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Abstract

Air pollution epidemiological studies often use outdoor concentrations from central-site monitors 

as exposure surrogates, which can induce measurement error. The goal of this study was to 

improve exposure assessments of ambient fine particulate matter (PM2.5), elemental carbon (EC), 

nitrogen oxides (NOx), and carbon monoxide (CO) for a repeated measurements study with 15 

individuals with coronary artery disease in central North Carolina called the Coronary Artery 

Disease and Environmental Exposure (CADEE) Study. We developed a fine-scale exposure 

modeling approach to determine five tiers of individual-level exposure metrics for PM2.5, EC, 

NOx, CO using outdoor concentrations, on-road vehicle emissions, weather, home building 
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characteristics, time-locations, and time-activities. We linked an urban-scale air quality model, 

residential air exchange rate model, building infiltration model, global positioning system (GPS)-

based microenvironment model, and accelerometer-based inhaled ventilation model to determine 

residential outdoor concentrations (Cout_home, Tier 1), residential indoor concentrations (Cin_home, 

Tier 2), personal outdoor concentrations (Cout_personal, Tier 3), exposures (E, Tier 4), and inhaled 

doses (D, Tier 5). We applied the fine-scale exposure model to determine daily 24-h average 

PM2.5, EC, NOx, CO exposure metrics (Tiers 1–5) for 720 participant-days across the 25 months 

of CADEE. Daily modeled metrics showed considerable temporal and home-to-home variability 

of Cout_home and Cin_home (Tiers 1–2) and person-to-person variability of Cout_personal, E, and D 

(Tiers 3–5). Our study demonstrates the ability to apply an urban-scale air quality model with an 

individual-level exposure model to determine multiple tiers of exposure metrics for an 

epidemiological study, in support of improving health risk assessments.

Keywords

air pollution; exposure modeling; particulate matter; gaseous pollutants; building infiltration 
modeling

1. Introduction

Epidemiological studies have found associations between exposure to ambient (i.e., outdoor-

generated) fine particulate matter (PM2.5; particulate matter ≤ 2.5μm in aerodynamic 

diameter) and its component elemental carbon (EC), nitrogen oxides (NOx), and carbon 

monoxide (CO) and indices of acute respiratory and cardiovascular morbidity and mortality 

[1–4]. Most of these studies used central-site measurements of these air pollutants as 

exposure surrogates due to cost and participant burden of using indoor or personal air 

pollution monitoring devices. While these exposure surrogates are designed for studies 

where central site monitor is representative for the entire study domain, they might have 

limitations in urban-scale studies where air pollution concentrations can be highly elevated 

near transportation sources such as highways, railroads, or airports. Specifically, these 

exposure surrogates do not account for (1) fine-scale spatial and temporal variability of on-

road vehicle emissions and dispersion, (2) building-to-building and temporal variability of 

indoor infiltration (i.e., attenuation) of ambient air pollutants, (3) person-to-person and 

temporal variability of time spent in different indoor and outdoor locations, and (4) 

variability of respiratory inhalation (i.e., inhaled dose) from time spent at various physical 

activity levels. Differences between exposure surrogates, such as central-site measurements, 

and true exposures contribute to exposure measurement error. Depending on the 

epidemiological study design, these errors can add bias or uncertainty in health effect 

estimates [5–6]. The significance of this issue was highlighted in several reports by the 

National Research Council and National Academies of Sciences [7–10]. To address the 

recommendations of these reports, we developed the Exposure Model for Individuals (EMI), 

which can help reduce measurement error and improve health effect estimation [11–15]. 

This study describes the application of EMI for ambient PM2.5, EC, NOx, and CO in the 

Coronary Artery Disease and Environmental Exposure study (CADEE) [16].
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The goal of CADEE is to examine ambient air pollutant exposures and cardiovascular and 

hematologic effects in adults with coronary artery disease living in central North Carolina 

(NC). Using ozone measurements from two fixed-site air monitors, significant associations 

were previously found between daily ambient ozone concentrations and various acute 

(maximum lag of 5 days) adverse effects: (1) altered endothelial function, (2) increased 

blood levels of inflammatory markers: neutrophils, monocytes, and interleukin-6, and (3) 

increased blood levels of factors attributed to fibrinolysis: tissue plasminogen factor and 

plasminogen activator inhibitor-1 [16]. In this study, we applied EMI for a subsequent 

epidemiological analysis to address the possible limitation of using outdoor air pollutant 

concentrations from fixed-site monitors as exposure surrogates in CADEE.

The EMI predicts multiple tiers of individual-level exposure metrics for actual participants 

in epidemiological studies using outdoor concentrations, questionnaires, weather, and time-

activity information [11]. We previously developed and applied EMI for an epidemiological 

study called the Diabetes and the Environment Panel Study (DEPS) [11–12]. In DEPS, we 

used a residential air exchange rate (AER) model, building infiltration model, and 

microenvironment-based exposure model to predict residential indoor concentrations and 

personal exposures for ambient PM2.5.

For CADEE, we extended EMI to develop a refined exposure modeling approach that 

includes six additional capabilities. First, the exposure model includes four pollutants 

(PM2.5, EC, NOx, CO), whereas DEPS included only PM2.5 [12]. Second, we used a 

previously developed urban-scale air quality model (AQM) to determine background, on-

road, and total concentrations of each pollutant [17]. Third, we used a previously evaluated 

global positioning system (GPS)-based microenvironment (ME) classification model called 

MicroTrac to determine time-spent in different ME, whereas for DEPS we used time-

location diary information [18]. Finally, an accelerometer-based ventilation model called 

VTrac was developed and applied to predict inhaled dose from physical activity information.

Before applying EMI for epidemiological studies with limited exposure data, we previously 

calibrated and evaluated EMI with extensive exposure data from field studies to reduce 

model uncertainty. We used measurement data from multiple field studies to evaluate the 

residential AER model, infiltration model, and GPS-based MicroTrac model 

[11,12,14,15,18]. Using a cross-validation, we compared individual predictions with 591 

daily measurements from 31 homes and participants in central NC, which is the same 

location as CADEE. Median absolute differences were 20% (2.0 μg/m3) for home indoor 

concentrations and 20% (1.8 μg/m3) for personal exposures for ambient PM2.5 [11].

In this paper, we develop ambient PM2.5, EC, NOx, CO exposure metrics for CADEE. We 

used outdoor concentrations and on-road vehicle emission factors as inputs for the AQM, 

and used housing characteristics, weather, time-locations from GPS loggers, and time-

activities from accelerometers as inputs for EMI. We will first describe the CADEE design, 

and then describe the AQM and EMI algorithms, and the development of multiple tiers of 

daily exposure metrics for each study participant.
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2. Materials and Methods

2.1 CADEE Design

The CADEE study was designed to examine the relationship between exposures to different 

air pollutants and various indices of acute cardiovascular and hematologic effects in a cohort 

of adults with coronary artery disease. A previous publication describes the study design and 

clinical measurements [16]. Briefly, the study included 15 non-smoking adult participants 

that had undergone a cardiac catheterization at Duke University Hospital and resided in 

central NC. Each participant visited the U.S. Environmental Protection Agency (EPA) 

Human Studies Facility (HSF) in Chapel Hill, NC at 8 am (± 1.5 h) for two consecutive 

weekdays for up to 10 weeks between May 2012 and April 2014. On the first day, the 

participant was outfitted with a hip-mounted accelerometer (model Actical; Respironics Inc., 

Murrysville, PA, USA) and provided a GPS data logger (model BT-Q1000XT; Qstartz 

International, Taipei, Taiwan), which they carried for the next 24 h. Various clinical 

measurements were collected at baseline and the following day to yield a total of 120 

participant-days of data. Written informed consent was given by all participants prior to 

enrollment, and the study was approved by the Duke University Institutional Review Board, 

the University of North Carolina at Chapel Hill Institutional Review Board, and the EPA 

Human Protocols Office.

Input data for EMI were obtained from the participants for their home building 

characteristics, time-locations, and time-activities. Daily questionnaires were used to collect 

occupant behavior related to building operation, including indoor temperature, open 

windows and doors, and operating window fans. The GPS and accelerometer data loggers 

were used to collect continuous participant locations and physical activity intensities; 

respectively.

Before each 24 h deployment of the GPS data logger, the GPS memory was cleared using 

QTravel software (version 1.2; Qstartz International, Taipei, Taiwan) and the battery was 

fully charged. The GPS was programmed to sample every 5 sec and to collect the date, time, 

position (latitude, longitude), speed, number of satellites used, and position dilution of 

precision (dimensionless value ≥ 1 that indicates accuracy of GPS position due to the 

satellite geometry) [18]. The sampled data were stored in the GPS memory during the 24 h 

sampling period, and then downloaded and stored in a text file for the MicroTrac model 

described below.

Before each 24 h deployment of the accelerometer data logger, the accelerometer memory 

was cleared using Actical software (version 3.0; Respironics Inc., Murrysville, PA, USA). 

The accelerometer was programmed for 1-sec epochs and to collect the date, time, activity 

counts (value that indicates intensity of motion). The sampled data were stored in the 

accelerometer memory during the 24 h sampling period, and then downloaded and stored in 

a text file for the VTrac model described below.

2.2 Tiers of modeled exposure metrics

We modeled five tiers of daily exposure metrics for ambient PM2.5, EC, NOx, CO for 15 

study participants and their homes (Figure 1). The five tiers, which have increasing levels of 
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complexity and information needs, include: (Tier 1) home outdoor concentrations; (Tier 2) 

home indoor concentrations; (Tier 3) personal outdoor concentrations; (Tier 4) exposures; 

(Tier 5) inhaled doses. Each tier is separated into contributions from background, on-road 

emissions and total. For each participant, 24-h average (8 am to 8 am) exposure metrics were 

modeled on the days with clinical measurements, and on the five days before clinical visits 

to yield a total of 720 participant-days. The modeling and subsequent analysis were 

implemented using MATLAB software (version R2015a, Mathworks, Natick, MA, USA).

2.2.1 Home outdoor concentrations (Tier 1)—For Tier 1, hourly outdoor 

concentrations for PM2.5, EC, NOx, CO were modeled at all Census block centroids in three 

counties (Durham, Orange, Wake) in central NC using a previously described urban-scale 

AQM that combines the Research LINE source dispersion model (R-LINE) and Space-Time 

Ordinary Kriging (STOK) model [17,19,20]. We conducted model simulations to estimate 

concentrations from on-road vehicle emissions, concentrations from background, and total 

ambient concentrations. The AQM concentrations at each participant’s home were obtained 

from the Census block concentrations corresponding to the home location. The details of the 

method are described elsewhere [17].

Briefly, the R-LINE model was used to model the concentrations from on-road sources. The 

traffic emissions from road segments were treated as line sources and calculated using a 

combination of road network, traffic activity, and pollutant-specific emission factors from 

EPA’s Mobile Vehicular Emission Simulator (version 2010b) [21,22]. The emission factors 

are categorized by road type, vehicle type, vehicle speed, and ambient temperature, which 

are required to calculate the actual emission from a specific roadway. These data were 

collected from multiple sources including the Federal Highway Administration’s road 

network, National Weather Service’s hourly meteorological observations, and EPA’s 

National Emissions Inventories [23].

The STOK model was used to model the background concentrations from all sources except 

for on-road vehicle emission. Following the method developed by Arunachalam et al. [20], 

STOK was used to interpolate monitoring data from EPA’s Air Quality System to Census 

block centroids [24]. This technique assumes that the concentration value at each estimation 

point is a linear combination of nearby observational data. The linear combination, also 

known as kriging weight, is determined by minimizing the estimation variance while 

satisfying the unbiased constraint. The STOK technique is implemented with Bayesian 

Maximization Entropy library [25]. The background concentration was added to the 

modeled on-road contribution to determine the total ambient concentration.

2.2.2 Home indoor concentrations (Tier 2)—For Tier 2, hourly home indoor 

concentrations (Cin_home) for ambient PM2.5, EC, NOx, CO were determined from home 

outdoor concentrations (Cout_home; Tier 1) with a dynamic mass-balance infiltration model 

described by

dCin_home/dt = AER P Cout_home – AER + kr Cout_home (1)
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where AER is the hourly air exchange rate (h−1), P is the penetration coefficient 

(dimensionless), kr is the indoor removal rate (h−1) [11,14]. For PM2.5, P and kr were 

previously estimated from homes in the same region of NC as CADEE (P = 0.84, kr = 0.21 h
−1) [11,12]. For EC, NOx, CO, P and kr were obtained from literature-reported values (P = 

0.98, 1.00, 1.00; kr = 0.29, 0.5, 0 h−1; respectively) [26–28]. The 24-h average Cin_home was 

calculated by averaging the hourly Cin_home across 24 hours.

The hourly AER for each participant’s home was determined from questionnaires and 

weather using the extended Lawrence Berkeley Laboratory model (LBLX) [11,12,14,15,17]. 

The AER model is mechanistic by accounting for the physical driving forces of the airflows 

(i.e., pressure difference across building envelope from indoor-outdoor temperature 

differences, called the stack effect, and from wind). The LBLX model includes leakage 

airflow through unintentional openings in a building envelope (e.g., cracks around windows, 

doors), natural ventilation through controlled openings in the building envelope (e.g., open 

windows, doors), and mechanical ventilation from window fans.

The LBLX model was previously described and evaluated for homes in the same region of 

NC as CADEE [11,12,14]]. Briefly, the leakage airflow is defined as

Qleak = Aleak ks T in − Tout + kwU2 0.5
(2)

where Aleak is the effective air leakage area, ks is the stack coefficient, kw is the wind 

coefficient, Tin and Tout are the average indoor and outdoor temperatures, respectively, and 

U is the average wind speed (see Supplementary Materials).

The LBLX model accounts for natural ventilation airflow on days with open windows or 

doors, and mechanical ventilation airflow on days with window fans operating [11–15,29]. 

The days with open windows or doors, and windows fans operating were determined from 

the questionnaires collected on the days with clinical measurements. If a participant reported 

open windows, doors; or use of window fans, we assumed open windows, doors; or window 

fans; respectively for the five days before questionnaires were collected (lag days for the 

subsequent health outcome analysis). The total airflow from leakage, natural ventilation, and 

mechanical ventilation is defined as

Qtotal = Q2
mech + Q2

leak + Q2
nat

0.5
(3)

where Qnat is the natural ventilation airflow through open windows or doors, Qmech is the 

mechanical ventilation airflow through window fans (see Supplementary Materials). The 

AER is calculated as Qtotal divided by building volume V.

2.2.3 Personal outdoor concentrations (Tier 3)—For Tier 3, personal outdoor 

concentrations (Cout_personal) at each 5-sec interval for ambient PM2.5, EC, NOx, CO were 

determined using a GPS-based outdoor concentration tracker (OCTrac) method. The 

OCTrac integrates the urban-scale AQM data with personal GPS data. The Cout_personal were 

determined by temporally and spatially matching the GPS data with the fine-scale outdoor 

concentrations. Each 5-sec GPS sample was time-matched to the corresponding 1-h outdoor 
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concentration map of the three NC counties. Then, the outdoor concentration for each GPS 

geolocation (latitude, longitude) was obtained from the closest Census block centroid. 

OCTrac accounts for missing GPS data (e.g., when entering steel-framed buildings) by using 

geolocation of previous GPS sample. For the five days before GPS data were collected (lag 

days), the participant’s geolocations was set to the same locations as the day with GPS data. 

For lag days on weekends, we replaced any GPS samples obtained on weekdays at their 

work geolocation with their home geolocation. The 24-h average Cout_personal was calculated 

by averaging the 5-sec Cout_personal across 24 hours.

2.2.4 Exposures (Tier 4)—For Tier 4, we determined exposures (E) at each 5-sec 

interval for ambient PM2.5, EC, NOx, CO as defined by

E = MEin−homeCin_home + MEin_work + MEin_other Finf_other_bldg
+ MEin_vehicleFinf_vehicle + MEout Cout_personal

(4)

where Finf_other_bldg and Finf_vehicle are the infiltration factors (dimensionless) for buildings 

other than homes and for vehicles, respectively. For PM2.5, EC, NOx, CO, we set 

Finf_other_bldg and Finf_vehicle to literature-reported values (Finf_other_bldg = 0.64, 0.59, 1.00, 

1.00; Finf_vehicle = 0.44, 0.44, 0.80, 1.00; respectively) [28,30,31]. The MEin_home, 

MEin_work, MEin_other, MEin_vehicle, MEout are binary indicator variables (dimensionless) for 

the participant’s microenvironment (ME) at each 5-sec interval, which correspond to the five 

ME (indoors at home, work, other; inside vehicles; and outdoors; respectively). To simplify 

Equation 4, we combined the three ME associated with outdoors (outdoors at home, work, 

other) into one ME (outdoors). For the five days before GPS data were collected (lag days), 

the participant’s ME was set to the same values as the day with GPS data. For lag days on 

weekends, we replaced any MEin_work = 1 with MEin_home = 1. The 24-h average E were 

calculated by averaging the 5-sec E across 24 hours.

The participant’s ME at each 5-sec interval was determined using the MicroTrac model, 

which was previously described and evaluated for participants living in the same region of 

NC as CADEE [18]. Briefly, MicroTrac is a classification model that uses GPS data and 

geocoded building boundaries to determine the participant’s ME. The MicroTrac determines 

which one of seven ME (indoors and outdoors at home, work, other; inside vehicles) 

corresponds to the participant’s location at each 5-sec GPS sampling interval. In a previous 

study, MicroTrac estimates were compared with 24-h diary data from nine participants in 

central NC. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the 

participants [18].

2.2.5 Inhaled Doses (Tier 5)—For Tier 5, we determined inhaled doses at each 5-sec 

interval for ambient PM2.5, EC, NOx, CO as defined by

Di = EiMV AT /BSA (5)

where Di (μg/m2 body surface area) is the inhaled dose (mass; μg) normalized by the 

participant’s body surface area (m2) in ME i where i = 1, 2, 3, 4, 5, 6, 7 corresponding to 

indoors at home, work, other; inside vehicles; outdoors at home, work, other; respectively. 
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The Ei is the 5-sec exposure (μg/m3) from each ME i, MV is the 5-sec inhaled ventilation 

rate (m3/min), AT is the timestep (min) that is set to 0.083 min (5 sec), and BSA is the 

participant’s body surface area (m2). The 24-h accumulated dose in each ME was calculated 

by adding the 5-sec doses across 24 hours. The total 24-h accumulated dose was calculated 

by adding the 24-h accumulated dose in each ME.

The 5-sec exposures from each ME are defined as

E1 = MEin−homeCin_home (6)

E2 = MEin_workFinf_other_bldgCout_pers (7)

E3 = MEin−otherFinf−other−blagCout_pers (8)

E4 = MEin_vehicleFinf_vehicleCout_pers (9)

E5 = MEout−homeCout−pers (10)

E6 = MEout−workCout_pers (11)

E7 = MEout−otherCout_pers (12)

where Ei is the exposure from each ME i where i = 1, 2, 3, 4, 5, 6, 7 corresponding to 

indoors at home, work, other; inside vehicles; outdoors at home, work, other; respectively.

To determine the participant’s MV at each 5-sec interval, we developed the VTrac model. 

First, VTrac uses accelerometer data and the GPS-based MicroTrac model, as described 

above, to determine which one out of four physical activity intensity levels (PAL; sedentary, 

light, moderate, vigorous) corresponds to the participant’s activity level. At each 5-sec 

interval, we added the 1-sec accelerometer activity counts across the past 60 sec (cpm; 

counts/min), and set the corresponding PAL based on literature-reported thresholds 

(sedentary: cpm<100, light: 100≤cpm<1535, moderate: 1535≤ cpm<3962, vigorous: 

cpm≥3962) [32]. These reported PAL thresholds were determined specifically for the 

Actical accelerometer used in CADEE, and were based on metabolic equivalent (METS) 

thresholds (sedentary: METS<2.0, light: 2.0≤METS<3.0, moderate: 3.0≤METS<6.0, 

vigorous: METS≥6.0). For the five days before accelerometer data were collected (lag days), 

the participant’s activity counts were set to the same values as the day with accelerometer 

data.

To account for possible misclassifications when the participant is inside vehicles, we used 

the ME determined from the GPS-based MicroTrac. We set the PAL to sedentary when the 
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time-matched ME is classified as inside vehicles, since the accelerometer may detect motion 

from the vehicles even though the participant is sitting (i.e., sedentary) inside a vehicle.

The VTrac model then determines age- and sex-specific MV for each PAL based on 

literature-reported normalized minute ventilation (NMV) (L/min/kg body weight) [33]. The 

NMV were determined from oxygen consumption rates and basal metabolic rates based on 

data from the National Health and Nutrition Examination Survey and EPA’s Consolidated 

Human Activity Database. The NMV were reported for: (1) each of the four PAL based on 

METS thresholds (sedentary: METS≤1.5, light: 1.5<METS≤3.0, moderate: 3.0<METS≤6.0, 

vigorous: METS>6.0), (2) 14 separate age categories, (3) both males and females. For 

CADEE, we used the reported median NMV for each PAL based on the participant’s age 

and sex. The MV is calculated as NMV multiplied by the participant’s body weight (kg).

The BSA is defined as

BSA = 0.007184 BH0.725BW 0.425 (13)

where BH is body height (cm) and BW is body weight (kg) [34].

3. Results

To apply the fine-scale exposure model for CADEE, we modeled five tiers of daily exposure 

metrics for all 15 study participants and their homes. Modeled concentrations of PM2.5, EC, 

NOx, and CO for daily 24-h averages (8am – 8am) are provided, which are time-matched to 

the daily health measurements for a future epidemiological analysis. We modeled a total of 

720 participant-days.

We compared the daily variability of the modeled exposure metrics for individual homes 

(Tiers 1–2) and participants (Tiers 3–5) (Figures 2–5). For Tier 1, the temporal variability 

(within homes) and home-to-home variability of Cout_home was substantial for all four 

pollutants due to daily variations. Also, the on-road contribution to total Cout_home was 

larger than the background contribution for EC and NOx, and smaller for PM2.5 and CO due 

to substantial on-road emissions and near-road spatial gradients of EC and NOx.

For Tier 2, Cin_home was substantially lower than Cout_home for PM2.5, EC, and NOx, but the 

same for CO due to the home indoor attenuation of ambient PM2.5, EC, and NOx, but no 

indoor attenuation of CO. In the plots of the homes ranked by median Cin_home and 

Cout_home, the order of the homes for Cin_home was different than Cout_home for PM2.5, EC, 

and NOx due to the temporal and home-to-home variability of the residential AER from 

indoor-outdoor temperature differences, wind speed, and building operating conditions (e.g., 

open windows). The home-to-home variability was also due to building leakage area 

differences.

For Tier 3, Cout_personal was substantially different than Cout_home for EC, NOx, and CO, but 

similar for PM2.5 is due to the larger spatial variability of EC, NOx, and CO as compared to 

PM2.5. Also, the participant-to-participant variability between Cout_personal and Cout_home is 

due to time-of-day and duration at geolocations other than home.
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For Tier 4, E was substantially lower than Cout_home for PM2.5, EC, and NOx, but the same 

for CO due to the indoor attenuation of ambient PM2.5, EC, and NOx, but no indoor 

attenuation of CO. In the plots of the participants ranked by median E and Cout_home, the 

order of the participants for E was different than Cout_home for PM2.5, EC, and NOx due to 

the temporal and participant-to-participant variability of time spent outdoors and within 

indoor microenvironments other than home and with different infiltration factors.

For Tier 5, the background contribution to total D was larger than the on-road contribution 

for PM2.5 and CO, smaller for EC, and similar for NOx. Also, the participants with high, 

moderate, and low median doses tended to be similar participants for EC, CO, and NOx, but 

not for PM2.5.

We compared the variability of daily D and time spent in each ME (Figure 6, Figures S1–

S4). For all participants, the highest median dose and greatest time spent was indoors at 

home. For the other six ME, the ME with greater time spent usually corresponded to higher 

median dose for most participants. For CO, this was always the case. For PM2.5, EC, and 

NOx and for a few participants, the three indoor ME (work, other, in-vehicles) with greater 

time spent corresponded to lower median doses as compared to the three outdoor ME (home, 

work, other). This is likely due to the indoor and in-vehicle attenuation of ambient PM2.5., 

EC, and NOx, whereas ambient CO has no indoor or in-vehicle attenuation [26–28]. Also, 

the daily physical activity levels had substantial temporal and participant-to-participant 

variability for daily time-spent performing at low intensity levels (e.g., walking) with an 

overall range of 20–390 min/day (Figure S5).

4. Discussion

Our goal was to determine daily ambient PM2.5, EC, NOx, and CO exposure metrics for 

each CADEE participant in support of improving health effect estimation for future 

epidemiological analysis. Using a fine-scale exposure model, we performed an individual-

level exposure assessment in CADEE that accounts for daily variations in ambient PM2.5, 

EC, NOx, and CO exposures separated by background, on-road vehicle emissions, and total 

concentrations based on an urban-scale AQM, a mechanistic house-specific AER model 

linked to a mass-balance infiltration model, infiltration factors for nonresidential buildings 

and vehicles, GPS-based microenvironment model, and accelerometer-based inhaled 

ventilation model. The impact of applying our fine-scale exposure model for an 

epidemiological study to improve health effect estimation will depend on various factors 

such as the health study design and the true exposure distributions [35,36]. We predicted 

multiple tiers of exposure metrics with different levels of complexity and uncertainty, which 

will be used in the epidemiological analysis to help determine the benefit of more 

sophisticated exposure metrics.

There are several benefits of using EMI for panel studies, such as CADEE, with individual-

level health outcomes. First, spatio-temporal exposure models are needed that account for 

time-location variability of individuals that transition between microenvironments with 

different ambient pollutant concentrations. The National Research Council report: 

“Exposure Science in the 21st Century” highlighted the need for spatio-temporal exposure 
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models that use input data for time-locations, housing characteristics, and ambient 

concentrations [7]. Second, population-level exposure models (e.g., SHEDS, APEX) predict 

exposures for demographic groups using population-level inputs from other studies, such as 

the U.S. Census [30,37,38]; whereas EMI predicts exposures for specific individuals in an 

epidemiological study using individual-level input data (e.g., questionnaires, time-location 

diaries) from each study participant. Thus, population exposure models are appropriate for 

studies with number of health outcomes across a region. The EMI is appropriate for panel 

studies, including studies that use personalized exposure, and genetic and cellular data to 

determine the role of individual susceptibility and effect modifiers on adverse responses to 

the four air pollutants [39]. The need for exposure models that are specific to susceptible 

individuals, such as people with cardiovascular and pulmonary disease, was highlighted in 

the National Research Council report on exposure science [7].

For exposure models, there are two types of measurement errors that can impact health 

effect estimates [6,35]. Berkson-like errors are from using a model that is missing some 

sources of variation or exposure factors. Classical-like errors are from uncertainty in the 

estimated model parameters. These errors can bias health effect estimates and alter 

confidence levels. Using our exposure modeling approach can minimize both types of errors. 

The urban-scale AQM can reduce Berkson-like error by accounting for spatio-temporal 

variability of outdoor concentrations. Our mechanistic AER model can reduce Berkson-like 

error by accounting for the home-to-home variations due to building characteristics and 

operation (e.g., window opening) and the temporal variations due to stack and wind effects 

[11,14]. The GPS-based MicroTrac model can also reduce Berkson-like error by accounting 

for the daily participant-to-participant variations in the time spent in various 

microenvironments with different infiltration factors [18]. Classical-like error can be reduced 

with our previous PM2.5 model calibration and evaluation to improve the estimated 

parameters of the mass balance residential infiltration model [11,12,14], and our previous 

evaluation of the MicroTrac model [18].

Variability in home infiltration of ambient air pollutants and subject time-location patterns 

that contribute to exposure variability can impact epidemiological studies [7]. Sarnat et al. 

accounted for the spatio-temporal variability of residential AER in Atlanta, and found 

associations for the interaction between daily zip code-level AER and outdoor PM2.5, NOx, 

and CO concentrations on asthma emergency department visits [40]. Kaufman et al. 

accounted for temporal and house-to-house variability of PM2.5 infiltration and subject-

specific time spent indoors for >6,000 participants, and found significant associations 

between individual-level ambient PM2.5 exposures and coronary artery calcification [41]. 

Koenig et al. also accounted for temporal and house-to-house variability of PM2.5 infiltration 

and daily time spent indoors for children with asthma, and found ambient PM2.5 exposures 

were significantly associated with increases in exhaled nitric oxide [42]. These studies 

demonstrate the importance of accounting for individual-level exposure variability in 

epidemiological studies.

One limitation of this study is the exposure metrics do not include non-ambient air 

pollutants. Wilson et al. showed the importance of separating ambient and non-ambient 

pollutant exposures since the EPA regulates only ambient pollutants, and pollutants from 
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ambient and non-ambient sources have different chemical properties (particulate matter 

only) and temporal patterns, which can induce different health effects [43]. When we apply 

these modeled exposure metrics for epidemiological analysis, we plan to separately examine 

factors associated with non-ambient sources (e.g., gas stoves, environmental tobacco smoke) 

as categorical variables in the epidemiological models, which can remove potential 

uncertainties in modeled exposures that include indoor sources.

Another potential limitation of this study is the exposure model uses outdoor air pollutant 

concentrations from a sophisticated urban-scale air quality model that requires substantial 

expertise and resources. For air pollutants that are spatially homogeneous (e.g., PM2.5), 

using fixed-site monitor measurements as inputs for the exposure model may be sufficient in 

certain geographical regions, except near large sources that can produce substantial spatial 

variations. In a previous study in central NC, we found no substantial difference between 

daily ambient PM2.5 exposures determined from a fixed-site PM2.5 monitors and those 

predicted from PM2.5 monitors outside each participant’s home [11]. For other air pollutants 

that can have substantial local spatial and temporal variations from nearby sources such as 

traffic (e.g. EC, NOx, CO), a fine-scale air quality model can account for this spatio-

temporal variability. To facilitate and expand the use of exposure models for epidemiological 

studies, we developed a smartphone-based exposure model, called TracMyAir that 

determines individual-level exposure metrics for ambient PM2.5 and ozone [13]. The 

TracMyAir uses the smartphone’s geolocations to obtain real-time input data from the 

nearest outdoor air monitors. We plan to expand TracMyAir to automatically input data from 

urban-scale air quality models for other air pollutants with spatio-temporal variability.

Another potential limitation is that for the five lags days before GPS data were collected, the 

participant’s ME was set to the same values as the day with GPS data. For lag days on 

weekdays, we expect only small changes in daily time spent in different ME since the GPS 

data was also collected on weekdays. For lag days on weekends, we replaced any time spent 

indoors at work with time spent indoors at home. To further examine how changes in the 

time spent in various ME affect the resulting exposure, we performed a sensitivity analysis. 

The details of the method are described in Supplementary Materials. The sensitivity analysis 

showed that large changes in the time spent in ME with substantially different infiltrations 

(e.g., indoors versus outdoors) can produce large changes in the exposures for PM2.5, EC, 

NOx, but have little or no effect on exposures to CO since infiltrations are similar for all ME. 

In this study, we expect small difference in the time spent in ME on the lag days versus the 

day with GPS data. To reduce this potential exposure uncertainty, we developed a 

smartphone application for our exposure model called TracMyAir that will be used in future 

epidemiological studies to facilitate the collection of daily long-term time-location data [13].

5. Conclusions

This study demonstrates the ability of applying a fine-scale exposure model to determine 

five tiers of individual-level exposure metrics for the homes and participants in an 

epidemiological study. To improve exposure assessments in CADEE, EMI accounts for (1) 

hourly Census block outdoor concentrations for four ambient pollutants, (2) hourly house-

specific infiltrations, (3) continuous (5-sec) participant-specific time locations for seven ME 
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(indoors and outdoors at home, work, other; inside vehicles), and (4) continuous participant-

specific inhaled ventilations. This capability can help improve exposure assessments for 

epidemiological studies, such as CADEE, in support of human health risk assessments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conceptual model of EMI to predict five tiers of individual-level exposure metrics for 

ambient PM2.5, EC, NOx, and CO. Tiers 1–2 (Cout_home – outdoor concentration, Cin_home – 

indoor concentration) are related to homes, and Tiers 3–5 (Cout_personal – personal outdoor 

concentration, E – exposure, D – inhaled dose) are related to participants.
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Figure 2. 
Modeled PM2.5 exposure metrics for Tier 1 (outdoor home concentrations; a-c), Tier 2 

(indoor home concentrations; d-f), Tier 3 (personal outdoor concentrations; g-i), Tier 4 

(exposures; j-l), Tier 5 (inhaled dose; m-o) from background (left), on-road vehicle 

emissions (middle), and total PM2.5 (right). Results (24-h average, 8am-8am) are sorted by 

total PM2.5 median values from highest to lowest. Shown are medians with 25th and 75th 

percentiles, and whiskers for minimum and maximum values.
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Figure 3. 
Modeled EC exposure metrics for Tier 1 (outdoor home concentrations; a-c), Tier 2 (indoor 

home concentrations; d-f), Tier 3 (personal outdoor concentrations; g-i), Tier 4 (exposures; j-

l), Tier 5 (inhaled dose; m-o) from background (left), on-road vehicle emissions (middle), 

and total EC (right). Results (24-h average, 8am-8am) are sorted by total EC median values 

from highest to lowest. Shown are medians with 25th and 75th percentiles, and whiskers for 

minimum and maximum values.
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Figure 4. 
Modeled NOx exposure metrics for Tier 1 (outdoor home concentrations; a-c), Tier 2 (indoor 

home concentrations; d-f), Tier 3 (personal outdoor concentrations; g-i), Tier 4 (exposures; j-

l), Tier 5 (inhaled dose; m-o) from background (left), on-road vehicle emissions (middle), 

and total NOx (right). Results (24-h average, 8am-8am) are sorted by total NOx median 

values from highest to lowest. Shown are medians with 25th and 75th percentiles, and 

whiskers for minimum and maximum values.
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Figure 5. 
Modeled CO exposure metrics for Tier 1 (outdoor home concentrations; a-c), Tier 2 (indoor 

home concentrations; d-f), Tier 3 (personal outdoor concentrations; g-i), Tier 4 (exposures; j-

l), Tier 5 (inhaled dose; m-o) from background (left), on-road vehicle emissions (middle), 

and total CO (right). Results (24-h average, 8am-8am) are sorted by total CO median values 

from highest to lowest. Shown are medians with 25th and 75th percentiles, and whiskers for 

minimum and maximum values.
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Figure 6. 
Percentage of daily time spent (a) and inhaled dose for total PM2.5 (b) for each 

microenvironment (indoors and outdoors at home, work, and other; inside vehicle) and each 

participant. Results (24-h average, 8am-8am) are sorted by median values of the total dose 

from highest to lowest. Shown are medians with 25th and 75th percentiles, and whiskers for 

minimum and maximum values.
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