded protein
response to name a few (Scortegagna et al., 2020; Ma et al., 2019). SIAH2 protein
expression was shown to be able to predict ER status and tamoxifen therapy outcome due
to its inverse relationship within a metastatic BRCA cohort (van der Willik et al.,
2016). SIAH2-NRF1 axis remodels tumor microenvironment by modulating tumor
mitochondrial function, tumor-associated macrophage polarization, and cell death for
tumorigenesis and progression in BRCA (Ma et al., 2019). SHanK-associated rH
domain-interacting protein (SHARPIN), an atypical ubiquitin-binding protein, was
observed to promote BRCA progression when highly expressed and regulates cancer
development for a series of other tumors (Tian et al., 2019). SHARPIN does have key
roles in carcinogenic pathway control in BRCA, such as ERa and P53 where it inhibits
protein stability via MD32. Additionally, SHARPIN was identified in vivo as a BRCA
metastasis gene and predicts metastasis-free survival after adjuvant therapy (Bii, Rae &
Trobridge, 2015). FGD5 (Faciogenital Dysplasia 5) amplification in BRCA is associated
with higher tumor proliferation and poorer OS (Valla et al., 2017). Wilms’ tumor gene 1
(WT1) is expressed highly in BRCA; as a result, vaccines limiting WT1 expression are in
phase 1 and phase 2 of clinical trials, however, side effects and efficacy are still under
question (Zhang et al., 2020b). OVO-like proteins 1 (OVOL1) can induce metastasis in
prostate and BRCA cells characterized by regulating mesenchymal to epithelial transition
(Roca et al., 2013; Saxena et al., 2020b). In contrast, little research has been done on the
roles of ZBED2, ZBED3, ZNF219, TANK, IKZF3, PARP12, ZNF239, and MECOM in
BRCA onset and development, meaning more research on their biological functions in
regards to BRCA is warranted.
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Interestingly, we found that high expression of MECOM was significantly associated
with advanced TNM stage (Fig. S7B, P < 0.001), T stage (Fig. S7C, P = 0.044), and N stage
(Fig. S7D, P < 0.001) in BRCA patients. Therefore, we identified MECOM as target for
clinical and experimental analyses in the future. As shown in Fig. S8, among the 14
ZNF-related prognostic genes, IKZF3, PARP12, TANK, WT1, and ZBED2 were
upregulated, while FGD5, MECOM, SIAH2, and ZMYND10 were down-regulated in
TNBC compared with non-TNBC based on TCGA and METABRIC datasets, suggesting
these genes are associated with TNBC. In addition, the correlations between these
ZNF-related prognostic genes are presented in Fig. S9. The interactions among the 14
genes, as well as the specific biological functions of these genes in BRCA need to be
explored experimentally.

TIME played a critical role in the initiation and progression of tumorigenesis. Based on
the results of ESTIMATE, ssGSEA, and GSEA analysis, we elucidated that our ZNF-gene
signature had pivotal regulatory effects on the TIME in BRCA. Through ESTIMATE
algorithm calculation, we illustrated low-risk patients had significantly higher immune
scores in comparison to high-risk patients. Furthermore, we evaluated the correlation
between the patterns and tumor immune microenvironment features using ssGSEA.
Our data showed vast differences in immune cell infiltration and function between the risk
groups, especially for T cells, B cells, dendritic cells (DCs), and NK cells. It has been
previously established that greater immune cell infiltration levels were positively correlated
with immunotherapy responsiveness in multiple tumor types (Karn et al., 2017; Kümpers
et al., 2019). Some previous studies have separated BRCA into two different subgroups
based on immune cell infiltration: “hot” (enriched in immune cells infiltration) and
“cold” (lack of immune cells infiltration) which served as a strong indicator for
immunotherapy response (Sharma & Allison, 2015; Cheng et al., 2018). In a similar
manner, our ZNF-gene signature also has potential clinical value by utilizing immune cell
infiltration and immune function in predicting immunotherapy responses. GSEA was
employed for the investigation of mechanisms underlying the 14 ZNF protein-coding
genes in BRCA. The ZNF-gene signature was closely correlated with mechanisms enriched
in: cytokine-cytokine receptor interaction, natural killer cell-mediated cytotoxicity, antigen
processing/presentation, chemokine, T cell receptor, and B cell receptor signaling
pathways. In addition, the low-risk subgroup was enriched with JAK STAT, VEGF,
MAPK, NOTCH, NOD-like and TOLL-like receptor signaling pathways, apoptosis, and
pathways in cancer, which were also important oncogene targets in cancer development.
Prior to this analysis, these hallmarks were already recognized to be related to immune
reaction, cancer progression, and cancer immunotherapy.

Chemotherapy and targeted therapy are still important ways of cancer treatment.
By analyzing the GDSC database, we found that the high-risk group and the low-risk group
had different sensitivities to six common chemotherapy drugs, of which gemcitabine,
vinblastine, vinorelbine, cisplatin, and doxorubicin were relatively sensitive within low-risk
patients, while docetaxel seemed more resistant. Interestingly, our risk model had an effect
on cell sensitivity to three molecular-targeted drugs, such as erlotinib, gefitinib, and
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sunitinib. This evidence suggests that our risk model may provide a reference for the
treatment choice in BRCA patients.

As far as we are aware, this study is the first to comprehensively analyze and
identify ZNFs as prognosticators for survival in BRCA patients via data evaluation from
the TCGA and GEO databases. From this analysis, a 14 ZNF-related gene-based risk
signature was constructed and tested. This model is capable of stratifying BRCA patients
for increased effectiveness of immune and chemotherapy. A ZNF-related nomogram
integrating our model and incorporating clinical factors and molecular markers capable of
OS prediction for BRCA patients was established. Through this study, we were able to
shine a light on the genetics behind BRCA as well as significantly guide future research.

Our study was limited by the following: (1) As a retrospective study and focused
solely on BRCA. (2) Large cohorts are required for valid predictive performance while
using this model, (3) Its clinical applicability still needs to be validated for better
management of BRCA, (4) Basic experiments must be completed in the future to verify
findings and shine more light on ZNFs mechanistic role within tumorigenesis and
development of BRCA, (5) Our current gene-signature model may not be as effective on
patients who are not affected by distal metastasis and needs further prognostic testing.

CONCLUSIONS
In summary, we established a novel 14 ZNFs gene-based signature prognosticator that
divides BRCA patients into high- and low-risk subgroups which are characterized by
differing survival outcomes, and constructed a nomogram to help clinical decision-makers
provide optimal treatment. The prognostic signature is associated with immune
cell components and functionality differences within tumor microenvironments.
The signature also predicts sensitivity to chemotherapeutic and molecular-targeted agents
in high- and low-risk patients afflicted with BRCA. Our study may stimulate further
research on the role of ZNFs on BRCA and help guide stratified therapy to provide
individualized treatment. For a better understanding of these results, and ZNFs
mechanistic relation to BRCA more research must be completed.
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