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Abstract 
Diffuse large B-cell lymphoma (DLBCL) is characterized by clinical and molecular heterogeneity; however, this heterogeneity is rarely taken into 
account by standard-of-care treatment approaches. While the disease was traditionally classified based on transcriptome signatures purporting 
the tumor cell of origin, recent classification systems have further differentiated these subtypes into clusters based on molecular and genetic 
features. Alongside a better understanding of the biology of the disease and the signaling pathways involved, emerging therapeutic agents may 
be better aimed at attacking distinct disease subsets. It is hoped that molecular subtyping at diagnosis will allow patients to be allocated to the 
appropriate treatment that targets their specific disease subtype, thus advancing the promise of precision medicine in lymphoma, an approach 
that is most needed. For high-risk disease subsets, this is particularly important, and much research is still needed to develop agents effective 
in this population. Here, we review recent advances in DLBCL biology and how they can be translated into clinical care.
Key words: diffuse large B-cell lymphoma; biology; classification; cell of origin; precision medicine.

Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most common 
type of non-Hodgkin lymphoma (NHL), accounting for 
around a third of all cases.1 The disease is both clinically and 
molecularly heterogenous, with distinct subtypes traditionally 
classified based on the cell of origin (COO) of the tumor. More 
recently, novel classification systems have described subtypes 
of DLBCL based on molecular and genetic signatures.2-5 The 
current standard of care for front-line treatment of DLBCL 
is usually R-CHOP.6 However, around 40% of patients will 
develop relapsed or refractory (R/R) disease, with poor sub-
sequent outcomes.7,8 Considering the biological and clinical 
heterogeneity of DLBCL, and the need for more effective ther-
apies, this review focuses on identifying possible avenues to 
translate this theoretical knowledge into clinical practice.

Stratification of DLBCL
Most NHLs, including DLBCL, originate in the germinal cen-
ters (GC) of lymph nodes, which also give rise to trademark 

heterogeneity of DLBCL. GCs are specialized, transient 
structures that develop upon antigen challenge. Here, 
B-lymphocytes undergo maturation to become either plasma B 
cells, which secrete high-affinity antibodies, or memory B cells 
primed against future infection. The GC therefore facilitates 
T-cell-dependent humoral immunity and adaptive immunity.9 
As B cells transit the GC, class switch recombination confers 
a risk of unintended mutations leading to lymphomagenesis.

Prognostic Indices
Various clinical indices have been used with the goal of 
risk stratification in DLBCL, including the International 
Prognostic Index (IPI),10 revised IPI (R-IPI)11 and National 
Comprehensive Cancer Network IPI (NCCN-IPI).12 In add-
ition, the CNS-IPI combines the prognostic factors com-
prising the IPI with renal and/or adrenal gland involvement 
in estimating the risk of developing secondary CNS relapse.3 
This has been further refined with the inclusion of COO in 
the prognostic model.13

Implications for Practice

Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma, is a heterogenous disease with a high re-
lapse rate and poor outcomes in the relapsed/refractory setting. Assessing the molecular profile is fundamental to the diagnosis but can 
also guide treatment decisions. Advanced understanding of DLBCL biology has facilitated the development of novel drugs in this area. 
Sophisticated classification methods that incorporate molecular characteristics and other prognostic indicators are likely to transform the 
management of DLBCL and improve the outcomes for patients.
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While these indices have utility in predicting outcomes, 
they do not routinely lead to a qualitative change in the 
chemotherapy backbone. By integrating molecular features 
into prognostic models, a resulting “molecular IPI” could 
potentially better characterize patients at high risk of failure 
with R-CHOP, for whom novel treatment approaches are 
most needed.14

Cell of Origin and Prognostic Significance
Gene expression profiling (GEP) classifies DLBCL into bio-
logic subtypes arising from distinct stages of normal B-cell 
development, which bear distinct genetic abnormalities and 
respond differently to chemoimmunotherapy (CIT) and tar-
geted agents. The 2 COO-based subtypes include germinal 
center B-cell-like (GCB) and activated B-cell-like (ABC), 
GEPs typical of cells at these stages of differentiation.15 
Later efforts described a third, “unclassified” or “type 3” 
subtype, which did not conform to either GCB or ABC 
DLBCL.16

GCB is the more prevalent subtype. One population-based 
study reports GCB in 56% of the cohort, with 32% ABC and 
11% type 3.17 Studies conducted in the pre-rituximab era, 
showed significantly better outcomes for patients with GCB 
DLBCL than those with ABC subtypes (5-year overall survival 
[OS] rates: 60%-70% and 16%-35%, respectively). However, 
in the post-rituximab era, these figures have improved to 78% 
and 56%, respectively.17 In prospective trials, COO has had a 
more modest association with outcomes. In the GOYA trial, 
5-year progression-free survival (PFS) rates for GCB, ABC, 
and type 3 were 66%, 56%, and 63%, respectively among 
patients receiving R-CHOP.18,19

Efforts also concentrated on alternative approaches to 
classify DLBCL. Caro et al relied on GEP to subdivide 

DLBCL based on the metabolic program, while Lenz 
et al analyzed stromal gene signatures to identify the 
prognostically favorable “stromal-1” and unfavorable 
“stromal-2” subtypes.20,21 How these DLBCL subsets inter-
face with novel genetic classifications is unknown (Figure 
1). Since GEP is not widely accessible in clinical practice, 
immunohistochemistry (IHC)-based approaches were intro-
duced to distinguish between COO subtypes. The Hans al-
gorithm, based upon expression of CD10, BCL6, and IRF4/
MUM1, is used most.22 Although IHC-based approaches 
are rapid and cost-effective, they do not reliably identify the 
ABC subset, resulting in misclassification of cases at mean-
ingful rates.23

Some DLBCL subgroups have distinct molecular profiles 
that are closely related to high-grade B-cell lymphoma or pri-
mary mediastinal B-cell lymphoma.24-26 These cases, together 
with T-cell/histiocyte-rich B-cell lymphoma, contribute to the 
“unclassified” COO and may be separated from DLBCL in 
future classifications.

COO Subtypes Refined by Genetic Alterations
Genetic alterations in DLBCL determine B-cell signaling 
and differentiation stage, including chromosomal transloca-
tions, somatic mutations, and copy-number alterations.27 
Two groups independently explored the genetic and muta-
tional signatures in DLBCL.2-4 Using different integrated gen-
omic approaches, they classified DLBCL cases into clusters 
featuring common genetic signatures, associated with out-
comes. The feasibility of this type of testing in DLBCL was 
confirmed by other groups.28,29 These genetic subtypes and 
their common genetic alterations are shown in Figure 1. Based 
on these findings, a probabilistic algorithm was developed to 
determine the genetic subtype of an individual, allowing for 

Figure 1. DLBCL subtypes and frequent genetic alterations. The figure depicts GEP-based classifications (COO, metabolic, stromal), the novel genetic 
subtype classifications and possible interface between them.2-4,20,21 Abbreviations: ABC, activated B-cell; COO, cell of origin; GCB, germinal centre 
B-cell; GEP, gene expression profiling.
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prognostication and therapeutic decision-making, including 
defining candidates for precision medicine trials.4

Lymphomas with chromosomal rearrangements of MYC 
and BCL2 and/or BCL6 (double- and triple-hit lymphoma, 
now classified as high-grade lymphoma) are commonly of 
GCB subtype. Patients harboring these mutations have par-
ticularly poor outcomes when treated with R-CHOP, and 
while outcomes may vary according to the MYC transloca-
tion partner, intensified induction is considered appropriate 
by the majority.30-35 Such patients should be distinguished 
from those with overexpression (but lacking gene rearrange-
ments) of MYC and BCL2 (double-expressor lymphoma), 
which typically are of ABC subtype.2-4,20,21 Although prognosis 
may also be inferior in these patients, intensified induction 
has demonstrated to improve outcomes. Similarly, mutations 
in TP53 have been linked to acquired rituximab resistance 
and R-CHOP failure, and are enriched in R/R DLBCL.36

However, a unified model that is suitable for implementa-
tion in clinical practice remains to be delineated. The model 
used by Schmitz et al leaves a large proportion of cases as 
unclassified and relies on complex input, including exome 
sequencing and copy-number analysis, that is unlikely to be 
translated into clinical practice.5 Other classifications, such as 
the approach described by Lacy et al, rely on more practical 
multigene panels.28 Fundamentally, our improving under-
standing of molecular and genetic subtypes potentiate the ra-
tional investigation of incorporating targeted therapies into 
the treatment of DLBCL.

The Evolving Treatment Landscape of DLBCL
Current Standard of Care
R-CHOP remains the first-line standard of care in DLBCL. 
Attempts to escalate therapy or to introduce alternative 
anti-CD20 monoclonal antibodies (mAbs) to improve outcomes 
in the first-line setting have been largely unsuccessful in improving 
OS. The GOYA study (N = 1418), a head-to-head comparison 
of R-CHOP with the anti-CD20 mAb obinutuzumab com-
bined with CHOP (G-CHOP), showed no survival benefit.19,37 
A randomized cooperative group Phase 3 study investigating 
the increased dose-intensity regimen DA-EPOCH-R versus 
R-CHOP (N = 524) also demonstrated no benefit of therapy 
intensification.38 The only study to show improved OS in the 
front-line setting was an open-label randomized study using 
dose-intensive rituximab, doxorubicin, cyclophosphamide, 
vindesine, bleomycin, and prednisone in patients <60 years with 
low-intermediate risk IPI DLBCL (N = 379). Three-year OS was 
92% versus 84% with R-CHOP (P = .0071).39

For patients with R/R disease, platinum-based salvage 
CIT followed by autologous stem cell transplant remains the 
standard of care for younger, fit patients.40-42 The management 
of transplant-ineligible patients, who comprise up to 60% of 
patients, is tailored to the individual patient’s tolerance; given 
poor outcomes, such patients represent a high unmet need.43

Targeting Treatment by COO Subtype
A major focus of research in DLBCL has been to leverage 
our understanding of the distinct biology of DLBCL COO to 
deploy novel therapies. In the front-line setting, 4 large, ran-
domized phase 3 studies have investigated whether outcomes 
can be improved by combining agents targeted to COO sub-
types with standard R-CHOP therapy. Three failed to meet 
their primary endpoints (Table 1),44-46 including the ROBUST 

trial comparing R-CHOP with or without lenalidomide. A 
second randomized trial studying this combination, ECOG-
ACRIN E1412, reported marginally positive findings (3-year 
PFS of 73% vs 61%, 1-sided P = .03, 3-year OS of 83% 
vs 75%, 1-sided P = .05).47 Additional phase 3 studies at-
tempting to reduce the risk of relapse in COO-stratified 
patients who achieved remission with R-CHOP have also 
been largely unsuccessful.48-50 A recent press release indicates 
that the impending results of the placebo-controlled phase 
3 POLARIX study (NCT03274492), studying Pola plus 
R-CHP versus R-CHOP in patients with previously untreated 
DLBCL, may be positive. The primary endpoint of improved 
PFS seems to have been met; at the time of writing, the results 
had not been published or presented.

Further tailoring of trial populations based on genetic ab-
normalities seems to be a way to overcome the negative trend. 
A flexible trial design, allowing for addition of targeted agents 
later in the treatment course instead of at the very beginning, 
and narrowing screening windows may also help improve 
outcomes. Currently, clinical trials often select biologically 
more favorable patients; an approach that is closer to clinical 
practice is needed. Another solution would be to focus trials 
exclusively on a high-risk patient population, such as high IPI 
or double-hit lymphoma.

Tractable Targets in GCB DLBCL
BCL2 is a key member of the family of proteins that mediate 
the apoptotic response to anticancer therapeutics.51 BCL2 
overexpression is associated with poor prognosis.52,53 In the 
phase 1b portion of the CAVALLI study (NCT02055820), 
first-line treatment with venetoclax plus R-CHOP or G-CHOP 
demonstrated promising activity and safety.54 Particularly 
high efficacy (87.5% complete response [CR] rate) was ob-
served in double expressor DLBCL, supporting further inves-
tigation in high-risk patients with BCL2+ DLBCL or DHL.54 
The open-label phase 2 portion of the study (N = 206) showed 
promising efficacy of adding Bcl2 inhibitor venetoclax to first-
line R-CHOP in 206 patients with DLBCL, including 101 pa-
tients with GCB DLBCL and 48 with the ABC subtype (69% 
CR rate with venetoclax in combination with R-CHOP), al-
though caution is warranted, since this was not a randomized 
comparison.55 There was a trend toward improved PFS (HR 
= 0.61) with combination therapy versus R-CHOP alone, but 
this was offset by increased myelosuppression: 86% of patients 
who received Bcl-2 inhibitor had grade 3/4 hematologic ad-
verse events, versus 66% with R-CHOP alone. A randomized 
phase 2/3 study is currently investigating first-line venetoclax 
combined with CIT in patients with MYC/BCL2 double-hit 
and double expressing lymphomas (NCT03984448).

Dysregulation of epigenetic pathways is implicated in 
lymphomagenesis, and mutation or overexpression of 
histone-methyl transferases such as EZH2 (enhancer of zeste 
homolog 2) have been linked to the development of GCB-type 
DLBCL.56 Tazemetostat, a potent, orally available, selective 
small molecule inhibitor of EZH2 enzymatic activity, is under 
investigation in combination with R-CHOP (Epi-RCHOP) 
as a first-line treatment for newly diagnosed, poor prognosis 
DLBCL (NCT02889523).

MYC-directed approaches to targeting GCB DLBCL under 
investigation include bromodomain and CDK9 inhibitors. 
Bromodomain inhibitors exert antitumor activity largely by 
disrupting MYC transcription, which is regulated by BRD4, a 
member of the bromodomain and extra-terminal (BET) family 
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of proteins.57 An oral BET inhibitor, CC-90010, is in early de-
velopment in DLBCL having demonstrated single-agent activity 
in a phase 1 study in several solid tumors (NCT03220347).

Cyclin-dependent kinases (CDKs) are serine/threonine kin-
ases that play key roles in cell cycle regulation and RNA tran-
scription. The selective CDK9 inhibitor AZ4573 is in early 
clinical development in DLBCL (NCT03263637). Preclinical 
studies have demonstrated that selective targeting of CDK9 
restricts the growth of DLBCL cells independent of COO, by 
halting transcription and downregulating MCL1 and MYC 
expression,58 and targeting CDK9 has been shown to disrupt 
MYC oncogenic activity in DLBCL. The novel CDK9 in-
hibitor A-1592668 combined with venetoclax demonstrated 
synergistic activity both in vitro in lymphoma cell lines and ex 
vivo in DLBCL biopsies.59 These findings suggest that dual in-
hibition of CDK9 and BCL2 may be effective in tumors reliant 
on overexpression of the anti-apoptotic BCL2 family proteins.

Tractable Targets in ABC DLBCL
Front-line Options in Clinical Development
Neoplastic B cells rely on BCR signaling in their survival, 
however, unlike the GCB subtype, ABC DLBCL is dependent 

on constitutive activation of the nuclear factor kappa-B (NF-
κB) signaling. Mutations in genes downstream of the BCR 
(eg, CD79, MYD88, CARD11), and NF-κB-related genes are 
enriched in ABC DLBCL, resulting in chronic activation of 
BCR signaling, thus making components of this pathway at-
tractive therapeutic targets.60 Several inhibitors of Bruton’s 
tyrosine kinase (BTK), a key kinase in BCR signaling, are 
under investigation in DLBCL. Ibrutinib is a potent cova-
lent inhibitor of BTK.61 In the PHOENIX study (see Table 
1 for details), OS was improved among younger patients 
(<60 years) treated with ibrutinib plus R-CHOP versus 
R-CHOP alone (NCT01855750).44 Acalabrutinib, a second-
generation selective BTK inhibitor,62 is now under investi-
gation in combination with R-CHOP in adult patients up 
to age 65 with newly diagnosed ABC DLBCL (ESCALADE; 
NCT04529772).

Proteasome-targeting agents abrogate constitutive NF-κB 
activity and enhance the pro-apoptotic effect of chemotherapy 
in DLBCL cells in vitro.46,63 Proteasome inhibitor bortezomib 
has shown higher efficacy in this subtype over GCB DLBCL 
in a phase 2 trial.63 However, the phase 3 REMoDL-B trial 
found no significant improvement in efficacy of adding 
bortezomib to R-CHOP in GCB or ABC DLBCL.46 In the 

Table 1. Phase 3 studies aimed at improving DLBCL outcomes with first-line R-CHOP.

Study Patients (no. randomized) Regimen Endpoints/Response 

R-CHOP combinations

 PHOENIX44

 NCT01855750
Previously untreated non-GCB-
DLBCL (N = 838). Initially 
selected by IHC; retrospective 
GEP analysis

R-CHOP +/– 
ibrutinib
(RI-CHOP)

EFS: Not met in overall ITT or ABC population but 
significant interaction for RI-CHOP in patients <60 
years (EFS [HR, 0.579], PFS [HR, 0.556], and OS [HR, 
0.330]); ORR and CR were similar in overall ITT or ABC

 ROBUST45

 NCT02285062
Previously untreated, CD20+, 
ABC DLBCL (Lymph2Cx GEP) 
with Ann Arbor stage II-IV  
(N = 570)

R-CHOP +/– 
lenalidomide 
(R2-CHOP)

PFS: Not reached in either arm
At median follow up of 27.1 months OS was 79% for 
R2-CHOP and 80% for R-CHOP; ORR 91% for both 
arms, CRs 69% for R2-CHOP and 65% for R-CHOP

 REMoDL-B46

 NCT01324596
Newly diagnosed DLBCL  
patients – stratified using GEP  
(N = 244 ABC, N = 475  
non-GCB, N = 199 unclassi-
fied)

R-CHOP +/– 
bortezomib
(RB-CHOP)

PFS: No difference between R-CHOP and RB-CHOP in 
GCB vs ABC DLBCL: 30-month PFS 70.1% (95% CI 
65.0-74.7) vs 74.3% (69.3-78.7), respectively; HR 0.86 
(0.65-1.13); P = .28

 ECOG-ACRIN E141247

 NCT01856192
Newly diagnosed DLBCL  
patients (Lymph2Cx GEP:  
N = 49 ABC, N = 122 GCB,  
N = 64 unclassified)

R-CHOP +/– 
lenalidomide 
(R2-CHOP)

PFS: At median follow up of 3.0 years, R2CHOP vs 
R-CHOP showed a HR 0.66 (95% CI, 0.43 to 1.01). 
3-year PFS was 73% vs 61% (P = .03)
The PFS HR for R2CHOP was 0.67 for ABC-DLBCL  
(P = .1)

Maintenance therapy

 PRELUDE48

 NCT01122472
Patients in complete remission 
after 6 or 8 cycles of R-CHOP 
and at high risk of relapse  
(N = 650)

Maintenance 
therapy with 
lenalidomide 
vs placebo

Significant difference in median PFS in favor of 
lenalidomide vs placebo in overall population (HR 0.708 
[0.537-0.933]; P = .01) and in GCB patients (HR 0.491 
[0.245-0.985]; P = .04) but not in ABC patients

 REMARC49

 NCT00332202
Patients in complete remission 
after 6 cycles of R-CHOP and 
at high risk of relapse  
(N = 215 with evaluable COO 
by Hans)

Maintenance 
therapy with 
enzastaurin 
vs placebo

DFS: No significant differences in DFS and OS between 
GCB (n = 109) and non-GCB (n = 106) subgroups (DFS, 
HR, 0.92 [0.56-1.52]; P = .742; OS HR, 0.72 [0.39-
1.35]; P = .307) for enzastaurin vs placebo

 PILLAR-250

 NCT00790036
Poor-risk patients who had 
achieved a CR with R-chemo 
(N = 742: n = 349 ABC,  
n = 264 non-GCB)

“Adjuvant” 
everolimus vs 
placebo for 1 
year

DFS: No significant difference vs placebo in overall popu-
lation (HR 0.92 (0.69-1.22); P = .276. Two-year DFS 
rate: 77.8% (72.7-82.1) with everolimus; 77.0% (72.1-
81.1) with placebo DFS
No significant differences in DFS or OS between GCB 
and non-GCB subgroups

Abbreviations: ABC, activated B-cell; COO, cell of origin; CR, complete response; DFS, disease-free survival; DLBCL, diffuse large B-cell lymphoma; EFS, 
event-free survival; GCB, germinal center B-cell; GEP, gene expression profiling; ORR, objective response rate; OS, overall survival; PFS, progression-free 
survival.
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front-line setting, bortezomib is under investigation in the 
phase 1/2 ImbruVeRCHOP study (NCT03129828) in com-
bination with both R-CHOP and ibrutinib in newly diag-
nosed, high-risk (by IPI) DLBCL patients64

The PI3K-(phosphatidylinositol-3-kinase) AKT pathway 
plays a critical role in cell survival in response to extracel-
lular signals.65 In the front-line setting, copanlisib, a pan-class 
I small molecule PI3K inhibitor with predominant activity 
against p110α and δ isoforms approved for R/R follicular 
lymphoma, is under investigation in a phase 2 study in com-
bination with R-CHOP (Copa-R-CHOP; NCT04263584).66 
While PI3K may be dysregulated in both GCB and ABC 
DLBCL, and loss of PTEN, a negative pathway regulator, is 
exclusive to GCB subtype,67,68 preclinical data suggest that 
copanlisib may be particularly efficacious in the ABC-DLBCL 
subset, where it may cooperate with BTK inhibition.69 In the 
R/R setting, single agent copanlisib has demonstrated ac-
tivity in a phase 2 study in 67 R/R DLBCL patients stratified 
by COO and CD79B mutational status (NCT02391116). 
Objective response rates (ORR) of 31.6% with 21.1% CR, 
and 13.3% ORR with 3.3% CRs were observed in ABC 
and GCB patients, respectively. The ORR in patients with or 
without CD79B mutations was similar (22.2% vs 20%).70 The 
combination of copanlisib and the PD-1 inhibitor nivolumab 
is also under investigation (NCT03484819; NCT03884998).

Umbralisib (TGR-1202), a dual inhibitor of PI3K-δ and 
CK1ε (creatine kinase 1e), is being investigated in R/R DLBCL 
patients in the phase 2b UNITY-NHL study in combination 
with the anti-CD20 mAb ublituximab (NCT02793583).71

Preclinical evidence also provides a rationale for the com-
bination of PI3K-inhibition with BCL2 blockade in ABC 
DLBCL.69,72 Copanlisib was found to induce apoptosis and 
modulate BCLX and MCL1 activity in BCR-dependent 
DLBCL cell lines with a genetic signature indicative of 
BCL2 dysregulation. This in vitro activity was synergistic 
when co-administered with the BCL2 inhibitor venetoclax, 
with this synergism also confirmed in a murine xenograft 
model.72 An ongoing phase 1/2 study investigates copanlisib 
in combination with venetoclax in patients with R/R DLBCL 
(NCT04572763).

Clinical Development in Relapsed/Refractory 
Setting
A recent meta-analysis has confirmed that ibrutinib-
containing therapy can improve outcomes in patients with 
non-GCB DLBCL.73 Single-agent ibrutinib has shown prom-
ising activity in R/R primary and secondary CNS lymphoma 
(PCNSL/SCNSL), a uniformly ABC-type disease. In a phase 
1 trial, 10/13 (77%) PCNSL patients responded to high-dose 
ibrutinib (840 mg), 5 with a CR and 5 with a partial response 
(PR).74 More recently, ibrutinib in combination with metho-
trexate and rituximab has shown to be well tolerated, with 
an 80% response rate (N = 12/15) in R/R CNS lymphoma 
(NCT02315326).75

In the phase 1/2 BRUIN trial, pirtobrutinib (LOXO-305), 
a noncovalent BTK inhibitor, showed activity in patients with 
B-cell malignancies (N = 323), including patients previously 
treated with covalent BTK inhibitors (NCT03740529).76 
Noncovalent BTK inhibitor ARQ 531 is also under investiga-
tion in a phase 2 trial including patients with selected hema-
tologic malignancies (NCT03162536).77

The immunomodulatory drug lenalidomide was studied 
in patients with DLBCL who had received ≥2 prior 

therapies, compared with investigator-choice chemotherapy. 
Lenalidomide modestly improved ORR (27.5% vs 11.8%) 
and PFS (13.6 vs 7.9 weeks), with greater improvements ob-
served in non-GCB patients.78 Following the inconclusive 
results from ROBUST (Table 1),45 R-CHOP plus or minus 
lenalidomide is currently being investigated in newly diag-
nosed double-expressor DLBCL (NCT04164368).

Lenalidomide has also been successfully combined with 
tafasitamab (MOR208), an Fc-engineered antibody that 
targets CD19. In a phase 2 study, the combination showed 
encouraging activity in R/R DLBCL patients ineligible for 
high-dose chemotherapy and autologous stem cell transplant 
(L-MIND; NCT02399085), with an ORR of 60% and CR 
rate of 43%.79 The combination is now FDA approved for the 
treatment of R/R DLBCL.

COO Agnostic Therapies
Antibody Drug Conjugates
Antibody drug conjugates (ADCs), which combine a cytotoxin 
with a target-specific mAb via a linker, are a promising treat-
ment modality for DLBCL. The first-in-class ADC in DLBCL, 
polatuzumab vedotin (Pola), targets CD79b, a component of 
the B-cell receptor. It was granted accelerated FDA approval 
in 2019 in combination with bendamustine and rituximab 
(Pola-BR) for the treatment of patients with R/R DLBCL who 
have received ≥2 prior therapies, and there are European and 
Asian regulatory approvals for R/R DLBCL in the second 
line and beyond. Approval was based on a randomized phase 
1b/2 study demonstrating an improved CR rate (40% with 
Pola-BR vs 18% with BR), and OS (12.4 vs 4.7 months, re-
spectively).80 Pola-BR appeared to benefit patients regardless 
of COO, with a slight trend toward enhanced efficacy in ABC. 
CR rates were 47% and 27% in ABC- and GCB-patients, re-
spectively. The HR versus placebo for PFS was 0.20 (95% 
confidence interval [CI], 0.09-0.45) for ABC and 0.49 (95% 
CI, 0.23-1.05) for GCB.80 Early findings in front line have 
also been promising when used in combination with R-CHOP 
minus vincristine (R-CHP). As discussed above, the phase 3 
trial POLARIX, comparing R-CHP versus Pola plus R-CHOP, 
has completed accrual with first results anticipated in 2021 
(NCT03274492). Two other phase 3 studies are underway in 
R/R DLBCL, evaluating platinum-based CIT with or without 
Pola. POLARGO (NCT04182204) is assessing rituximab 
plus gemcitabine plus oxaliplatin (RGemOx) with or without 
Pola, while PolaR-ICE (NCT04665765) is evaluating Pola 
with rituximab and ifosfamide-carboplatin-etoposide (RICE) 
and post-transplant Pola consolidation, in transplant-
ineligible and eligible patients, respectively.

Emerging ADCs include loncastuximab tesirine 
(ADCT-402), an anti-CD19 antibody conjugated to a 
pyrrolobenzodiazepine dimer toxin.81 It is now in phase 2 of 
development as a single agent in R/R DLBCL after promising 
phase 1 findings (NCT03589469). Interim phase 2 study re-
sults presented at EHA 2020 demonstrated an ORR of 45.5% 
(20% CR). A phase 2 trial in the R/R setting is also underway 
in combination with ibrutinib (NCT03684694).

CART-cell Therapy
Chimeric antigen receptor-modified (CAR) T cells are pre-
sumed independent of COO subtype (reviewed by Hopfinger 
et al82). Two CD19-targeting CART products have now been 
approved in R/R DLBCL: axicabtagen ciloleucel (axi-cel) and 
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tisagenlecleucel. Approvals were based on pivotal trials with 
ORRs of 82% (ZUMA-1; NCT02348216) and 52% (JULIET; 
NCT02445248). In ZUMA-1, of 74 patients assessed for 
COO, 52 (70%) were GCB-type and 18 (24%) ABC-type; 
COO was not associated with outcomes.82,83 Similarly, in 
JULIET (57% GCB; 41% non-GCB;), outcomes were not 
associated with COO.84 Ongoing trials evaluating CART 
versus platinum-based second-line therapy with planned auto 
transplant include ZUMA-7 (NCT03391466), BELINDA 
(NCT03570892), and TRANSCEND (NCT02631044). 
Although clearly promising agents, access to CART is limited 
by a lengthy manufacturing process (2-4 weeks), reliance 
upon apheresis of the patient’s circulating T cells, availability 
of specialized resources, and cost.85 Furthermore. CART-cell 
therapy has been shown to have inferior outcomes among pa-
tients with significant medical comorbidities, representing a 
significant proportion of patients with R/R DLBCL.86

Immune Checkpoint Inhibitors
Tumors often exploit immune checkpoint pathways to evade 
elimination by the host immune system. Immune checkpoint 
molecule programmed death ligand 1 (PD-L1) interacts with 
its receptor PD-1 on T cells to suppress anti-tumor activity. 
In DLBCL, several PD-L1 gene alterations, mostly trans-
locations and amplifications, have been associated with re-
sponse to PD-1 blockade.87 Patients with PD-L1 alterations 
were also shown to have an inferior response to front-line 
CIT, making PD-1 blockade an attractive treatment option.87 
Both overexpression of PD-L1 and PD-L1 alterations are 
more common in non-GCB DLBCL but can be seen in all 
subtypes.88,89

A phase 1 study of single-agent nivolumab in patients with 
R/R DLBCL showed an ORR of 36%90 but results of a sub-
sequent larger study were disappointing.91 In the front-line 
setting, the PD-L1 inhibitor durvalumab in combination 
with R-CHOP was safe; encouraging response rates were ob-
served in patients with high-risk DLBCL, including double-
hit lymphoma (NCT03003520). A recent feasibility study 
in treatment-naive DLBCL patients (n = 30) using the PD-1 
inhibitor pembrolizumab combined with R-CHOP reported 
an ORR of 90% and CR of 77%.92 Pembrolizumab is also 
under investigation in a phase 1/2 study in combination 
with MK-4280, another PD-L1 inhibitor, which antagonizes 
the lymphocyte activation gene-3 protein, in patients with 
Hodgkin’s lymphoma and NHL (NCT03598608).

Bispecific Antibodies
Bispecific antibodies target a tumor antigen and engage im-
mune function by co-targeting antigens on host immune cells. 
Blinatumomab, which binds to CD19 and CD3, showed a 
median PFS of 3.7 months and a median OS of 5.0 months, 
with an ORR of 43% (19% CR) in R/R DLBCL; median 
duration of response was 11.6 months (NCT01741792).93 
Preliminary results from an open-label phase 2 study of 
single-agent blinatumomab after front-line R-CHOP reported 
an 89% ORR in patients with newly diagnosed, high-risk 
DLBCL (NCT03023878).94 Blinatumomab is also under in-
vestigation in R/R DLBCL in combination pembrolizumab 
(NCT03340766).

Bispecific antibodies mosunetuzumab and glofitamab 
co-target CD3/CD20. Durable CRs with mosunetuzumab, 
including in patients who had relapsed after CART-cell 
therapy, have recently been reported in a phase 1 study (ORR 

39%, 22% CRs) (NCT02500407).95 Glofitamab as a single 
agent or in combination with obinutuzumab is under phase 1 
investigation in R/R NHL (NCT03075696). Data on single-
agent glofitamab with obinutuzumab pretreatment have been 
encouraging, with durable responses at the recommended 
phase 2 dose (ORR 41.4% and CR 28.8% in 73 patients with 
R/R DLCBL).96 Two other studies of glofitamab plus chemo-
therapy have been initiated: a phase 1 study of glofitamab 
plus R-CHOP in the front-line setting (NCT03467373) and 
a phase 3 study of glofitamab plus gemcitabine/oxaliplatin 
versus rituximab plus gemcitabine/oxaliplatin in the R/R set-
ting (NCT04408638).

CD47 Blockade
CD47 is an antiphagocytic signal overexpressed by tumor 
cells to facilitate evasion from phagocytosis. Overexpression 
of CD47 is an independent predictor of poor prognosis in pa-
tients. In the dose-escalation phase of a phase 1b/2 trial, the 
first-in-class anti-CD47 antibody magrolimab (Hu5F9-G4) 
demonstrated promising efficacy in R/R DLBCL, with ORR 
and CR rates of 40% and 33%, respectively97; the expansion 
stage/phase 2 of the trial in combination with rituximab, is 
ongoing (NCT02953509), as are evaluations with other 
agents targeting CD47 such as TTI-622 (NCT03530683).

CD47 is a ligand for signal regulatory protein α (SIRPα), 
expressed by macrophages. Binding of CD47 to SIRPα stops 
macrophages from phagocytosis of tumor cells.98 A number 
of SIRPα inhibitors are currently in development.99

XPO1 Inhibition
Exportin 1 (XPO1, also known as CRM1), is a nuclear ex-
porter protein that mediates the export of tumor suppressor 
proteins, including p53, out of the nucleus. Inhibition of XPO1 
retains these suppressor proteins within the nucleus, restoring 
their tumor-suppressor function.100 Selinexor, an orally ad-
ministered selective inhibitor of XPO1, was recently granted 
accelerated FDA approval based on the phase 2b SADAL 
study conducted in R/R DLBCL patients (NCT02227251; N 
= 127). The reported ORR was 28%, with 34% the GCB and 
21% in the non-GCB subtype, although an unfavorable tox-
icity profile and strict inclusion/exclusion criteria may limit 
clinical applicability of these findings.101

Future Directions
The prognosis and treatment of patients with DLBCL depends 
on vast clinical and molecular heterogeneity. Assessing the mo-
lecular profile is fundamental to the diagnosis, including IHC 
for expression of MYC, BCL2 and BCL6 and fluorescence in 
situ hybridization for MYC and BCL2 rearrangements. The 
SCHOLAR-1 study highlighted the futility of chemotherapy 
approaches in patients with DLBCL who are refractory to 
first-line CIT or relapse after 2 lines of chemotherapy (Figure 
2).102 Hence there is an urgent medical need to improve the 
current standard of care for DLBCL, especially for molecu-
larly defined subgroups at particularly high risk to exhibit 
resistance to first-line CIT. With advanced understanding of 
its biology, further parsing of DLBCL is poised to facilitate 
the development of novel agents for patients with specific 
needs. Concurrent development of sophisticated classifica-
tion methods that incorporate molecular characteristics and 
other prognostic indicators is likely to transform the manage-
ment of DLBCL and improve the outcomes for patients with 



The Oncologist, 2022, Vol. 27, No. 1 63

high-risk disease. While current prognostic indices can aid in 
predicting outcomes, more accurate indices that incorporate 
both COO classification and/or genetic signatures would be 
more likely to guide treatment choice.

Several large phase 3 trials in the front-line setting have 
attempted to improve outcomes by combining novel tar-
geted agents with standard of care CIT regimens, but these 
have been largely unsuccessful. It remains to be seen whether 
these failures were due to bias, such as including low-risk 
patients who would be adequately treated with standard of 
care could have unwittingly masked any favorable efficacy 
in high-risk patients. This begs the important question as 
to whether all-comer trials are still appropriate in DLBCL. 
Emerging data raise expectations for an increasing role of 
genetic profiling in DLBCL, with hopes that it will soon 
follow in the steps of myeloid leukemia (“Beat DLBCL”). 
Informed and refined by novel classifications, prospective 
trials in the front-line setting might perform molecular 
subtyping during the initial cycle of R-CHOP and then al-
locate patients to treatment with an appropriate targeted 
agent, hence translating biology into individualized treat-
ment. We have great optimism that ongoing combination 
clinical trials will translate to improved outcomes for our 
patients in the near future.
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