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Abstract

Background: Haemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder of immune regulation, and
HLH patients with mutations in genes including PRF1, UNC13D, STX11, STXBP2, SH2D1A, XIAP, and ITK were reported
to be primary HLH. Due to the different treatment options, the differentiation between primary and secondary HLH
is critical. Our previous studies have showed that a Th1/Th2 cytokine profile is diagnostic for HLH, yet the cytokine
profiles between primary and secondary HLH have not been compared. The aim of the study was to test whether
the Th1/Th2 cytokine profile could be used as a tool to differentiate between primary and secondary HLH.

Methods: A total of 45 hospitalized Chinese children with HLH during the period of February 2010 through
September 2012 were enrolled in the study. Fifty healthy children were enrolled as controls. Primary HLH related
genes were sequenced using genomic DNA samples. The Th1/Th2 cytokine levels including interferon-γ (IFN-γ),
tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, IL-6, IL-4 and IL-2 were quantitatively determined by
cytometric bead assay techniques.

Results: Primary HLH group (n = 4) included one patient with biallelic heterozygous mutations in PRF1 gene, and
three patients with hemizygous mutation in SH2D1A gene. Based on the available genetic data, the other 41
patients were classified into the secondary HLH group. When compared the cytokine levels between the two
groups, IL-4 level in primary-HLH was significantly lower than that in secondary HLH (P = 0.025), while IFN-γ level
in primary HLH had a tendency of statistically lower than that in secondary HLH (P = 0.051). Area under receiver
operating characteristic (ROC) curves of IL-4 and IFN-γ, IL-10, TNF-α, IL-2, and IL-6 levels were 0.841, 0.799, 0.506, 0.
494, 0.457, and 0.250, respectively. ROC curves showed that 1.7 pg/ml of IL-4 had sensitivity and specificity for
differentiation between primary and secondary HLH as 70.7 and 100.0 %, while 433.9 pg/ml of IFN-γ had
sensitivity and specificity as 51.2 and 100.0 %, respectively.

Conclusions: HLH patients with lower IL-4 and IFN-γ levels have higher possibility to be primary HLH. The
cytokine profile may be used as an additional tool for the quick differential diagnosis between primary and
secondary HLH.
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Background
Haemophagocytic lymphohistiocytosis (HLH) is a life-
threatening disorder of immune regulation, characte-
rized by a highly stimulated, but ineffective immune
response to antigens, which results in cytokine storm
and inflammatory reaction [1]. HLH is not a single
entity, but a clinical syndrome that can be encountered
in association with various underlying diseases leading
to similar characteristic clinical and laboratory presenta-
tions. Briefly, the diagnosis of HLH requires either a
genetic diagnosis, or fulfillment of 5 out of 8 clinical cri-
teria including fever, splenomegaly, bicytopenia, either
hypofibrinoginemia or hypertriglyceridemia, hyperferriti-
nemia, elevated soluble interleukin-2 receptor (sCD25 or
sIL2R), impaired natural killer (NK) cell cytolytic func-
tion, or the observation of hemophagocytosis in bone
marrow, spleen, or lymph nodes [2]. Based on the eti-
ology, HLH can be classified into two types, primary
HLH (with genetic mutations), and secondary HLH (no
known mutations). Epstein–Barr virus (EBV) infections
seem to be very common in HLH patients, especially in
Asian countries [3–7]. Beside EBV infection, cyto-
megalovirus (CMV) infection is another common cause
in HLH patients [8, 9]. Clinically, prompt and accu-
rate diagnosis is critical to initiate definitive therapy.
Unfortunately, the clinical features are identical in
primary and secondary HLH, and both forms are
often triggered by infections, so it is difficult to distin-
guish between these two types [8]. Furthermore, the
diagnosis of HLH based on the current combination
of clinical, laboratory and immunological criteria is
challenging because all of the criteria are not specific-
ally diagnostic for any HLH subtypes.
Primary HLH can be further divided into familial

hemophagocytic lymphohistiocytosis (FHL) and immune
deficiencies associated HLH [10]. Five genetic defects
have been identified in FHL. A potential gene locus
(FHL1) has been reported to be associated with HLH,
but the specific gene involved has not yet been identified
[11]. The first described FHL related gene is PRF1 gene
(FHL2) [12], a gene encodes perforin protein. The next
identified cause of FHL (FHL3) is UNC13D gene [13],
which encodes Munc13-4 protein. Later, mutations of
STX11 gene and STXBP2 gene are found to be the
causes of FHL4 [14] and FHL5 [15, 16], respectively. Im-
mune deficiencies associated HLH occur with significant
frequency in X-linked lymphoproliferative syndrome
type 1 (XLP1) [17], XLP type 2 (XLP2) [18], and IL-2–
inducible T cell kinase deficiency-associated lymphopro-
liferation [19], which are characterized by mutations in
SH2D1A, XIAP, and ITK genes, respectively.
Hypercytokinemia is a hallmark of HLH. Henter JI

et al. suggested that hypercytokinemia may be caused by
a genetic defect in cytokine regulation as FHL patients

showed high cytokine levels [20]. Using the rapid cytomet-
ric bead array (CBA) technique, a specific cytokine profile
(significant increase of IFN-γ and IL-10, combined with a
slightly increased level of IL-6) for childhood HLH was
described by our group in 2008 [21]. In our clinical prac-
tice, this cytokine profile was helpful for the early diagno-
sis of HLH and for the differentiation from other disease
entities [22, 23]. However, one limitation of our previous
cytokine assay was that we did not perform genetic
sequencing of HLH involved genes simultaneously. In this
study, we tried to sequence PRF1, UNC13D, STX11,
STXBP2, SH2D1A, XIAP, and ITK genes, together with
cytokine determination for HLH patients to test whether
cytokine profile could be used as a tool to distinguish be-
tween primary HLH and secondary HLH patients.

Methods
Patients
The diagnoses of all our patients were made based on the
HLH-2004 criteria [2]. A cohort of 45 consecutively hospi-
talized HLH patients were enrolled in the study, which in-
cluded 27 males and 18 females with a male-to-female ratio
of 1.5:1, and a mean age of 3.7 years with a range of 8 days
through 12.3 years. Patients who had been treated by ste-
roids before referral to our hospital were excluded. A total
of 50 unrelated healthy individuals (30 males, and 20 fe-
males) matched for age, and race were recruited as healthy
controls. All the patients and healthy controls were from
our hospital between February 2010 and September 2012.
No HLH patient showed signs of mucocutaneous albinism.
The study protocol was reviewed and approved by the Eth-
ics Committee at Children’s Hospital Zhejiang University
School of Medicine and written informed consents were
obtained from all participants’ parents or guardians before
this study.

Genetic analysis
Genomic DNA was isolated from peripheral blood using
QIAamp DNA Blood Mini Kit (Qiagen, Hilden,
Germany). The coding regions and flanking intronic
sequences of PRF1, UNC13D, STX11, STXBP2, SH2D1A,
XIAP, and ITK genes, and the deep intronic sequences of
intron 1 in UNC13D gene were amplified by a polymer-
ase chain reaction (PCR) machine (BIO-RAD) in our la-
boratory, and the PCR products were sequenced by a
DNA sequencer in Invitrogen Company (Shanghai,
China). We analyzed PRF1, UNC13D, STX11, STXBP2,
and ITK genes in all 45 patients and 50 controls, and all
the male patients (n = 27) and male controls (n = 30)
were sequenced in their SH2D1A and XIAP genes. The
mutations were validated by re-sequencing an independ-
ent PCR-generated amplicon from the subjects. The var-
iants were named according to the Human Genome
Variation Society and journal requirements.
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Database investigation and in silico prediction of muta-
tions were checked, including the frequency of each vari-
ant in the general population investigated by Exome
Aggregation Consortium (ExAC, Cambridge, MA, URL:
http://exac.broadinstitute.org, March, 2016 accessed), pre-
vious reports of the same variants in the literature
checked from Human Gene Mutation Database (HGMD,
http://www.hgmd.cf.ac.uk) and Google Scholar (GS,
https://scholar.google.com/), in silico prediction results by
Polymorphism Phenotyping-2 (PolyPhen-2, http://genet-
ics.bwh.harvard.edu/pph2/) and Sorting Intolerant From
Tolerant (SIFT, http://sift.jcvi.org/). For PolyPhen-2,
higher scores mean more deleterious. For SIFT, amino
acids with probabilities < 0.05 were predicted to be
deleterious.

Cytokine determination
All 45 HLH patients and 50 controls were tested for the
six cytokines including IL-2, IL-4, IL-6, IL-10, TNF-α,
and IFN-γ. Peripheral blood samples were collected,
transferred to a serum separating tube and centrifuged
at 1000 g at 20 °C for 20 min after clotting. The serum
was carefully harvested, and the determination of the cy-
tokines was performed immediately, or if the situation
was not so urgent, the aliquot was temporarily stored at
2 °C to 8 °C until analysis (usually within 12 h). Concen-
trations of the six cytokines aforementioned were quan-
titatively determined using the CBA Human Th1/Th2
Cytokine Kit II (BD Biosciences, San Jose, California) as
described previously [21]. The minimum and maximum
limits of detection for all six cytokines were 1 and
5000 pg/ml, respectively.

Degranulation assays with flow cytometry
Degranulation assay were tested in 36 HLH patients and
43 controls. The assay was performed as previously de-
scribed with modifications [24]. Peripheral blood mono-
nuclear cells (PBMC) were isolated by Ficoll gradient
centrifugation, rested in Iscove’s modified Dulbecco
medium (IMDM, Invitrogen, Carlsbad, California, USA)
supplemented with 10 % fetal bovine serum (FBS, Sijiqing,
Hangzhou, China) at 37°C in a humidified atmosphere of
5 % CO2 for 2 h, and washed in 1 × PBS (phosphate buffer
saline). K562 cells were obtained from the American Type
Culture Collection (ATCC, Rockefeller, Maryland, USA)
and cultured in RPMI1640 medium (Invitrogen, Carlsbad,
California, USA) supplemented with 10 % FBS. All the
antibodies including CD3-FITC, CD8-PerCP, CD56-APC,
CD107a-PE (H4A3, IgG1), and isotype controls were pur-
chased from Becton Dickinson (San Jose, CA, USA).
5 × 105 PBMCs were mixed with 5 × 104 sensitive tar-

get cells (K562) as stimulants in 12 flat bottom well
plates and incubated for 2 h at 37°C. An equal volume
of RPMI-1640 culture medium to replace the volume of

K562 cells were used as negative control. Then the cells
were stained with 10μl of CD3-FITC, 10μl of CD8-
PerCP, 2.5μl of CD56-APC, and 10μl of CD107a-PE (iso-
type IgG1-PE as negative control) for 30 min at 4 °C in
the dark. After two washes with 1 × PBS of the above
samples, flow cytometric analyses were performed by a
FACSCalibur cytometer (Becton-Dickinson, San Jose,
CA, USA). CD3-CD56+ and CD3+CD8+ T cells were
gated as NK cells and Cytotoxic T cells (CTLs), respec-
tively. Data were acquired with CellQuest software (BD
Bioscience).

Clinical data
Information at diagnosis of age, sex, with fever or not,
hemoglobin levels, platelets numbers, white blood cell
counts, percentage of neutrophils, total neutrophil
counts, percentage of lymphocytes, total lymphocyte
counts, triglyceride levels, fibrinogen levels, LDH levels,
ferritin levels, sIL2R levels, and sIL2R/ferritin ratio were
collected. Quantitative real-time PCR was used to detect
EBV-DNA and CMV-DNA copies in sera.

Statistical analysis
Serum concentrations of individual cytokines, clinical
data were compared between groups using the Mann-
Whitney U test. A chi-square test was used to assess
ratio differences between groups. Receiver operating
characteristic (ROC) curves were derived from the cyto-
kine levels for all HLH patients. In a ROC curve, the
sensitivity and specificity of all six cytokines were cal-
culated for the differentiation between primary and
secondary HLH. All statistical analyses were performed
using SPSS 17.0 software (SPSS Inc, Chicago, Illinois). A
two-sided P-value <0.05 was considered to be statisti-
cally significant.

Results
Genetic results
The genetic findings of the 45 HLH patients were shown
in Table 1, Additional file 1: Figure S1, Additional file 2:
Figure S2, Additional file 3: Figure S3, Additional file 4:
Figure S4, Additional file 5: Figure S5, and Additional
file 6: Figure S6. All variants classified as pathogenic
were not detected in the controls, while those classified
as single nucleotide polymorphisms (SNPs) were found
in both HLH patients and healthy controls. One patient
with biallelic heterozygous mutations in PRF1 gene (P2),
and three patients with hemizygous mutation in
SH2D1A gene (P16, P17 and P26) were categorized into
primary HLH group (n = 4). Based on the available gen-
etic data, the other 41 patients were classified into the
secondary HLH group, including nine HLH patients
with single heterozygous mutation (mutations in patients
P6, P10, and P45 were already reported in literature,
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while mutations in patients P1, P3, P4, P5, P7, and P11
were not reported before), three HLH patients with only
SNPs (P8, P9, and P38), and the remaining 29 HLH
patients without any SNPs.
Mutations in PRF1, UNC13D, STX11, STXBP2,

SH2D1A, XIAP, and ITK genes of all the 45 HLH cases
accounted for 2/45 (4.4 %), 6/45 (13.3 %), 0/45 (0.0 %),
2/45 (4.4 %), 3/45 (6.7 %), 0/45 (0 %), and 0/45 (0.0 %),
respectively. For the four primary HLH cases, mutations
in PRF1 and SH2D1A genes accounted for 1/4 (25 %) and
3/4 (75 %), respectively. Three missense heterozygous var-
iants in PRF1 gene were found in one male and one fe-
male (Additional file 1: Figure S1). One heterozygous
c.385T>A (p.Trp129Arg) mutation was found in P1, a 1-
year-5-month male, while compound heterozygous
c.757G>A (p.Glu253Lys) and c.1061A>T (p.Asp354Val) in
PRF1 gene were found in P2, a 6-year-3-month female,
with c.757G>A inherited from her father and c.1061A>T
from her mother. Five missense mutations of UNC13D
gene (Additional file 2: Figure S2), c.478G>A (p.Val160
Met) in P3, c.518C>T (p.Thr173Met) in P4, c.760C>T
(p.Arg254Cys) in P5, c.3259C>T (p.Arg1087Trp) in P7,
and c.118-307G>A in P45, were found in four males and
one female, respectively. Another heterozygous mutation
c.2296C>T (p.Glu766Ter) in exon23 of UNC13D gene of
an 8-day male patient (P6), with the cDNA study revealed
that this mutation had a deleterious effect on splicing,

c.2295_2298delGCAG (p.Glu765Aspfs*27) (Additional file
6: Figure S6), was already reported by our group as a spe-
cial case [25]. Two heterozygous mutations of STXBP2
gene, c.575G>A (p.Arg192His), and c.767T>C (p.Leu256-
Pro), were identified in two patients (Additional file 3:
Figure S3). Three hemizygous mutations of SH2D1A gene,
c.162C>G (p.Tyr54Ter), c.163C>T (p.Arg55Ter), and
c.191G>A (p.Trp64Ter), were identified in three male pa-
tients (Additional file 4: Figure S4). Two male patients (P8
and P9) with c.497C>T (p.Thr166Met, SNP rs181216956)
of STXBP2 gene, and two male patients (P7 and P38) with
c.1268A>C (p.Gln423Pro, SNP rs5956583) of XIAP gene,
were identified in this cohort (Additional file 5: Figure S5).
No mutation was detected from STX11 and ITK genes in
all 45 HLH patients.
Database investigation and in silico prediction of muta-

tions in HLH patients were shown in Table 2. The in silico
prediction results between PolyPhen-2 and Sorting In-
tolerant From Tolerant (SIFT) were consistent with each
other, except p.Arg1087Trp of UNC13D gene (PolyPhen-2
predicted this change was BENIGN with a score of 0.002,
while SIFT indicated that this change would AFFECT
PROTEIN FUNCTION with a score of 0.00).

Cytokine levels
The mean (95 % Confidence Interval, CI) of serum IL-2,
IL-4, IL-6, IL-10, TNF-α, and IFN-γ concentrations for

Table 1 Summary of genetic findings in 45 HLH patients

Case Gender Age Candidate gene Exon/intron Nucleotide change Amino acid change Genotype

P2 F 6Y3M PRF1 Exon3 c.757G>A
c.1061A>T

p.Glu253Lys
p.Asp354Val

heterozygous
heterozygous

P16 M 3Y3M SH2D1A Exon2 c.191G>A p.Trp64Ter hemizygous

P17 M 11M24D SH2D1A Exon2 c.162C>G p.Tyr54Ter hemizygous

P26 M 11M17D SH2D1A Exon2 c.163C>T p.Arg55 Ter hemizygous

P1 M 1Y5M PRF1 Exon2 c.385T>A p.Trp129Arg heterozygous

P3 M 4Y5M UNC13D Exon6 c.478G>A p.Val160 Met heterozygous

P4 M 2Y8M UNC13D Exon6 c.518C>T p.Thr173Met heterozygous

P5 F 1Y7M UNC13D Exon10 c.760C>T p.Arg254Cys heterozygous

P6 M 8D UNC13D Exon23 c.2296C>T p.Glu766Ter heterozygous

P7 M 25D UNC13D Exon32 c.3259C>T p.Arg1087Trp heterozygous

XIAP Exon5 c.1268A>C p.Gln423Proa hemizygous

P8 M 7Y9M STXBP2 Exon7 c.497C>T p.Thr166Meta heterozygous

P9 M 11Y11M STXBP2 Exon7 c.497C>T p.Thr166 Meta heterozygous

P10 F 5Y8M STXBP2 Exon7 c.575G>A p.Arg192His heterozygous

P11 M 1Y1M STXBP2 Exon9 c.767T>C p.Leu256Pro heterozygous

P38 M 1Y1M XIAP Exon5 c.1268A>C p.Gln423Proa hemizygous

P45 M 4Y UNC13D Intron1 c.118-307G>A Unknown heterozygous

Gender, M male, F female
Age, Y year, M month, D day
aSingle nucleotide polymorphism (SNP)
Ter Terminator, which would result in truncated protein
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Table 2 Database investigation and in silico prediction of mutations in 45 HLH patients

Case Candidate gene Nucleotide change Amino acid change ExAC allele frequency HGMD/GS references Polyphen-2 SIFT CD107a

P2 PRF1 c.757G>A
c.1061A>T

p.Glu253Lys
p.Asp354Val

0.00003296
Not reported

[33]
No reference

PROBABLY DAMAGING with
a score of 0.962
POSSIBLY DAMAGING with
a score of 0.952

AFFECT PROTEIN FUNCTION with
a score of 0.01
AFFECT PROTEIN FUNCTION with
a score of 0.02

32.28

P16 SH2D1A c.191G>A p.Trp64Ter Not reported [34, 35] Not Available Not Available 33.83

P17 SH2D1A c.162C>G p.Tyr54 Ter Not reported [36] Not Available Not Available 0.72

P26 SH2D1A c.163C>T p.Arg55 Ter Not reported [36, 37] Not Available Not Available No done

P1 PRF1 c.385T>A p.Trp129Arg Not reported No reference PROBABLY DAMAGING with
a score of 1.000

AFFECT PROTEIN FUNCTION with
a score of 0.00

3.24

P3 UNC13D c.478G>A p.Val160 Met Not reported No reference PROBABLY DAMAGING with
a score of 0.999

AFFECT PROTEIN FUNCTION with
a score of 0.05

35.14

P4 UNC13D c.518C>T p.Thr173Met 0.00001670 No reference PROBABLY DAMAGING with
a score of 1.000

AFFECT PROTEIN FUNCTION with
a score of 0.01

0.43

P5 UNC13D c.760C>T p.Arg254Cys 0.0003450 No reference PROBABLY DAMAGING with
a score of 0.987

AFFECT PROTEIN FUNCTION with
a score of 0.02

5.69

P6 UNC13D c.2296C>T p.Glu766 Ter Not reported [25, 38, 39] Not Available Not Available 0.51

P7 UNC13D c.3259C>T p.Arg1087Trp 0.0001438 No reference BENIGN with a score of 0.002 AFFECT PROTEIN FUNCTION with
a score of 0.00

2.64

XIAP c.1268A>C p.Gln423Pro 0.3334 [40–42] BENIGN with a score of 0.002 TOLERATED with a score of 0.30

P8 STXBP2 c.497C>T p.Thr166Met 0.0002454 No reference BENIGN with a score of 0.022 TOLERATED with a score of 0.10 3.51

P9 STXBP2 c.497C>T p.Thr166 Met 0.0002454 No reference BENIGN with a score of 0.022 TOLERATED with a score of 0.10 13.37

P10 STXBP2 c.575G>A p.Arg192His Not reported [15] PROBABLY DAMAGING with
a score of 1.000

AFFECT PROTEIN FUNCTION with
a score of 0.00

13.73

P11 STXBP2 c.767T>C p.Leu256Pro Not reported No reference PROBABLY DAMAGING with
a score of 1.000

AFFECT PROTEIN FUNCTION with
a score of 0.00

4.7

P38 XIAP c.1268A>C p.Gln423Pro 0.3334 [40–42] BENIGN with a score of 0.002 TOLERATED with a score of 0.30 0.07

P45 UNC13D c.118-307G>A Unknown Not reported [29, 39, 43] Not Available Not Available 3.07

ExAC Exome Aggregation Consortitium, HGMD Human Gene Mutation Database, GS Google Scholar
PolyPhen-2 Polymorphism Phenotyping-2, SIFT Sorting Intolerant From Tolerant
Ter Termination, which would result to truncated protein
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healthy controls were 2.4 (2.2–2.7), 3.2 (2.9–3.5), 6.0
(4.0–7.9), 3.4 (3.0–3.9), 2.9 (2.5–3.4), 9.2 (8.3–10.0) pg/
ml, respectively. As compared to control group, the levels
of IL-4 in both primary and secondary HLH groups were
significantly lower (P < 0.05) while those of IL-6, IL-10
and IFN-γ were significantly higher (P < 0.05) (Fig. 1).
However, the levels of IL-2 and TNF-α were not statisti-
cally different among the three groups (all P > 0.05).
When we compared the levels of the cytokines be-

tween the primary and secondary HLH groups, the IL-
4 level in primary-HLH was significantly lower than
that in secondary HLH (P = 0.025), with mean (95 %
CI) in primary and secondary HLH groups showed as

1.1 (0.6–1.6) and 2.3 (1.9–2.7), respectively. Addition-
ally, IFN-γ level in primary HLH had a tendency of sta-
tistically lower than that in secondary HLH (P = 0.051),
with mean (95 % CI) in primary and secondary HLH
groups showed as 106.6 (minus-393.9) pg/ml and 905.7
(530.7–1280.6) pg/ml, respectively. The 95 % CI gap of
IL-4 between primary and secondary HLH groups was
1.6–1.9 pg/ml, while the gap of IFN-γ between the two
groups was 393.9–530.7 pg/ml. The levels of the
remaining four cytokines including IL-2, IL-6, IL-10, and
TNF-α were not significantly different between primary
and secondary HLH groups (P = 0.78, P = 0.102, P = 0.968,
and P = 0.968, respectively).

Fig. 1 Comparisons of serum cytokine concentrations (pg/ml) among control, primary HLH, and secondary HLH. a IL-2; b IL-4; c IL-6; d IL-10; e TNF-α;
f IFN-γ. The center horizontal line of the central box is the median (50th percentile), the bottom and top of the box are the 25th and 75th percentiles.
The whiskers extend from each end of the box to the 5th and 95th percentiles of the values, respectively. Outliers are the data with values beyond the
5th and 95th percentiles
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The area under the ROC curve, referred to as the AUC,
is an appropriate measure for describing the overall accur-
acy of a diagnostic test, and higher AUC value mean better
diagnostic value. AUCs of IL-4, IFN-γ, IL-10, TNF-α, IL-2,
and IL-6 levels were calculated to be 0.841, 0.799, 0.506,
0.494, 0.457, and 0.250, respectively, indicating that levels
of IL-4 and IFN-γ may be used as additional tools for the
quick differential diagnosis between primary and second-
ary HLH (Fig. 2). ROC curves of IL-4 levels showed that
1.6 pg/ml, 1.7 pg/ml, 1.8 pg/ml, and 1.9 pg/ml had sensi-
tivity and specificity as 73.2 and 75.0 %, 70.7 and 100.0 %,
68.3 and 100.0 %, 63.4 and 100 %, respectively. Further-
more, ROC curves of IFN-γ levels showed that 360.6 pg/
ml, 433.9 pg/ml, and 539.7 pg/ml had sensitivity and spe-
cificity as 51.2 and 75.0 %, 51.2 and 100.0 %, 48.8 and
100 %, respectively. Taken the results of IL-4 and IFN-γ
together, we proposed that HLH patients with IL-4 below
1.7 pg/ml and IFN-γ below 433.9 pg/ml had a higher
chance to be primary HLH.

Degranulation and clinical data
Information of surface CD107a level in resting NK cells,
age at diagnosis, sex, with fever or not, hemoglobin levels,
platelet counts, white blood cell counts, percentage of
neutrophils, absolute neutrophil counts, percentage of
lymphocytes, absolute lymphocyte counts, triglyceride
levels, fibrinogen levels, LDH levels, ferritin levels, sIL2R
levels, sIL2R/ferritin ratio, EBV-DNA, and CMV-DNA
copies were shown in Table 3. The results showed that,
except the percentage of neutrophils (P = 0.012) and the
percentage of lymphocytes (P = 0.012), there was no sig-
nificant difference between primary HLH and secondary
HLH groups in any other factors.
The degranulation assay results in healthy controls,

primary HLH cases, and secondary HLH cases were
shown in Fig. 3, with mean (95 % CI) in controls was
20.9 (18.19–23.6) %. We defined resting NK cell

degranulation below 5 % as defective [26]. The results
showed 0/1 (0 %) patient with FHL2, 1/3 (33.3 %)
patient with XLP, and 15/33 (45.5 %) patients with a
diagnosis of secondary HLH had resting NK degranu-
lation below 5 % (Additional file 7: Table S1). There
was a high possibility that patients with defective de-
granulation could carry undetected mutations.
Meanwhile, we re-grouped HLH patients based on their

CD107a levels in resting NK cells: HLH with CD107a<5 %
(n = 16), and HLH with CD107a>5 % (n = 20). Compari-
sons of serum cytokine concentrations (pg/ml) among
Control, HLH with CD107a<5 %, and HLH with
CD107a>5 % were shown in Additional file 8: Figure S7,
indicated similar results to primary and secondary HLH
grouping. Comparing to the healthy control group, both
HLH with CD107a<5 % and CD107a>5 % had higher
IL-6, IL-10 and IFN-γ levels, and lower IL-4 level (with
all P < 0.05). Between HLH with CD107a<5 % and
CD107a>5 % groups, all six cytokines showed no statis-
tical significance.

Discussion
Inheritance of HLH is known to be autosomal recessive.
Based on the data from published studies, primary HLH
usually includes patients with homozygous, hemizygous,
or compound heterozygous mutations, as mutations of
these types affect protein function in a known way. In
our HLH patients, no homozygous mutation was de-
tected, and all were hemizygous or heterozygous vari-
ants. Similar to our results, Zhizhuo H et al. investigated
67 Chinese HLH patients and identified eight patients
with variants in primary HLH related genes, included
one patient with a hemizygous mutation of XIAP gene,
three patients with compound heterozygous mutations,
and four patients with single heterozygous mutation
[27]. How does the single heterozygous mutation affect
its coding protein’s function is complicated and remains
to be elucidated. Based on the recent study of Spessott
WA et al. in 2015 [28], some single heterozygous muta-
tion in special site can cause primary HLH, yet the dom-
inant negative effect can not be generalized, and people
should do further study to prove the related protein
function is damaged if they want to assign some HLH
patients with monoallelic mutation as primary HLH. An-
other possibility is that the risk of having missed patho-
genic variants is high, and possible additional variants,
such as deep intronic variants similar to mutations in
deep intron 1 of UNC13D gene [29–31], might have
been missed for some cases.
In our previous study, we found that HLH patients

presented a specific cytokine profile of highly increased
levels of IFN-γ and IL-10, and a moderately increased
level of IL-6 [23]. In this study, the levels of IL-6, IL-10,
and IFN-γ in both primary and secondary HLH groups

Fig. 2 ROC curves of IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ between
primary HLH and secondary HLH. The diagonal line is the reference line
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were significantly higher (P < 0.05) than those of con-
trols, and no patient was overlapped with our previous
study, which further confirmed the usefulness of this
cytokine profile for the diagnosis of HLH.
When we compared the levels of the cytokines between

the primary and secondary HLH groups, the IL-4 level in
primary-HLH was significantly lower than that in second-
ary HLH (P = 0.025), with the gap of IL-4 between the two

groups was 1.6–1.9 pg/ml, and IFN-γ level in primary
HLH had a tendency of statistically lower than that in sec-
ondary HLH (P = 0.051), with the gap of IFN-γ between
the two groups was 393.9–530.7 pg/ml. AUCs of six cyto-
kines indicated that levels of IL-4 and IFN-γ may be used
as additional tools for the quick differential diagnosis
between primary and secondary HLH. Taken the results
of IL-4 and IFN-γ together, we propose that HLH patients

Table 3 Clinical information on 45 HLH patients

Total (n = 45) Primary (n = 4) Secondary (n = 41) P-value

Age at diagnosis

≤12 months 9/45 2/4 7/41 0.116

>12 months 36/45 2/4 34/41

Mean age (year, range) 3.7 (0–12.3) 2.9 (1.0–6.3) 3.8 (0–12.3) 0.646

Sex (M/F) 27/18 3/1 24/17 0.521

Fever 45/45 4/4 41/41

Hemoglobin (<90 g/L) 16/45 1/4 15/41 0.644

Mean (g/L, range) 94.0 (46.0–135.0) 93.8 (84.0–102.0) 94.0 (46.0–135.0) 0.905

Platelets (<100x109/L) 30/45 2/4 28/41 0.459

Mean (100x109/L, range) 82.5 (32.0–400.0) 100.0 (5.0–215.0) 80.8 (3.0–400.0) 0.661

White blood cells

Mean (1x109/L, range) 7.5 (0.3–41.3) 6.5 (1.0–9.7) 7.6 (0.3–41.3) 0.842

Percentage of neutrophils

Mean (%, range) 38.2 (2.0–81.5) 12.8 (6.9–19.4) 40.7 (2.0–81.5) 0.012

Total neutrophils (<1x109/L) 20/45 2/4 18/41 0.815

Mean (1x109/L, range) 2.9 (0.1–22.1) 0.9 (0.1–1.3) 3.1 (0.1–22.1) 0.413

Percentage of lymphocytes

Mean (%, range) 50.4 (7.9–88) 75.3 (71.8–77.7) 48.0 (7.9–88.0) 0.012

Total lymphocytes

Mean (1x109/L, range) 3.6 (0.2–28.1) 4.9 (0.7–7.5) 3.4 (0.2–28.1) 0.175

Triglycerides (>3.0 mmol/L) 15/45 3/4 12/41 0.064

Mean (mmol/L, range) 2.7 (0.8–8.9) 3.0 (1.3–4.1) 2.7 (0.8–8.9) 0.425

Fibrinogen (<1.5 g/L) 30/45 4/4 26/41 0.138

Mean (g/L, range) 1.5 (0.2–4.9) 0.9 (0.5–1.2) 1.5 (0.2–4.9) 0.14

LDH (>500 IU/L) 32/45 3/4 29/41 0.857

Mean (IU/L, range) 1018.0 (167.0–6565.0) 814.0 (363.0–1644.0) 1037.9 (167.0–6565.0) 0.842

Ferritin (>500 μg/L) 45/45 4/4 41/41

Mean (μg/L, range) 1477.7 (895.0–1500.0) 1500.0 (1500.0–1500.0) 1474.2 (895.0–1500.0) 0.655

sIL2R (≥2400 U/ml) 26/27 4/4 22/23 0.671

Mean (U/ml, range) 34092.7 (155.6–85787.7) 27198.1 (14250.9–38203.1) 35239.6 (155.6–85787.7) 0.922

sIL2R/Ferritin

Mean (U/pg, range) 23.0 (0.1–57.2) 18.4 (9.5–25.5) 23.8 (0.1–57.2) 0.811

Degranulation (CD107a <5 %) 16/36 1/3 15/33 0.795

Mean (%, range) 10.3 (0.1–35.1) 22.3 (0.7–33.8) 9.2 (0.1–35.1) 0.407

EBV-DNA (>1000 copies) 26/45 2/4 24/41 0.741

CMV-DNA (>1000 copies) 1/45 0/4 1/41 0.752

P value: Comparisons between primary and secondary HLH groups
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with IL-4 below 1.7 pg/ml and IFN-γ below 433.9 pg/ml
have a higher possibility to be primary HLH.
There have been studies trying to find other discrimi-

nators to differentiate primary from secondary cases of
HLH. According to the report by Bryceson et al. [26],
degranulation assay has a high sensitivity and specificity
rate for discrimination between two types of HLH (type1
includes FHL3, FHL4, and FHL5, while type2 includes
FHL2, XLP1, XLP2, and secondary HLH cases). In this
cohort, all primary HLH cases belong to type2 HLH in-
cluding FHL2 and XLP1, and it is not surprising that we
can not find difference of degranulation between pri-
mary HLH and secondary HLH groups. Yasumi et al.
proposed that the percentage of total lymphocytes,
serum levels of LDH, and the sIL2R/ferritin ratio could
differentiate familial from secondary HLH [32]. In this
study, when we compare to the secondary HLH patients,
primary HLH patients have higher percentage of
lymphocytes (mean level 75.3 % vs 48.0 %, P = 0.012),
and lower percentage of neutrophils (12.8 % vs 40.7 %,
P = 0.012), which is consistent with Yasumi et al’s findings.
Our study has some limitations. First, the risk of having

missed pathogenic variants is high, and possible additional
variants, such as deep intronic variants, regulatory vari-
ants, and complex structural variants, might have been
missed for some cases, which would have great impact on
the grouping strategy and then influence the interpretation

of the results. Second, as this is a single-center study,
and the results are based on data from small number of
samples and incomplete genetic sequencing results, a
multi-center study was required to be performed to vali-
date the results.

Conclusions
Among 45 HLH patients, four HLH patients are identified
as primary HLH with hemizygous or compound heterozy-
gous mutations, and 41 HLH patients belong to secondary
HLH. Variants in PRF1, UNC13D, STX11, STXBP2,
SH2D1A, XIAP, and ITK genes account for 2/45 (4.4 %), 6/
45 (13.3 %), 0/45 (0.0 %), 2/45 (4.4 %), 3/45 (6.7 %), 0/45
(0 %), and 0/45 (0.0 %), respectively. HLH patients with
lower IL-4 level, lower IFN-γ level, higher percentage of
lymphocytes, and lower percentage of neutrophils have
higher possibility to be primary HLH. The cytokine profiles
can be used as an additional tool for the quick differential
diagnosis between primary and secondary HLH.

Additional files

Additional file 1: Figure S1. Sequencing results of PRF1 gene.
Genomic DNA sequencing results showed a 1-year-5-month male (P1)
had heterozygous mutation c.385T>A (p.Trp129Arg), and a 6-year-3-month
female (P2) had compound heterozygous c.757G>A (p.Glu253Lys) and
c.1061A>T (p.Asp354Val) of PRF1 gene. (TIF 1391 kb)

Fig. 3 Degranulation results of healthy controls, primary HLH cases, and pecondary HLH cases. Shapes represent individual subjects, while horizontal
bars show the mean in each group
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Additional file 2: Figure S2. Sequencing results of UNC13D gene.
Five missense mutations of UNC13D gene, c.478G>A (p.Val160 Met)
in P3, c.518C>T (p.Thr173Met) in P4, c.760C>T (p.Arg254Cys) in P5,
c.3259C>T(p.Arg1087Trp) in P7, and c.118-307G>A in P45, were found
in four males and one female, respectively. (TIF 171 kb)

Additional file 3: Figure S3. Sequencing results of STXBP2 gene. Two
mutations of STXBP2 gene, c.575G>A (p.Arg192His) in P10, and c.767T>C
(p.Leu256Pro) in P11, were found in one male and one female,
respectively. (TIF 985 kb)

Additional file 4: Figure S4. Sequencing results of SH2D1A gene. Three
hemizygous mutations of SH2D1A gene, c.191G> (p.Trp64Ter) in P16,
c.162C>G(p.Tyr54Ter) in P17, and c.163C>T(p.Arg55Ter) in P26, were
identified in three male patients, respectively. (TIF 136 kb)

Additional file 5: Figure S5. SNPs of STXBP2 and XIAP genes. Two
males patients, 7-year-9-month (P8) and 11-year-11-month (P9), showed
c.497C>T (p.Thr166Met) in STXBP2 gene, numbered SNP rs181216956; of
XIAP gene, two male patients (P7 and P38) were identified with
c.1268A>C(p.Gln423Pro), numbered SNP rs5956583. (TIF 938 kb)

Additional file 6: Figure S6. Sequencing results of UNC13D gene in a
Chinese male neonate(P6) and his parents. In mRNA level of P6, the result
manifested a heterozygous frameshift mutation c.2295_2298delGCAG (A),
which was consistent with the heterozygous point mutation c.2296C>T in
genomic DNA level (B). Sequencing results from cDNA and genomic DNA
of P6 and his parents both showed that P6 inherited this mutation from
his mother. (TIF 391 kb)

Additional file 7: Table S1. Percentage of CD107a expression in NK
cells from 43 controls and 36 HLH patients. (DOCX 15 kb)

Additional file 8: Figure S7. Comparisons of serum cytokine
concentrations (pg/ml) among control, HLH with CD107a<5 %, and HLH
with CD107a>5 %. A: IL-2; B: IL-4; C: IL-6; D: IL-10; E: TNF-α; F: IFN-γ. The
center horizontal line of the central box is the median (50th percentile), the
bottom and top of the box are the 25th and 75th percentiles. The whiskers
extend from each end of the box to the 5th and 95th percentiles of the
values, respectively. Outliers are the data with values beyond the 5th and
95th percentiles. (TIF 957 kb)

Abbreviations
95 % CI: 95 % Confidence Interval; AUC: area under ROC curve;
CBA: cytometric bead assay; CTLs: cytotoxic T cells; ExAC: Exome Aggregation
Consortitium; FHL: familial hemophagocytic lymphohistiocytosis; GS: Google
Scholar; HGMD: Human Gene Mutation Database; HLH: hemophagocytic
lymphohistiocytosis; IFN-γ: interferon-γ; IL: interleukin; NK: natural killer;
PolyPhen-2: Polymorphism Phenotyping-2; ROC: receiver operating
characteristic; SIFT: Sorting Intolerant From Tolerant; sIL2R: soluble
interleukin-2 receptor; SNPs: Single Nucleotide Polymorphisms;
TNF-α: tumor necrosis factor-alpha.

Competing interests
All authors declare that they have no competing interests.

Authors’ contributions
YYC, YMT designed the study; YYC, ZJW, ZBL, NZ, SLY made substantial
contributions to acquisition and analysis of data; YYC drafted and rewrote
the manuscript; YMT revised the manuscript. All authors read and approved
the final manuscript.

Acknowledgments
This work was supported in part by the grants from the National Natural
Science Foundation of China (No. 81170502, 81470304), and the Zhejiang
Provincial Natural Science Foundation of China (No. LZ12H08001). The
authors would like to thank Ms. Baiqin Qian, Ms Ping Chen, and Mr.
Hongqiang Shen for their excellent technical assistance. We thank all the
anonymous reviewers for their helpful suggestions on the quality
improvement of our paper.

Received: 7 July 2015 Accepted: 10 May 2016

References
1. Tang YM, Xu XJ. Advances in hemophagocytic lymphohistiocytosis:

pathogenesis, early diagnosis/differential diagnosis, and treatment.
ScientificWorldJournal. 2011;11:697–708.

2. Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al.
HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic
lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.

3. Xiao L, Xian Y, Dai BT, Su YC, Xiao JW, Zheng QC, et al. Clinical features and
outcome analysis of 83 childhood Epstein-Barr virus-associated
hemophagocytic lymphohistiocytosis with HLH-2004 protocol. Zhonghua
Xue Ye Xue Za Zhi. 2011;32(10):668–72.

4. Koh KN, Im HJ, Chung NG, Cho B, Kang HJ, Shin HY, et al. Clinical features,
genetics, and outcome of pediatric patients with hemophagocytic
lymphohistiocytosis in Korea: report of a nationwide survey from Korea
Histiocytosis Working Party. Eur J Haematol. 2015;94(1):51–9.

5. Ishii E, Ohga S, Imashuku S, Yasukawa M, Tsuda H, Miura I, et al. Nationwide
survey of hemophagocytic lymphohistiocytosis in Japan. Int J Hematol.
2007;86(1):58–65.

6. My LT, le Lien B, Hsieh WC, Imamura T, Anh TN, Anh PN, et al. Comprehensive
analyses and characterization of haemophagocytic lymphohistiocytosis in
Vietnamese children. Br J Haematol. 2010;148(2):301–10.

7. Ramachandran B, Balasubramanian S, Abhishek N, Ravikumar KG, Ramanan
AV. Profile of hemophagocytic lymphohistiocytosis in children in a tertiary
care hospital in India. Indian Pediatr. 2011;48(1):31–5.

8. Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu
Rev Med. 2012;63:233–46.

9. Frederiksen JK, Ross CW. Cytomegalovirus-associated hemophagocytic
lymphohistiocytosis in a patient with myasthenia gravis treated with
azathioprine. Blood. 2014;123(15):2290.

10. Janka GE, Lehmberg K. Hemophagocytic syndromes–an update. Blood Rev.
2014;28(4):135–42.

11. Ohadi M, Lalloz MR, Sham P, Zhao J, Dearlove AM, Shiach C, et al.
Localization of a gene for familial hemophagocytic lymphohistiocytosis at
chromosome 9q21.3-22 by homozygosity mapping. Am J Hum Genet. 1999;
64(1):165–71.

12. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew
PA, et al. Perforin gene defects in familial hemophagocytic
lymphohistiocytosis. Science. 1999;286(5446):1957–9.

13. Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, et al. Munc13-
4 is essential for cytolytic granules fusion and is mutated in a form of familial
hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115(4):461–73.

14. zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI, et al. Linkage of
familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome
6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;
14(6):827–34.

15. zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, et al. Familial
hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations
in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;
85(4):482–92.

16. Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, et al.
Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis
type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin
Invest. 2009;119(12):3765–73.

17. Schwartzberg PL, Mueller KL, Qi H, Cannons JL. SLAM receptors and SAP
influence lymphocyte interactions, development and function. Nat Rev
Immunol. 2009;9(1):39–46.

18. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al.
XIAP deficiency in humans causes an X-linked lymphoproliferative
syndrome. Nature. 2006;444(7115):110–4.

19. Huck K, Feyen O, Niehues T, Ruschendorf F, Hubner N, Laws HJ, et al. Girls
homozygous for an IL-2-inducible T cell kinase mutation that leads to
protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin
Invest. 2009;119(5):1350–8.

20. Henter JI, Elinder G, Soder O, Hansson M, Andersson B, Andersson U.
Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood.
1991;78(11):2918–22.

21. Tang Y, Xu X, Song H, Yang S, Shi S, Wei J, et al. Early diagnostic and
prognostic significance of a specific Th1/Th2 cytokine pattern in children
with haemophagocytic syndrome. Br J Haematol. 2008;143(1):84–91.

22. Xu XJ, Tang YM, Liao C, Song H, Yang SL, Xu WQ, et al. Inflammatory cytokine
measurement quickly discriminates gram-negative from gram-positive

Chen et al. Italian Journal of Pediatrics  (2016) 42:50 Page 10 of 11

dx.doi.org/10.1186/s13052-016-0262-7
dx.doi.org/10.1186/s13052-016-0262-7
dx.doi.org/10.1186/s13052-016-0262-7
dx.doi.org/10.1186/s13052-016-0262-7
dx.doi.org/10.1186/s13052-016-0262-7
dx.doi.org/10.1186/s13052-016-0262-7
dx.doi.org/10.1186/s13052-016-0262-7


bacteremia in pediatric hematology/oncology patients with septic shock.
Intensive Care Med. 2013;39(2):319–26.

23. Xu XJ, Tang YM, Song H, Yang SL, Xu WQ, Zhao N, et al. Diagnostic
accuracy of a specific cytokine pattern in hemophagocytic
lymphohistiocytosis in children. J Pediatr. 2012;160(6):984–90. e1.

24. Marcenaro S, Gallo F, Martini S, Santoro A, Griffiths GM, Arico M, et al.
Analysis of natural killer-cell function in familial hemophagocytic
lymphohistiocytosis (FHL): defective CD107a surface expression heralds
Munc13-4 defect and discriminates between genetic subtypes of the
disease. Blood. 2006;108(7):2316–23.

25. Chen Y, Wang Z, Cheng Y, Tang Y. Novel mutations in the UNC13D gene
carried by a Chinese neonate with hemophagocytic lymphohistiocytosis.
Yonsei Med J. 2013;54(4):1053–7.

26. Bryceson YT, Pende D, Maul-Pavicic A, Gilmour KC, Ufheil H, Vraetz T, et al.
A prospective evaluation of degranulation assays in the rapid diagnosis of
familial hemophagocytic syndromes. Blood. 2012;119(12):2754–63.

27. Zhizhuo H, Junmei X, Yuelin S, Qiang Q, Chunyan L, Zhengde X, et al.
Screening the PRF1, UNC13D, STX11, SH2D1A, XIAP, and ITK gene mutations
in Chinese children with Epstein-Barr virus-associated hemophagocytic
lymphohistiocytosis. Pediatr Blood Cancer. 2012;58(3):410–4.

28. Spessott WA, Sanmillan ML, McCormick ME, Patel N, Villanueva J, Zhang K,
et al. Hemophagocytic lymphohistiocytosis caused by dominant-negative
mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood.
2015;125(10):1566–77.

29. Entesarian M, Chiang SC, Schlums H, Meeths M, Chan MY, Mya SN, et al. Novel
deep intronic and missense UNC13D mutations in familial haemophagocytic
lymphohistiocytosis type 3. Br J Haematol. 2013;162(3):415–8.

30. Seo JY, Song JS, Lee KO, Won HH, Kim JW, Kim SH, et al. Founder effects in
two predominant intronic mutations of UNC13D, c.118-308C>T and
c.754-1G>C underlie the unusual predominance of type 3 familial
hemophagocytic lymphohistiocytosis (FHL3) in Korea. Ann Hematol. 2013;
92(3):357–64.

31. Meeths M, Chiang SC, Wood SM, Entesarian M, Schlums H, Bang B, et al.
Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep
intronic mutation and inversion in UNC13D. Blood. 2011;118(22):5783–93.

32. Yasumi T, Hori M, Hiejima E, Shibata H, Izawa K, Oda H, et al. Laboratory
parameters identify familial haemophagocytic lymphohistiocytosis from other
forms of paediatric haemophagocytosis. Br J Haematol. 2015;170(4):532–8.

33. Kobayashi Y, Salih HM, Kajiume T, Nakamura K, Miyagawa S, Sato T, et al. Successful
treatment with liposteroid followed by reduced intensity stem cell transplantation
in an infant with perforin deficiency presenting with hemophagocytic
lymphohistiocytosis. J Pediatr Hematol Oncol. 2007;29(3):178–82.

34. Overwater E, Smulders Y, van der Burg M, Lombardi MP, Meijers-Heijboer HE,
Kuijpers TW, et al. The value of DNA storage and pedigree analysis in rare
diseases: a 17-year-old boy with X-linked lymphoproliferative disease (XLP)
caused by a de novo SH2D1A mutation. Eur J Pediatr. 2014;173(12):1695–8.

35. Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al.
Correlation of mutations of the SH2D1A gene and epstein-barr virus
infection with clinical phenotype and outcome in X-linked
lymphoproliferative disease. Blood. 2000;96(9):3118–25.

36. Meazza R, Tuberosa C, Cetica V, Falco M, Parolini S, Grieve S, et al.
Diagnosing XLP1 in patients with hemophagocytic lymphohistiocytosis.
J Allergy Clin Immunol. 2014;134(6):1381–7. e7.

37. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al.
Host response to EBV infection in X-linked lymphoproliferative disease
results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;
20(2):129–35.

38. Mougiakakos D, Machaczka M, Jitschin R, Klimkowska M, Entesarian M,
Bryceson YT, et al. Treatment of familial hemophagocytic
lymphohistiocytosis with third-party mesenchymal stromal cells. Stem Cells
Dev. 2012;21(17):3147–51.

39. Qian Y, Johnson JA, Connor JA, Valencia CA, Barasa N, Schubert J, et al. The
253-kb inversion and deep intronic mutations in UNC13D are present in
North American patients with familial hemophagocytic lymphohistiocytosis
3. Pediatr Blood Cancer. 2014;61(6):1034–40.

40. Ameratunga R, Woon ST. Customised molecular diagnosis of primary
immune deficiency disorders in New Zealand: an efficient strategy for a
small developed country. N Z Med J. 2009;122(1304):46–53.

41. Weiss KH, Runz H, Noe B, Gotthardt DN, Merle U, Ferenci P, et al. Genetic
analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease.
J Inherit Metab Dis. 2010;33 Suppl 3:S233–40.

42. Ferretti M, Gattorno M, Chiocchetti A, Mesturini R, Orilieri E, Bensi T, et al.
The 423Q polymorphism of the X-linked inhibitor of apoptosis gene
influences monocyte function and is associated with periodic fever. Arthritis
Rheum. 2009;60(11):3476–84.

43. Li W, Gao C, Cui L, Liu S, Zhao X, Zhang R, et al. DNMT3A mutations and
prognostic significance in childhood acute lymphoblastic leukemia. Leuk
Lymphoma. 2015;56(4):1066–71.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Chen et al. Italian Journal of Pediatrics  (2016) 42:50 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients
	Genetic analysis
	Cytokine determination
	Degranulation assays with flow cytometry
	Clinical data
	Statistical analysis

	Results
	Genetic results
	Cytokine levels
	Degranulation and clinical data

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

