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Childhood cone–rod dystrophy 
with macular cyst formation in 
ABCA4 mutation identified by serial 
spectral‑domain optical coherence 
tomography
Kai Ching Peter Leung*, Tak Chuen Simon Ko

Abstract:
Cone–rod dystrophy (CORD) is a type of progressive hereditary retinal dystrophies that causes 
cone predominant photoreceptor degeneration characterized by wide genotypic and phenotypic 
heterogeneity. Macular cyst (MC) occurs very infrequently in the pediatric age group and has rarely 
been described in CORD. We report a case of young‑onset CORD that was affected by an isolated 
ABCA4 mutation complicated by the development of MC. Through serial spectral‑domain ocular 
coherence tomography MC has been observed to persist  for 24 months before its resolution, 
followed by retinal thinning and macular atrophy with corresponding visual acuity decline. The 
formation of MC and visual acuity  appeared to be directly correlated in ABCA4-related CORD 
and its manifestation is invaluable in predicting eventual visual loss. We further speculate that 
dysfunctional outer blood–retinal barrier may play a role in the pathophysiology of MC development 
in CORD.
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Introduction

Cone–rod dystrophy  (CORD) is a type 
of progressive retinal dystrophies that 

causes cone predominant photoreceptor 
degeneration and is characterized by wide 
phenotypic and genetic heterogeneity.[1,2] 
Macular cyst (MC) occurs very infrequently 
in the pediatric age group and has rarely 
been described in CORD.[3‑5] We report a 
case of young‑onset CORD secondary to an 
isolated ABCA4 mutation, which presented 
with MC in the early stages of disease. 
Through serial spectral‑domain optical 
coherence tomography (SD‑OCT), we were 
able to diagnose and monitor changes of MC 
and conclude that its discovery predicated 
later visual drop.

Case Report

A 4‑year‑old girl of Chinese origin  
whose parents were  non-consanguineous 
presented to the ophthalmology service 
with a 6‑month history of vision loss and 
divergent squint. No family history of 
blindness was noted. Initial examination 
revealed best‑corrected visual acuity of 0.6 
bilaterally. Cycloplegic refraction showed 
hypermetropia  +2.0 D bilaterally. Color 
vision was normal. Intermittent exotropia of 
20 prism diopter was noted, and extraocular 
movements were full .  The anterior 
segment examination was unremarkable. 
Fundal examination showed blunted 
foveal reflex without flecks, bony spicules, 
and spoke‑wheel pattern  [Figure  1a]. 
SD‑OCT of macula showed bilateral cystoid 
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Figure 2: Full‑field electroretinography finding displaying bilateral cone predominant abnormalities in ABCA4‑related cone–rod dystrophy
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maculopathy with intraretinal bridging strands and 
thickened central macula thickness of 349 µ and 346 
µ for the right and left eye, respectively  [Figure  1b]. 
X‑linked juvenile retinoschisis  (XLRS1) was initially 
suspected, but no pathological variant, gene duplication, 
or deletion for RS1 gene was detected on sequencing and 
array comparative genomic hybridization. Subsequent 
follow‑up at 6, 12, 18 and 24 months showed further 
decline in vision to 0.2 bilaterally and perifoveal 
thinning [Figure 1c]. SD‑OCT showed an interval 
reduction of bilateral cystoid maculopathy with 
progressive retinal thinning of macula. Interruption at 
the photoreceptor, retinal pigment epithelium  (RPE), 
and outer retina were also noticed  [Figure  1d and f]. 
Fundus autofluorescence showed bilateral parafoveal 
ring hyposignaling representing Bull’s eye pattern 
with peripapillary sparing  [Figure  1e]. Full‑field 
electroretinogram  (ERG) was performed according to 
the International Society for Clinical Electrophysiology 

of Vision Standards and showed marked reduction 
of cone‑  and rod‑mediated responses, with cone 
more severely affected  (photopic response: right eye 
a‑wave −9.761 uV duration 18 ms and b‑wave 15.48 uV 
duration 25 ms; left eye a‑wave −5.693 uV duration 10 
ms and b‑wave 6.81 uV duration 33 ms [norm a‑wave 
voltage −62.54 ± 32.39 uV duration 12 + 0.2.26 ms and 
b‑wave voltage 163.5 ± 111 uV duration 27.33 ± 2.46 ms]. 
30 Hz Flicker: right eye 30.99 uV, trough 16 ms, peak  
27 ms; left eye 13.85 uV, trough 10 ms, peak 32 
ms  [norm peak voltage 131  ±  82uV, trough duration 
9.08 ± 2 ms, peak duration 24.17 ± 4 ms]) [Figure 2]. A 
diagnosis of CORD was made clinically. Further genetic 
testing of CRB1 gene was negative. ABCA4 genetic 
sequencing returned positive at another tertiary center. 
Unfortunately, no further information regarding ABCA4 
mutation could be provided. Our patient declined 
treatment with topical dorzolamide due to potential side 
effects. Visual rehabilitation was offered to the patient.

Figure 1: (a) Fundus photograph showing blunted foveal reflex without flecks and bony spicules in ABCA4‑related cone–rod dystrophy. (b) Spectral‑domain optical coherence 
tomography of the macula revealed bilateral macular cysts with bridging strands in ABCA4‑related cone–rod dystrophy.  (c) Fundus photograph showing progressive 
perifoveal thinning and early atrophy 1 year after onset. (d) Resolution of bilateral macular cysts 1 year after onset. (e) Bilateral fundus autofluorescence showing "Bull’s eye" 
maculopathy. (f) Progressive bilateral foveal atrophy and retinal thinning at 2 years after onset
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Discussion

CORD is a type of generalized progressive retinal 
dystrophies that causes cone predominant photoreceptor 
degeneration.[2] Typically, CORD presents with loss of 
visual acuity, color vision deficits, and central visual 
field impairment, which are associated with fundoscopic 
features of RPE change, followed by perifoveal RPE 
atrophy in a ring fashion, resulting in “Bull’s eye” 
maculopathy. In later stages, RPE atrophy tends to 
extend to the mid‑peripheries accompanied by the 
attenuation of vessels and temporal pallor of optic disc.
[1] Fundus autofluorescence and SD‑OCT are essential in 
identifying subtle changes of RPE changes and to rule out 
other differential diagnosis. ERG is crucial in diagnosis 
of CORD, where cone response is found to be reduced 
predominantly. In the advanced stages of disease, both 
cone and rod response will eventually be diminished. To 
date, 21 genes have been identified to produce CORD, 
with ABCA4 gene mutation found to cause autosomal 
recessive CORD.[6,7] The genotype–phenotypic correlation 
in ABCA4‑related CORD, however, is heterogeneous and 
appears to have a wide clinical spectrum.[8]

The development of MC in the pediatric age group is 
commonly associated with hereditary retinal dystrophies 
and is divided into leaking and nonleaking subtypes 
based on their underlying pathophysiology.[9,10] In 
retinitis pigmentosa, leaking MC is believed to occur 
as a result of leakage of fluid from failing RPE pumps, 
vitreomacular traction, and nonimmune response 
from toxic products released from the degenerating 
retina.[6,11,12] Nonleaking MC is associated with mutations 
of genes that are related to the maintenance of retinal 
architecture, which includes CHM, NR2E3, XLRS1, and 
CRB1.[13] CHM at Xq21.2 encodes for Rab escort protein 
1 (REP‑1) that controls intracellular trafficking and outer 
disc membrane shedding of RPE, which is postulated to 
cause choroideremia and nonleaking MC.[14,15] NR2E3 
genetic mutation at 15q23 results in enhanced S‑cone 
syndrome, Goldmann–Favre syndrome, and clumped 
pigmentary retinal degeneration.[16] MC formation in 
NR2E3 mutation is believed to be related to the inability 
to form tight junctions between hybrid rod–cone cells, 
which results in MC and typically found located at 
outer plexiform and inner nuclear layer.[17] XLRS1 gene 
at Xp22.1 is responsible for retinoschisin production, 
and mutations result in MC due to dysfunctional 
cellular adhesion.[18] CRB1 gene at 1q31.3, which is 
known to cause retinitis pigmentosa, CORD, and Leber 
congenital amaurosis, is crucial in the development 
of photoreceptors and Drosophila crumbs protein 
function.[19] It is believed that MC formation is due 
to dysfunctional assembly of zonula adherens and 
maintenance of apical–basal polarity in epithelial cells.[20]

CORD‑associated MC is infrequent. MC was first 
identified in CORD with time‑domain OCT in 2001 and 
later with SD‑OCT on a 25‑year‑old male with clinical 
CORD.[5,21] A proband of childhood‑onset CORD due to 
CRB1 mutation was also found to have MC.[3] However, 
a large retrospective review of 36 CORD patients did not 
reveal the presence of MC, which included three patients 
with possible, likely or definite disease‑causing sequence 
variations in ABCA4 gene.[4]

We present the first case of young‑onset CORD secondary 
to an isolated ABCA4 mutation, which was complicated 
by the development of MC in the early stages of disease. 
ABCA4 encodes for photoreceptor transmembrane 
protein that transports a visual cycle intermediate, 
N‑retinylidene‑phosphatidylethanolamine, from the 
inner to the outer leaflet of the disc membrane.[22] 
Dysfunctional ABCA4 is responsible for a wide range 
of clinical findings as a result of different degrees of 
impact on RPE and photoreceptor, with mild genotype 
causing Stargardt disease, moderate genotype causing 
selective injury on cone cells to result in CORD, and 
severe genotype causing rod and cone injury, resulting 
in autosomal recessive retinitis pigmentosa.[6,23‑26] 
The underlying etiology for MC development in 
ABCA4‑related CORD remains elusive. We postulate 
that the pathophysiology of MC formation is linked 
to dysfunctional outer blood–retinal barrier.[27,28] This 
is evidenced by the fact that impairment of blood–
retinal barrier, which is a contributing factor for the 
development of MC in retinitis pigmentosa, is also 
being demonstrated in CORD.[29,30] The relatively few 
prevalence of MC in CORD compared with other 
hereditary retinal dystrophies remains to be investigated.

The natural progression of MC in CORD has been 
observed in our study. Previous studies have shown 
an inconsistent correlation between visual acuity, size 
of cystoid spaces, and retinal thickness in hereditary 
retinal dystrophies. Our study has revealed a direct 
relationship between visual acuity and the appearance 
of MC. Serial SD‑OCT monitoring has demonstrated 
gradual visual acuity deterioration upon MC resolution, 
a novel finding that has not been reported previously 
in CORD. The onset and resolution of MC, followed 
by retinal thinning and atrophy of the macular, took 
24 months in our proband. The time of dissolution of 
MC allows the prediction of visual loss, which may be 
a useful prognostic indicator in ABCA4‑related CORD.

The use of carbonic anhydrase inhibitor  (CAI) in the 
preservation of retinal architecture, delaying visual 
decline, and atrophic maculopathy has been employed 
in different hereditary retinal dystrophies, resulting in 
variable success.[31,32] Studies on CAI on CORD‑related 
MC are few but encouraging, with a case report showing 
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efficacy and complete resolution of bilateral cystic 
maculopathy after treatment with topical dorzolamide.[33] 
Further studies are required to ascertain its efficacy in 
CORD.

Conclusion

We present a case of young‑onset CORD secondary 
to an isolated ABCA4 genetic mutation, which was 
complicated by the development of MC. The formation 
of MC in CORD is rare, and its pathophysiology 
remains unclear, although impairment of outer 
blood–retinal barrier function has been speculated. 
Identification of MC with SD‑OCT remains an 
important and useful tool for diagnosis, prognostic 
evaluation, and monitoring purposes. In our study, we 
have demonstrated that the MC lasted for 24 months 
from its onset until resolution in ABCA4‑related 
CORD. The appearance of MC and visual acuity 
appeared to be directly correlated and is invaluable 
in predicting eventual visual loss in CORD.
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