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Abstract: Neurodegeneration is a progressive loss of neuronal cells in certain regions of the brain.
Most of the neurodegenerative disorders (NDDs) share the communal characteristic such as damage
or reduction of various cell types typically including astrocytes and microglial activity. Several
compounds are being trialed to treat NDDs but they possess solitary symptomatic advantages
along with copious side effects. The finding of more enthralling and captivating compounds
to suspend and standstill the pathology of NDDs will be considered as a hallmark of present
times. Phytochemicals possess the potential to alternate the synthetic line of therapy against
NDDs. The present review explores the potential efficacy of plant-derived flavonoids against most
common NDDs including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Flavonoids
are biologically active phytochemicals which possess potential pharmacological effects, including
antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic and anti-oxidant
effects and are able to attenuate the pathology of various NDDs through down-regulating the
nitric oxide (NO) production, by reducing the tumor necrosis factor-α (TNF-α), by reducing the
excitotoxicity of superoxide as well as acting as tyrosine kinase (TK) and monoamine oxidase (MAO)
inhibiting enzyme.

Keywords: flavonoids; natural compounds; biomolecules; neurodegenerative diseases; nitric oxide;
tumor necrosis factor-α; tyrosine kinase; monoamine oxidase

1. Introduction

Neurodegeneration is a composite progression of progressive loss of both the function
and structure of neurons and involves the muscle weakening and deterioration of innumerable
physiological functions of the body [1,2]. Deregulated lipid metabolism is one of the hallmarks of
degeneration in the majority of neurodegenerative disorders [3–6]. During neurodegeneration, cell
death is preeminent in post-mitotic cells, with an enormous number of neurons eliciting apoptotic
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signals, which might be the consequence of oxidative stress [7]. Both intrinsic and extrinsic pathways
are two major aspects of apoptosis which are associated with mitochondrial and plasma membrane
receptors, respectively [8]. Proteins of bcl-2 family play a crucial role in regulating the pathways of
apoptosis involving mitochondria. They can be categorized into two functionally diverse groups
as pro- and anti-apoptotic proteins [9]. Neurodegenerative diseases (NDDs) usually involve the
discerning loss of neurons as well as engrossment of diversified functional systems describing their
clinical presentation expanded by genetic, biochemical and molecular pathological factors. Enormous
studies have revealed the deposition of proteins with transformed physiochemical properties within
the human brains in NDDs [10]. Aggregation of interrelated proteins serves as a major hallmark of
the NDDs, suggesting the same pathophysiology of the degenerative process. Recent studies state
that such proteinopathies expose the contribution of the same protein in a number of diseases, thus
signifying a common pathological progression [11].

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington disease (HD), Schizophrenia, Amyotrophic Lateral Sclerosis (ALS), seizure disorders,
and head injuries are foremost health issues along with other systemic disorders [12–14]. Various
studies also state the involvement of oxidative stress in the pathophysiology of NDDs. Oxidative stress
causes the neuronal cell death by inducing the neuronal damage and modulating the intracellular
signaling [15].

Natural products persist as a promising source of immense chemical diversity, biochemical
specificity and various molecular characteristics which make them suitable for the modulation
of multiple signaling pathways/cascades in various pathological conditions such as cancer and
neurodegnerative diseases [16–22]. Currently, phytochemicals including flavonoids, alkaloids,
terpenoids, and phenols are of considerable interest for the treatment of such diseases [12]. We have
recently reviewed protective roles of plant-derived alkaloids in neurodegenerative diseases [23].
Flavonoids have been sanctioned to activate neuronal endogenous anti-oxidant status, thus, shielding
them from neurodegeneration. Neuroprotective mechanism of flavonoids proceeds via suppression
of lipid peroxidation, inhibition of inflammatory mediators, modulation of gene expressions and
activation of anti-oxidant enzymes which makes them ideal therapeutic representative for the treatment
of NDDs [24].

This review intends to emphasize the molecular mechanism of plant-derived flavonoids to
diminish the risk of cellular degeneration and to enhance cell survivability. The scientific basis
underlying the neuroprotective effect of this novel class of phytochemicals has been brought to light.
This will facilitate the understanding of researchers regarding the pharmacological role of flavonoids in
NDDs, thus, suggesting areas for further research. The literature was screened through various e-sites,
including Springer Link, PubMed, Elsevier Science Direct Scopus and other relevant medical journals,
highlighting the updates in this area of research. Key words used for searching are “Flavonoids”,
“Neurodegenerative Diseases”, “Alzheimer’s disease (AD)”, and “Parkinson’s disease (PD)”.

2. Alzheimer’s Disease

Alzheimer’s disease (AD) is the progressive weakening of cognitive functions, memory,
and learning [25], characterized by the aggregation of β-amyloid (Aβ) peptide, tau protein
hyperphosphorylation, and amplified oxidative stress. However, the reasons for the massive majority
of sporadic forms of AD remain un-demarcated [26]. Aβ peptides primarily form the senile plaques
in the affected brain areas and these areas in turn exhibit a reduced number of synapses. These
plaques usually contain scratched neurons, signifying the neuritis and synapse damage by Aβ.
Aβ40/42 is generated by gamma-secretase-mediated sequential cleavages of the amyloid precursor
protein (APP) and β-secreatase-(beta-site amyloid precursor protein cleaving enzyme, BACE) [27].
Hyperphosphorylated tau and Aβ accumulation in the brain are proposed to play an important role in
the neurodegenerative process of AD [28] by activating the neuronal damage. Moreover, oxidative
stress is another hallmark of AD along with the Aβ accumulation and hyperphosphorylation of
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tau [29]. In the pathogenesis of AD, oxidative stress may be the earliest change to occur [30]. Oxidative
stress may be caused by hypercholesterolemia through forming reactive oxygen species (ROS) [31].
Endoplasmic reticulum (ER) stress can also be triggered by oxidative stress, and sustained ER stress
can lead to the additional oxidative damage [32]. Currently, the global prevalence of dementia is as
high as 36 million and is expected to reach 66 million by 2030 and 115 million by 2050, with almost
two-third of the patients from the developed countries [33].

3. Parkinson’s Disease

Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia
nigra (SN) [34]. Initial symptoms of the disease include slowness of movement, shaking, rigidity,
difficulty with walking, and behavioral problems [35]. It is a late onset disorder that occurs in 1–2%
people over the age of 60 years [36]. The distinctive neuropathological changes in the brain include the
abnormal formation of Lewy bodies. Degenerated dopaminergic nigrostriatal neurons with the Lewy
bodies are major neuropathological correlation of motor damage in PD, but noradrenergic, adrenergic,
glutamatergic, cholinergic, and GABAergic nerve cells also show identical damage in cytoskeleton [37].
Dopaminergic neurons of SN are progressively and selectively degenerated [38]. Neuroinflammation
and particularly, microglial activation is associated with the pathogenesis of PD [35]. Microglial
activation triggers the formation of a broad range of cytotoxic factors, including interleukin-1β
(IL-1β), nitric oxide (NO), ROS, and tumor necrosis factor-α (TNF-α), causing neurodegeneration [39].
The adult hippocampal dentate gyrus (DG) receives inputs from dopaminergic neurons in the SN. So,
deterioration of dopaminergic neurons may directly affect adult hippocampal neurogenesis [40].

4. Phytochemicals

Phytochemicals are a diversified group of bioactive compounds naturally occurring in plants.
Various classes of phytochemicals including flavonoids, alkaloids, terpenoids, and phenols act as
protective agents in nervous system disorders [41]. Phytochemical therapies have been extensively
used against neural symptoms, but the underlying mechanism of action of phytomedicines is yet to be
determined. One of the mechanistic approaches of phytomedicines is their potential efficacy to act as
anti-oxidant and anti-inflammatory agents [42]. A copious number of phytochemicals are able to alter
the neuronal excitability via inhibiting or activating the ion channels or specific receptors [41]. In this
article, we have reviewed the potential efficacy of flavonoids as neuroprotective agents against NDDs
by specifically focusing on molecular interactions of these compounds with various cellular targets.

5. Flavonoids

Flavonoids are naturally occurring, biologically active, and therapeutically effective polyphenols
abundantly found in fruits and vegetables. They are classified in several categories including
flavanols, flavonols, flavones, flavanones, isoflavones, anthocyanidins, and chalcones based on
their chemical structure. To date, over 9000 flavonoids have been well-known, mainly found in
fruits, vegetables, and beverages (tea, coffee, beer, wine and fruit drinks). Flavonoids and their
metabolites exert countless health promoting effects both in human and animals. They possess
multiple biological effects such as antiviral, anti-allergic, antiplatelet, anti-inflammatory, antitumor,
and antioxidant activities [43]. Moreover, they can cross the blood-brain-barrier (BBB) and may exhibit
neuropharmacological activities at the molecular level, influencing the protein function and gene
expression. Importantly, dietary intake of flavonoids up-regulates the brain derived neurotrophic
factor (BDNF) and thus improves the performance of spatial memory [44]. Extensive evidences have
suggested their role in the attenuation of pathological pathways of NDDs [45,46]. Diet and lifestyle
may play a potential role in the improvement of cognitive function and can also delay the onset of age
related health disorders. Importantly, flavonoids enriched foods can induce memory and cognition
improvements both in animals and humans. Similarly, it is proposed, by a growing number of studies,
that dietary intervention with particularly diet rich in polyphenols exert neuroprotective effects
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in the brain, including the protection of neurons against neurotoxin-induced injury, suppression of
neuroinflammation, and also has a potential to promote cognitive, learning, and memory functions [47].
Furthermore, flavonoids can modulate the immune system of brain, attenuate the neuroinflammation
by inhibiting the production of nitric oxide and cytokines induced by activated microglia [48]. Thus,
flavonoids signify their importance as potent molecules in the pursuit to develop a new group of
drugs, having the ability to counteract the neuroinflammation and NDDs.

Hence, multiple effects of flavonoids have drawn the interests of scientists towards the
investigation of neuroprotective role of flavonoids. Classifications of flavonoids with their dietary
sources are represented in Table 1.

Table 1. Classification of flavonoids and their dietary sources.

Class Flavonoids Dietary Sources Diseases References

Isoflavones
Genistein Soy milk AD, PD [49]
Daidzein Soy milk PD [49]

Flavones
Luteolin Chrysanthemum flowers, apple skins,

cabbage, peppers, carrot, leaves of
onion, broccoli, parsley, and celery

AD, PD [50–52]

Apigenin Onions, parsley, grapefruit,
and oranges

AD, PD [53]

Acacetin Pearl millet AD, PD [54,55]

Flavanone
Hesperetin Citrus species AD [56]
Naringin Citrus fruits and grapefruits PD [57]

Flavanols
(−)

Epigallocatechingallate
Leaves of green tea and black tea AD [58]

(−) Epicatechin Blueberries, tea, cocoa, and grapes PD [59]

Flavonols
Quercetin Apples, onions, tea, red wines,

and berries
AD [60,61]

Kaempferol Tea, broccoli, apples, beans,
strawberries, and grapefruits

PD [62,63]

Anthocyanidins Cyanidin Cranberry, blueberry, blackberry, acai
berry, and raspberry

AD [64]

Pelargonidin Ripe raspberry, strawberry, blueberry,
cranberry, blackberry, saskatoon berry,

and kidney beans.

AD, PD [65,66]

6. Classes of Flavonoids and Their Implications in Neurodegenerative Diseases

Classification of Flavonoids is based on their tertiary structure (Figure 1) and growing number of
evidences have strengthened the idea that they may bestow attenuating effects against neurological,
neurodegenerative, psychological and other diseases (Figure 2). In the present effort, we have reviewed
the mechanisms and effects of flavonoids on Alzheimer’s disease and Parkinson’s disease based on
the availability of published data.
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Figure 1. Structures of compounds that discussed in this review.

Figure 2. Neuroprotective potential of flavonoids.
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7. Isoflavones

7.1. Genistein

Genistein (Gen) is a primary soybean isoflavone, which exhibits numerous beneficial aptitudes
for human health. It has structural similarity with endogenous steroid estrogen which enables it
to mimic the pharmacological action of estrogen [67]. Gen may potentially reduce the process of
neurodegeneration followed by inflammation by hindering the microglial inflammatory reactions in
response to the exogenous stimulus [68]. A cumulative number of studies propose that Gen acts as
a protective agent for neurons and thus it efficiently elicits a neuroprotective response in amyotrophic
lateral sclerosis [69]. Importantly, it also shelters the cortical neurons of the human brain against
free radical damage and thus portrays its anti-oxidative as well as anti-inflammatory property [70].
Moreover, its neuro-protective efficacy in NDDs has been discussed as follows.

7.1.1. Genistein in PD

PD is followed by the continuous damage of dopaminergic neurons in substantia nigra which
ventures to the striatum [71]. Evidence from the imaging studies also report the minimized
levels of dopamine in fronto-striatal circuit in PD patients [72]. Hence, it can be declared that
the loss of dopaminergic neurons crucially upholds the underlying pathogenesis of PD. Gen has
potential to protect the dopaminergic neurons in a dose-dependent manner against lipopolysaccharide
(LPS)-induced neurotoxicity. It inhibits the production of NO, TNF-α, and superoxide in microglia
as well as in mesencephalic neuron-glia cultures [70]. Moreover, the chief immune cells of brain
microglia are eagerly activated in response to any infection or injury which leads to the release of
pro-inflammatory factors [68] like NO and superoxide [73], which may form complexes with proteins
causing the alteration of their functions and eventually causing cell death. Gen can attenuate the
production and accumulation of superoxide and NO, thus delivering its neuro-protective efficiency to
dopaminergic neurons and sheltering the dopaminergic neurons from a post injury response [70,73].
The least effective dose of Gen has been found as 0.25 µM while at 50 µM concentration, it is proposed
to elucidate the toxicity in neuronal glia cultures. Interestingly, it fails to block the pro-inflammatory
factors in glial cell cultures at the dose of 2.5 µM followed by the LPS induction in an animal
model study [68]. Furthermore, it is obligatory to explore the other molecular targets involved
in neuroprotection offered by Gen in the future.

7.1.2. Genistein in AD

Aggregation of Aβ proteins has been crucially involved in the pathogenesis of AD and it also acts
as the foremost target for therapeutic development of the disease [74]. Aβ-induced neuronal cell death
is also a leading cause of AD pathogenesis [75]. Gen is the foremost phytoestrogen in soybean and
proficiently mimics the pharmacological functions of estrogen [67]. Estrogen possesses an affirmative
potential of blocking the Aβ-induced neuronal cell death [75]. Gen possesses impartial neuroprotective
potential because of its capability to act as estrogen receptors (ERs) agonist as they mediate the
defensive cascade against Aβ-induced toxicity [76]. It also attenuates the crucial clinical outcome of
memory impairment in AD patients by protecting the neuronal network of the brain. Hence, estrogen
is also involved in memory and learning development in numerous brain regions (hippocampus,
neo-cortex, nuclei of the basal forebrain) [77]. Moreover, Gen at 0.375 µg/mL dose protected the rat
hippocampal neuronal cells by up-regulating the protein kinase signaling pathways [78]. It also
has a capability to decrease the production of ROS at 50 µM and thus portrays its role as an
anti-oxidant agent. The underlying mechanism to this protective feature of Gen involves the inhibition
of mitochondrial transition pore opening, which ultimately prohibits the mitochondrial release of ROS
in β-amyloid peptides 25–35-induced PC12 cells [79]. Importantly, it does not provide neuroprotection
at the dose of 0.1 or 100 nM [77]. Several studies reveal that it does not elicit proliferative side effects
on uterine endometrial cells along with the blocking of acetylcholine-induced neurotoxicity. Therefore,
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Gen may be a beneficial mediator for the treatment of AD [77]. Lastly, although Gen has been reported
to possess neuroprotective activities, but still, there is a lack of clinical studies on its application as
a therapeutic agent [80].

7.2. Daidzein

Daidzein belongs to the isoflavones class of flavonoids, naturally occurring entirely in legumes
and soybeans [81]. Daidzein along with other isoflavones have been found in many plants like
Kudzu (Pueraria lobata) and Kwao Krua (Pueraria mirifica) produced by the secondary metabolism of
phenylpropanoid pathway [82]. Daidzein possesses diversified biological effects in various biological
systems and may be able to serve as an agent to prove the therapeutic efficacy of flavonoids against
several health issues [83] including improvement in blood cholesterol level, osteoporosis reduction [84],
attenuating the risk of certain hormone related cancer, and coronary heart diseases [85]. Moreover,
it also efficiently employs its action as neuroprotective agent via acting as agonist of estrogen [81].
It has the capability to bind with ERs in brain because of its structural similarity with estrogen. Thus,
it elucidates ER-dependent activation of estrogen receptive promoters and DNA binding in numerous
cell types [86]. ERα and ERβ are two prime types of estrogen receptors which are expressed in brain
and daidzein parades more affinity of binding with ERβ as compared to ERα [87]. Therefore, it can
portray a potential role in the attenuation of various NDDs as explained bellow.

Daidzein in PD

As the pro-inflammatory factors and microglia activation have been supposed to play a crucial
role in neuronal cell death concomitant with PD [73]. Thus inhibition of both factors has been known
to be associated with the possession of neuroprotective properties in PD [88]. Daidzein exhibits an
effective property to diminish the release of inflammatory mediators in BV-2 microglial cells induced
by lipopolysaccharide (LPS) [89]. An experimental investigation on male Sprague–Dawley rats
reveals that daidzein exerts pro-oxidant activity as well as significantly attenuates malondialdehyde
(MDA) content in the brain at an oral dose of 2 and 20 mg/day for 4 weeks dissolved in corn
oil [90]. Whereas, another study suggests that daidzein may persuade detrimental effects at high
concentration [91] and elucidates oxidant properties rather than anti-oxidant action by affecting the
antioxidant enzyme defense system in rat hepatoma H4IIE cells [92]. Overload of free radicals followed
by the oxidative stress is one of the most common features of neurodegenerative diseases such as PD
and AD. It results in the production of ROS and NO which affect biosystem of body and has been
found to affect the function and structure of neural cells. Thus it contributes to an extensive range of
NDDs including AD and PD [93]. Daidzein inhibits oxidative stress associated production of NO and
ROS [94]. Therefore, anti-oxidant agent which efficiently removes the ROS could portray potential
therapeutic effect against PD [93]. Furthermore, studies on LPS-stimulated microglial cells suggest that
it elucidates neuro-protective potential because of its efficiency to inhibit the microglia activation and
ensuring the release of soluble pro-inflammatory factors [88]. Despite exhibiting the multiple aspects
in neuroprotection there is still a dearth of clinically proven consideration and medication of daidzein.

8. Flavones

8.1. Luteolin

Luteolin (3′,4′,5,7-tetrahydroxyflavone) belongs to the flavone group of flavonoids which is
abundantly found in the plant kingdom [95]. Chemical structure of luteolin comprises of C6-C3-C6

structure and contains an oxygen-containing ring, two benzene rings, and 2–3 carbon double bond [96].
It is abundantly found in fruits and vegetables such as chrysanthemum flowers, apple skins, cabbage,
peppers, carrot, leaves of onion, broccoli, parsley, and celery [50–52]. It is well known for its potential
anti-inflammatory and anti-oxidative properties and also exhibits phytoestrogen like activities [97,98].
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Plants enriched with luteolin are utilized against cancer, inflammatory diseases and hypertension in
Chinese traditional medicine [95].

8.1.1. Luteolin in AD

AD is the most common neurodegenerative disease which leads to the development of senile
dementia. Cognitive dysfunction is particularly caused by AD. It is reported that cognitive dysfunction
in cerebral hypoperfused rats can be protected by luteolin at a dose of 150 and 450 mg/kg [99].
The hallmark in the pathology of AD is Aβ plaques formation. To find out the Aβ reducing capability
of luteolin, primary neuronal cells which are the SweAPP-overexpressing mice were treated with
luteolin and it was seen that it momentously lessened the Aβ generation [100]. The mechanism
behind the reduction of Aβ generation may encompass the GSK-3α isoform selective inactivation
that enhances the p-PS1 levels which is the γ-secretase complex catalytic core [101]. Recently, it has
been found that AD pathologies in mice, persuaded by traumatic brain injury can be reduced by
luteolin at the dose of 20 mg/kg/day for 15 days [102]. Luteolin also possesses the protective effects
on structure of hippocampus and learning flaws in streptozotocin-stimulated Alzheimer’s rat model.
The administration of luteolin at10 and 20 mg/kg dose [101], shows significant results in this context.

8.1.2. Luteolin in PD

It is a well-known fact that the level of dopamine (DA) is reduced in SN in case of PD. In addition
to the reduced level of DA, the inflammation in the brain accompanied by over-activation of
microglia is also involved in the pathology of PD [103–105]. Unnecessary quantities of cytotoxic
and pro-inflammatory factors produced by the activation of microglia in substantia nigra are lethal
to neurons [106]. It was reported by an in vitro investigation on luteolin that its (5 µM) treatment
may protect the LPS-induced dopaminergic neuronal degeneration by inhibiting the activation of
microglia [107]. However, very limited work has been done to explore the beneficial effect of luteolin
on CNS.

8.2. Apigenin

Apigenin (4′,5,7,-trihydroxyflavone), a naturally occurring phytochemical, belongs to flavone group
of flavonoids. Naturally, it can be extracted from flowers and buds of Hypericum perforatum. It is copiously
found in common vegetables and fruits such as onion, parsley, grapefruit, and orange [53,108]. It exhibits
multiple pharmacological effects such as anti-inflammatory, anti-apoptotic, anti-oxidative, purgative,
antiviral, and anti-mutagenic [109,110]. It has been shown that apigenin can reduce glutamate-induced
Ca2+ signaling in murine cortical neurons [111].

8.2.1. Apigenin in AD

One of the pathogenic symbols of AD is Aβ generation, aggravated due to mutations in APP [112].
Furthermore, the buildup of Aβ leads to the microglial over-activation around Aβ plaques [113].
Neurotoxicity of Aβ can be induced by free radical production caused by transition metals like copper.
Treatment with 10 µM apigenin can cease the enhanced expression of Aβ precursor protein caused
by copper but it is not effective at any other concentration [114]. Apigenin also possesses the ability
to improve the memory impairment associated with AD, to prevent oxidative stress and to decrease
the burden of Aβ plaques. Numerous studies have demonstrated the anti-inflammatory [115] and
anti-apoptotic effects of apigenin in various animal models [110] as well as in human [116]. It is
reported that apigenin protects neurons against inflammatory stress and limits apoptotic cell death as
well as reduces the neuronal hyper-excitability [53]. Furthermore, it was demonstrated that apigenin
could inhibit the activation of pro-inflammatory cytokines and NO production, protecting AD neurons
from inflammatory-induced stress. The concentration of apigenin 50 µM (IC50 value) can protect
neurons against neurite shortening and neuronal death as well as reduce apoptosis [111]. Moreover,
the IC50 values of apigenin ranging between 10 and 100 µM can be able to reduce the production of NO
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and pro-inflammatory cytokines [115]. It has been shown that 10 mg/kg and 20 mg/kg intraperitoneal
administration of apigenin reduces the activity of AChE [117], which is a key enzyme involved in the
development of AD. All these investigations suggest that apigenin has the ability to overcome the
progression of AD. Hence, it needs to be introduced in clinical trials as well.

8.2.2. Apigenin in PD

The primary indications of PD are shakiness, postural abnormalities, bradykinesia, muscular
rigidity, and tremor at rest [118]. A well-known hallmark in the pathology of PD is neuronal
inflammation-induced glial cell activity in the SN [119]. The available treatment is DA agonist but
the chronic administration of LDOPA or DA agonist can lead to severe non-motor and motor adverse
effects [120]. The worse effect of LDOPA or DA agonist diverts the interest of scientists towards
phytomedicines for treatment of PD to reduce or prevent the adverse effects. It was shown that
apigenin enhanced the locomotor capability and proved to be very effective in a dose-dependent
manner (5, 10 and 20 mg/kg) [121]. In vitro investigation has suggested that apigenin exerts inhibitory
property against inflammatory mediators, proposes that it may possess neuroprotective potential
against inflammation mediated diseases such as NDDs [122]. It was also reported that apigenin
could secure the dopaminergic neuronal loss in Parkinson’s mice model by attenuating the microglial
activation and neuroinflammation at dose of 10 and 20 mg/kg [121]. Importantly, administration of
apigenin expressively prohibits the neuroinflammation in SN [117]. At present, the treatment of PD
is dependent on DA agonists. There is a dire need to introduce apigenin in preclinical trials for the
treatment of PD to overcome adverse effects of currently used medicines.

8.3. Acacetin

Besides luteolin and apigenin, there is another flavonoid compound known as acacetin
(5,7-dihydroxy-4-methoxyflavone), which belongs to flavone group of flavonoids. It is extracted
from Clerodendrum inerme (L.) Gaertn (CI) which possesses potential therapeutic efficacy against
neuropsychiatric disorders [123]. It also exerts several biological actions including anticarcinogenic,
anti-inflammatory, and antioxidant actions [124–126]. It can also be extracted from R. pseudoacacia [55].
The antioxidant and anti-inflammatory role of acacetin give the direction that it can be beneficial in the
treatment of NDDs such as AD and PD.

8.3.1. Acacetin in AD

Neuroinflammation is one of the hallmark in the pathology of AD. Activation of microglia
plays a crucial role in neurodegeneration mediated by inflammation. Microglial over-activation can
lead to the neuronal cell death and CNS disorders through the production of several cytotoxic and
pro-inflammatory factors such as IL-1β and TNF-α [127,128]. The transcription factor known as nuclear
factor-κB (NF-κB) regulates the expression IL-1β, TNF-α, and iNOS [129]. Mitogen activated protein
kinases (MAPKs) including JNK and p38 are also found to be involved in the microglial-induced
inflammation [130,131]. It has been demonstrated that acacetin can inhibit the NO release and
attenuates the IL-1β and TNF-α. Importantly, acacetin inhibits the p38 MAPK and NF-κB activation.
Experimentation on the mouse model of lipopolysaccharide (LPS) mediated neuroinflammation
indicated that acacetin expressively suppressed the activation of microglia in a dose-dependent
manner [55]. Another factor which is involved in the neurodegeneration is excitotoxicity caused
by excessive glutamatergic neurotransmission via NMDAR [132]. Glutamate is the chief excitatory
neurotransmitter in the CNS and plays a crucial role in memory, learning, and cognition. In addition,
excessive release of glutamate enhances the levels of intracellular Ca+ which in turn enhances the
production of free radicals and mitochondrial dysfunction and eventually causes neuronal damage.
It shows that acacetin inhibits the release of glutamate. So, the inhibition of glutamate ultimately stops
the cascade of damaging cellular processes [133]. The inhibiting properties of acacetin indicate that it
can be beneficial in the treatment of NDDs, particularly AD.
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8.3.2. Acacetin in PD

Neuroinflammation is considered to be the most prevalent factor involved in the pathology of
PD. Studies show that acacetin inhibits the inflammatory factors production and hence protects the
dopaminergic neurons, major targets in the development of PD [54]. More work is needed to be done
to ensure the therapeutic role of acacetin in context of PD.

9. Flavanones

9.1. Hesperetin

Hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) belongs to the flavanone class of flavonoids,
found in citrus fruits [56]. It is derived from the hydrolysis of aglycone, hesperidin (hesperetin
7-rhammnoglucoside) [134]. It exerts neuroprotective effects by acting as anti-inflammatory and
anti-oxidative agent [135].

Hesperetin in AD

Aβ deposition results in prevention of insulin signaling in neurons and reduction in membrane
insulin receptor (IR) activity which leads to the reduction in insulin levels and glucose transporters
(GLUTs) in brains of AD patients [136]. Deposition of Aβ25–35 impairs glucose uptake and also leads
to the neuronal damage by cellular autophagy. Hesperetin at a dose of 97.2 µM protects against
Aβ25–35-stimulated neuronal damage [137]. It also possesses the ability to ameliorate the Aβ impaired
glucose uptake moderately by impeding autophagy. The suggested dose of hesperetin which is very
effective in attenuating the neuronal autophagy is 1–20 µM [138]. Importantly, like Aβ aggregation,
oxidative damage which is induced by the lipid peroxidation is another feature involved in the
pathophysiology of AD. It was demonstrated that with the IC50 values of 179.1 µM, hesperetin
intensely inhibited the lipid peroxidation that could cause oxidative damage [137,138].

9.2. Naringin

Naringin is a flavanone glycoside derived from naringenin (a flavonoid) and it is one of the chief
active constituents of Chinese herbal medicines including Citrus medica L. (CM), Citrus aurantium
L. (CA), and Drynaria fortunei (Kunze) J. Sm. (DF) [139,140]. It is found in citrus fruits such as
grapefruits [141] and bitter taste of citrus juices is dedicated to this flavonoid [142]. It executes
several pharmacological and biological effects including anti-carcinogenic, anti-osteoporotic, anti-ulcer,
anti-apoptotic [143], anti-inflammatory, cholesterol reducing and antioxidant effects [144].

Naringin in PD

PD is partially caused by microglial activation which are native immune cells of brain. Microglial
activation is resultant of DA neuronal damage [145]. The activated microglia may also produce
several neurotoxins such as pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS)
which leads to the nigrostriatal DA neuronal cell death [146,147]. Recently, it was reported that
oral administration of naringin at the dose of 100 mg/kg reduced the microglial activation by
decreasing the expression of glial fibrillary acidic protein (GFAP) [148]. GFAP expression is reported
to be altered following brain damage as in case of PD [149]. It was mentioned that oxidative
stress and neuroinflammation are involved in the pathology of PD. It was proposed that oral
administration of 80 mg/kg naringin (dissolved in 0.5 mL of 0.25% Sodium carboxymethylcellulose)
for two weeks in 3-nitropropionic acid-induced neurodegeneration rat models modulated the
inflammatory reactions and oxidative stress, thereby, giving an idea of its neuroprotective effects
against neurodegeneration [150]. Additionally, naringin also exerts neuroprotective effects by the
initiation of neurotrophic factors [145,151,152]. Furthermore, it has been reported that naringin
enhances the GDNF level in neurotoxin model of DA neurons and it also reduces the level of tumor
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necrosis factor-α in microglia. The effective dose reported in this aspect is 80 mg/kg (suspended in
0.25% sodium carboxymethylcellulose that was dissolved in 0.9% saline) [151]. Thus, these indications
propose that naringin might be a possible natural compound involved in the treatment and anticipation
of the NDDs.

10. Flavanols

10.1. (−) Epigallocatechingallate

(−) Epigallocatechin gallate (EGCG) contains 3 phenol ring structure and is one of the type
of catechin. It is the main bioactive component of green tea leaves while it is also found in black
tea in a minor quantity [43]. Polyphenols from green tea including ECCG have been reported to
exert anti-oxidant [153], anti-carcinogenic [154] and anti-inflammatory effects [155]. EGCG is a major
constituent of green tea that is responsible for its health-promoting potentials. The presence of
two tri-phenolic groups in its structure is associated with its stronger activity [156]. Furthermore, its
anti-oxidant activity has capability to attenuate neurotoxicity as well as neuronal damage resulting
from the free radicals attack [157].

(−) Epigallocatechingallate in AD

Neurotoxicity of Aβ and neuronal cell death via an apoptotic procedure is a well-known hallmark
of AD which is mediated by the production of free radicals and the state of pathogenesis could
be accomplished through free radicals scavengers and anti-oxidants [158]. EGCG acts as a potent
anti-oxidant agent and prevents the hippocampal neuronal cell death [153]. Programmed cell death,
apoptosis, is reported as the distinct process of cell elimination from necrotic cell death. Caspase
activation, most importantly, leads neuronal cells towards apoptosis [159]. Thus, caspase might play
a crucial proliferative role in Aβ-induced neuronal cell death. Interestingly, EGCG obstructs the
augmented caspase activity induced by Aβ25–35 and thus can attenuate apoptosis in neuronal cells
via rummaging the ROS [160]. Moreover, it also attenuates the major hallmarks of AD pathology
such as the interaction between ROS, apoptosis, and Aβ which chiefly contribute to the neuronal cell
death. Most importantly, consumption of green tea may reduce the risk of AD [113] and its clinical
significance has also been revealed by the animal model studies that EGCG can cross the blood-brain
barrier (BBB) and can reach the brain parenchyma [156].

10.2. (−) Epicatechin

(−) Epicatechin (EC), a plant-derived flavanol, naturally found in blueberries, tea, cocoa,
and grapes [59]. It has been recognized as a bioactive flavanol which can cross the BBB and absorbed
into circulation after digestion of flavanol-rich foods [161,162]. EC has capability to enhance the
cardiovascular function and the cortical blood flow especially in the hippocampus, thus, it may
facilitate the neurogenesis [59]. Furthermore, its neuroprotective property in NDDs is discussed
as follows.

(−) Epicatechin in PD

Neuroinflammation plays a very important role in the PD pathogenesis as supported by various
human and animal studies which have enlighten the role of inflammatory cascade and oxidative
stress in the progression of PD. Oxidative stress induced by the increased production of NO, ROS
and thus can causes the nigral cell death [163]. A postmortem tissue study revealed that the oxidative
stress-induced NO, ROS and decreased mitochondrial activity are chiefly involved in pathogenesis of
PD [164] suggesting that the agents which hinder the production of NO and ROS and also able to favor
the decreased mitochondrial activity might play a protective role in PD [165]. Green tea polyphenols
(GTP) including EC moderately protected the dopaminergic neurons by modifying the NO and ROS
levels, conserving the free radical as well as prevent an increase in nitrate/nitrite levels in rat model of
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PD [166]. ROS induce lipid peroxidation, damage to the mitochondrial membrane and thus disrupt
the Ca2+ homeostasis [167]. Interestingly, GTP impedes the altitude of NO by stabilizing the Ca2+

homeostasis [166] and thus, it could serve as a potential marker to attenuate the pathogenesis of PD.

11. Flavonols

11.1. Quercetin

Quercetin (3,3′,4′,5,7-pentahydroxylflavone) belongs to the flavonol class of flavonoids [168],
ubiquitously found in apples, onions, tea, red wines, and berries [60,61]. It is also present in
medicinal plants such as Sambucus canadensis (Elder), Hypericum perforatum (St. John’s Wort),
and Ginkgo biloba [169]. It possesses several pharmacological effects such as vasodilation,
anti-inflammatory, and anti-oxidative properties [170]. It also exerts anticarcinogenic, antihypertensive,
and antithrombic effects [171]. Moreover, it consistently promotes neuroprotective effects [172]
and upsurges the hindrance of neurons to oxidative stress and excitotoxicity by tempering the cell
death mechanisms [173,174]. It exerts valuable effects on CNS including cognition development
and anti-anxiety effects by the inhibition or stimulation of signal transduction pathways or enzyme
activities [175].

Quercetin in AD

AD is the most prevalent cause of dementia, characterized by the liberal deterioration in cognitive
function. It is noteworthy that quercetin promotes the neuroprotective effects by ameliorating the
memory impairment and neuronal cell death [176]. Quercetin also attenuates Aβ aggregation and
declines the level of BACE-1 which mediates the cleavage of APP [177]. Furthermore, quercetin
significantly protects the neuronal cells from neurotoxicity induced by oxidative stress in case of
AD [178]. In vitro study reveals that quercetin acts as antioxidant at low doses (5 and 10 µM) while at
high doses (20 and 40 µM) it can cause toxicity [179].

11.2. Kaempferol

Kaempferol (3,4,5,7,-tetrahydroxyflavone) is a phytoestrogen, and one of the most usual dietary
flavonoids. It is frequently found in tea, broccoli, apples, beans, strawberries, and grapefruits [62,63].
It is known to possess potential anti-inflammatory and anti-oxidative effects [180]. It possesses efficient
neuroprotective effects against numerous necrosis and apoptosis-inducing damages such as oxidizing
low-density lipoproteins [181,182]. It effectively obstructs the upsurge in ROS which is linked to the
oxidative stress [183].

Kaempferol in PD

Lipid peroxidation is the most common pathological symbol in the development of NDDs.
It leads to the occurrence of oxidative damage which is caused by the generation of ROS. It was
reported that kaempferol protected the brain against damage caused by ROS at the dose of 30 µM in
rotenone-induced acute toxicity model [184]. Like lipid peroxidation, monoamine oxidase-A (MAO-A)
also promotes the formation of ROS, causing neuronal cell death [185,186]. It is noteworthy that
kaempferol possesses MAO-A inhibiting property at the IC50 value of 7 × 10−7 M which might be
beneficial in the treatment of PD [187]. Additionally, it was proposed through experimentation that
kaempferol administration amended motor synchronization, enhanced striatal DA in a dose-dependent
manner (25, 50 and 100 mg/kg) [188]. Hence, it is proposed to have anti-parkinsonism properties.
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12. Anthocyanidin

12.1. Cyanidin

Cyanidin-3-glucoside (C3G), is a naturally occurring anthocyanin, mainly found in enormous type
of red berries including cranberry, blueberry, blackberry, mulberries, acai berry, and raspberry [64].
Out of which mulberries contain high concentration of anthocyanin and have been traditionally
used to prevent and treat the diabetes. Importantly, its root bark has been used as an antitussive,
anti-inflammatory, anti-pyretic and diuretic [189]. Furthermore, C3G extracted from mulberry fruit
possesses neuroprotective property against glutamate-induced as well as oxygen-glucose deprived
neuronal cell death [190,191]. Neuroprotective properties of C3G have been discussed as follows.

Cyanidin in AD

C3G is able to neutralize the level of Aβ1–42 peptides and minimize the H2O2-induced
neurotoxicity [192–194]. More recently, it has also been shown that C3G significantly attenuates
the Aβ25–35-induced expression of ER stress proteins, loss of cell viability and also tends to reduce the
intracellular production of ROS in SK-N-SH cells [195]. It can cross the BBB and tempers the age-related
deficits in neurons [194]. C3G, during an in vitro investigation, at 50 and 100 µM is reported to reduce
the Aβ25–35 oligomer toxicity whereas at 100 µM it significantly decreases the necrotic cell (~44%)
formation and apoptosis (~38%) induced by Aβ peptides [196]. Its polyphenolic ring structure
seems to be fairly appropriate for precise aromatic connections with aromatic deposits of Aβ1–42 [197].
Furthermore, the property to block the Aβ1–42 interaction with the neuronal plasma membrane was also
offset by the C3G. In this repute, several studies propose the adherence of soluble oligomeric Aβ1–42

peptides to plasma membrane causing lesions by a combination of impermeable pores formation and
lipid peroxidation and thus finally leading to the cell death [198]. At membrane level, C3G inhibits
oxidative stress-induced ROS formation and concentrates in several brain regions which are important
for memory and learning such as hippocampus and cortex to protect the neurons [199]. Therefore, it is
credible that C3G averts the oligomer-induced neuronal destabilization and lipid peroxidation [195].
Thus, it can serve as an alternate for the prevention of NDDs such as AD.

12.2. Pelargonidin

Pelargonidin (Pel) is an anthocyanin derivative flavonoid and is an agonist of ER but it possesses
minimal estrogen side effects [200]. It is one of the important flavonoid which is efficiently absorbed
in the gastrointestinal tract and also has an accessibility to cross the BBB [201,202]. Pel exerts a vast
number of beneficial effects on human health because of its proficient absorption and minimum side
effects. Being the derivative of anthocyanin, it appears to elicits a potential efficacy as anti-oxidant,
anti-inflammatory [203], antihyperglycemic [204], neural protection, non-genotoxicity responses [205],
and anti-thrombosis activity [206]. The underlying mechanism of its anti-inflammatory property
involves the modulation of interleukins-10 (IL-10), which contributes to the protective effects in
inflammatory diseases but has no effect on the IL-6, IL-1β, and IL-8 [207]. Importantly, it would be one
of the most valuable substitutes to avert the age-related memory and cognitive deficits [200]. Moreover,
neuroprotective property of pel in NDDs is discussed as follows.

12.2.1. Pelargonidin in AD

In spite of conspicuous advances in pathophysiology and therapeutic knowledge about AD, there
are only a minimum number of drugs which have been approved for symptomatic treatment due to
the complex nature of the disease [208]. Anti-inflammatory agents can manage the state of disease
because of their ability to modulate the underlying factors of inflammation. Likewise, Pel inhibits
the inducible nitric oxide synthase (iNOS) protein and mRNA expression, NO production and NF-κB
expression [209]. ERs are largely present in certain memory associated brain areas like frontal cortex,
amygdala, and hippocampus [210] and they also possess neuroprotection in NDDs but the exact
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mechanism is not clarified yet [211]. Pel exerts its neuroprotective efficacy due to its ability to act
as an agonist of ERs [212]. Blood flows in the hippocampal region may stimulate memory function
and neurogenesis by its vasodilatory property. Moreover, memory concert and neuronal connectivity
may also be amended by increased morphology repair and dendritic spine density in female rat
models [213]. Studies have been reported that oral consumption (10 mg/kg) of Pel could converse
the memory disturbance induced by Aβ25–35 via ERs independent pathways. Similarly, another study
on rat model also depicts that it recovers the memory dysfunction in Morris water maze (MWM)
test via improving the cholinergic dysfunction as well as down-regulating the glial fibrillary acidic
protein (GFAP) [200]. Lastly, because of its diverse pathological mechanisms, it would be the valuable
alternatives for estrogen to avert age-related memory deficit and cognitive changes in disorders like
AD. However, additional studies should be done to define its precise mechanism and further explore
the factors which could avert the pathogenesis of AD.

12.2.2. Pelargonidin in PD

Decreased glutamate levels, oxidative stress, increased lipid peroxidation, iron deposition,
and DNA damage have been reported as the major pathological factors in PD [214]. Oxidative stress
impairs the dopaminergic neurons and compromises the oxidative phosphorylation of mitochondria,
leading to the cell death due to insufficient availability of energy [215]. Although inordinate advances
have been made in the development of medicinal therapy for PD, but none of the agent addresses the
associated problem i.e., the dopaminergic neuronal damage [216]. Thus, protection of dopaminergic
neuronal damage and loss is the primary need to avert the pathogenesis of PD. Pel minimizes the
neuronal loss and damage via inhibiting the formation of free radicals as well as modifying the
antioxidant defensive system [217]. It also decreases the formation of thiobarbituric acid reactive
substances (TBARS) at the oral dose of 20 mg/kg in a semi Parkinsonism rat model whereas it is
unable to prevent the free radical generation significantly at the same dose [218]. Furthermore, Pel also
mitigates the development of PD because of its anti-inflammatory efficiency [209]. However, further
investigation pointing the mechanistic approach of its anti-inflammatory property has to be explored
yet. It may possess neuroprotective activity because of its ability to prevent the dopamine oxidation
mediated by peroxynitrite. Importantly, further studies are needed regarding to its toxicity. To date,
it is suggested that Pel exhibits the neuromodulatory effects because of its ability to cross the BBB and
accumulates in the brain at nanomolar concentrations [219,220].

13. Conclusions and Future Perspectives

Neuroprotective activity of natural flavonoids encompasses multiple effects within the brain,
including their efficacy to shelter against neurotoxins-induced neuronal injury, to endorse learning,
memory, cognitive functions, and to suppress the neuronal inflammation. Two common processes
lay the foundation of such diversified neuroprotective effects of flavonoids. Firstly, they are reported
to have various positive effects on the cerebral and peripheral vascular system, leading to the
alterations in cerebrovascular blood flow. These alterations ultimately induce angiogenesis, neuronal
cell growth in hippocampus, and improve neuronal morphology, all of which are crucial in regulating
neuro-cognitive activities and maximal neuronal functions. Secondly, they interact with neuronal
signaling networks within the brain leading to the inhibition of neurotoxin-induced apoptosis and
promoting the differentiation and survival of neurons.

Dietary consumption of flavonoids rich foods such as cocoa and berries grasps the efficacy to
attenuate neurodegeneration and averts or reverses the age-dependent deteriorations of cognitive
function. However, definite temporal nature underlying neuroprotective effects of flavonoids is unclear
at present. More work is needed to be done on flavonoids as a potential therapy for several untreatable
NDDs. Most particularly, at present, there are inadequate data on the aspect of a causal relationship
between the consumption of flavonoids and behavioral consequences. There should be more clinical
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and preclinical trials. The toxic values and availability of flavonoids in the market still needs to
be explored.
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