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Abstract

Background: The function of the peripheral microvascular may be interrogated by measuring perfusion, tissue
oxygen concentration, or venous oxygen saturation (SvO2) recovery dynamics following induced ischemia. The
purpose of this work is to develop and evaluate a magnetic resonance (MR) technique for simultaneous
measurement of perfusion, SvO2, and skeletal muscle T2*.

Methods: Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT) is comprised of interleaved pulsed
arterial spin labeling (PASL) and multi-echo gradient-recalled echo (GRE) sequences. During the PASL post-labeling
delay, images are acquired with a multi-echo GRE to quantify SvO2 and T2* at a downstream slice location. Thus
time-courses of perfusion, SvO2, and T2* are quantified simultaneously within a single scan. The new sequence
was compared to separately measured PASL or multi-echo GRE data during reactive hyperemia in five young
healthy subjects. To explore the impairment present in peripheral artery disease patients, five patients were
evaluated with PIVOT.

Results: Comparison of PIVOT-derived data to the standard techniques shows that there was no significant bias in
any of the time-course-derived metrics. Preliminary data show that PAD patients exhibited alterations in perfusion,
SvO2, and T2* time-courses compared to young healthy subjects.

Conclusion: Simultaneous quantification of perfusion, SvO2, and T2* is possible with PIVOT. Kinetics of perfusion,
SvO2, and T2* during reactive hyperemia may help to provide insight into the function of the peripheral
microvasculature in patients with PAD.

Keywords: Peripheral artery disease, Atherosclerosis, Microvascular function, Perfusion, Dynamic oximetry, T2*,
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Background
Peripheral artery disease (PAD), a common manifest-
ation of atherosclerosis in the lower limbs, causes sig-
nificant morbidity and mortality in the United States
[1-4]. Atherosclerotic plaques tend to develop at branch
points in the peripheral arteries, increasing vascular re-
sistance and limiting blood flow in the affected arteries
[5]. Baseline blood flow to skeletal muscle is generally
* Correspondence: wehrli@mail.med.upenn.edu
1Department of Radiology, Laboratory of Structural NMR Imaging, University
of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104,
USA
Full list of author information is available at the end of the article

© 2013 Englund et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
maintained through the recruitment of collateral arter-
ies [5,6], however the vasculature is unable to quickly
respond to changes in metabolic demand, such as those
that occur with exercise or following a period of ische-
mia. Analogous to cardiac stress testing, the functional
integrity of the peripheral vasculature can be interro-
gated by measuring the dynamic response to a period of
induced ischemia.
Skeletal muscle can be stressed by means of an

ischemia-reperfusion paradigm, which induces reactive
hyperemia. Suprasystolic pressure applied by a cuff se-
cured around the thigh halts distal blood flow for several
minutes. Oxygen extraction in the stagnant capillary
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blood continues until it reaches a steady state, approxi-
mately 140 seconds into the period of arterial occlusion
[7]. When pressure in the cuff is released, reactive
hyperemia ensues with a surge in arterial flow resulting
in an increase in perfusion [8] and oxygen concentration
at the level of the capillary bed [7,9]. Additionally, venous
oxygen saturation (SvO2) within the large draining veins
sharply decreases as the desaturated blood formerly
trapped in the capillary bed enters. As the tissue oxygen-
ation recovers, SvO2 rises and eventually surpasses its
baseline value during the time that oxygen delivery ex-
ceeds the oxygen extraction rate [10], or during which
time physiologic shunting may be occurring.
Several magnetic resonance (MR) techniques can non-

invasively evaluate the hyperemic response. Arterial spin
labeling (ASL) is a well-known method to investigate
perfusion in many vascular territories [11-16]. Skeletal
muscle perfusion is an important parameter that quanti-
fies microvascular blood flow thereby providing informa-
tion on delivery of oxygen and nutrients to tissue. It has
been shown that perfusion dynamics during reactive
hyperemia are altered in PAD [17]. These findings cor-
relate with both disease presence and severity.
A relative measure of tissue oxygenation can be

obtained by measuring changes in the apparent trans-
verse relaxation rate (T2*), also known as ‘blood oxygen-
level dependent’ (BOLD) signal [18]. T2* can be mea-
sured using a multi-echo gradient-recalled echo (GRE)
sequence. BOLD imaging has been extensively applied
for functional activation studies in the brain [19], and
can also provide information regarding activation and
oxygenation of many other tissues including the kidneys
[20] and skeletal muscle [7,8,21-23].
Dynamic measurement of SvO2 provides information

about oxygen utilization in tissue. When continuously
measured throughout an ischemia-reperfusion paradigm,
intravascular blood can act as an endogenous tracer,
allowing SvO2 time-course kinetics to provide information
on endothelial function and vascular reactivity [10]. SvO2

can be dynamically measured using MR susceptometry
[24]. Each of the aforementioned MR methods will be
discussed in detail in the Theory section.
The kinetics of the hyperemic response can provide in-

formation on microvascular integrity and endothelial
function. Healthy subjects are able to rapidly respond to
increases in oxygen demand, and recover back to base-
line more quickly than patients with PAD [17,25,26].
While methods for simultaneous quantification of perfu-
sion and T2* or other markers of tissue oxygenation have
been implemented [27,28], none have been able to inves-
tigate SvO2 time-course kinetics as well. Recovery dy-
namics are altered in each of these parameters in
situations of impaired vascular function, as in PAD;
therefore there is potentially added benefit to concurrent
measurement. In this work, we developed a method to
measure perfusion, SvO2, and T2* simultaneously. Such
a technique allows for a full functional assessment of the
peripheral vasculature during a single scan providing in-
formation on the temporal relationships between these
various functional parameters.

Theory
Pulsed arterial spin labeling perfusion imaging
Pulsed arterial spin labeling (PASL) MRI is a well-
established method for noninvasive perfusion imaging
[13,14,29]. In one PASL variant developed by Raynaud,
et al. [16], termed Saturation Inversion Recovery (SATIR),
slice-selective (SS) and non-selective (NS) inversion pulses
are applied for the tag and control images, respectively.
Every acquisition is followed by a slice-selective saturation
pulse to ensure the same initial magnetization in each dy-
namic image.
The normalized difference between the tag and control

images can be used to quantify perfusion in physiologic
units of milliliters of blood, per minute, per 100 grams
of tissue, as described in [16]. The resulting Bloch equa-
tions can be solved analytically for perfusion (f ) if the
longitudinal relaxation times (T1) of arterial blood and
tissue are assumed to be equal:

f ¼ −
λ

T
⋅ln½ MSS Tð Þ−MNS Tð Þ

MSS Tð Þ þMNS Tð Þ ⋅ð1−e
T=T1Þþ 1� ð1Þ

where MSS and MNS are the signal intensities (SI) in the
image acquired after SS and NS inversion, respectively, λ
is the tissue partition coefficient (0.9 mL/g), and T is the
post-labeling delay (PLD), defined as the time between
the inversion pulse and readout. At 3T, T1blood = 1664
ms [30] and T1tissue = 1420 ms [31]. A numerical calcu-
lation based on actual values for blood and tissue T1

shows that for perfusion values up to 100 mL/min/100g,
using T1tissue ≈ T1blood = 1420 ms, underestimates perfu-
sion by less than 5%.
SATIR has been successfully applied for perfusion im-

aging in the leg in healthy individuals [16], and the se-
quence has been employed to simultaneously measure
BOLD [28,32], however it has not been integrated with a
multi-echo GRE for venous oxygen saturation and
BOLD measurements.

MR susceptometry-based dynamic oximetry
MR susceptometry-based oximetry is a recently devel-
oped method for quantifying SvO2, measured in units of
percent-oxygenated hemoglobin (%HbO2) [10,24,33,34].
Because deoxyhemoglobin is paramagnetic, a magnetic
susceptibility difference exists between deoxygenated



Englund et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:70 Page 3 of 13
http://www.jcmr-online.com/content/15/1/70
blood and oxygenated blood or tissue. This susceptibility
difference induces a local magnetic field ΔB in the
draining vein relative to the tissue, proportional to (1-
SvO2/100). The incremental field ΔB can be determined
by subtracting the phase accumulation of the MR signal
in surrounding tissue from that inside the vein (Δφ).
The phase is measured from successive echoes separated
in echo time by ΔTE. By modeling the vein as a long
paramagnetic cylinder it is possible to quantify intravas-
cular SvO2 as:

SvO2 ¼ 1−
2 Δφj j�

ΔTE

� �
γ Δχdo⋅Hct⋅B0 cos2θ− 1=3

� �
" #

� 100 ð2Þ

where Δχdo represents the susceptibility difference be-
tween fully oxygenated and fully deoxygenated blood
(Δχdo = 4π•0.27 ppm (SI units) [35,36]), B0 is the main
magnetic field strength, and θ is the angle of the vessel
with respect to B0 [24,33]. It has been shown that for
small angles, the induced field outside of the vessel is
approximately homogeneous and independent of the
susceptibility difference between the vein and tissue [37].
Therefore SvO2 can be measured using a field-mapping
sequence, such as a multi-echo GRE. With this tech-
nique, one can quickly, directly, and noninvasively quan-
tify intravascular SvO2 at high-temporal resolution.

Skeletal muscle BOLD
In the microvasculature, as in the large veins, the para-
magnetism of deoxyhemoglobin causes inhomogeneities
in the local magnetic field. Because the microvessels are so
small, it is not possible to directly measure the change
in phase signal as is required for susceptometry-based
oximetry. However, this local field perturbation also re-
sults in intravoxel phase dispersion, which causes the
MR signal to decay more rapidly [18]. For instance, as
oxygen saturation in the capillary bed decreases, the
concentration of deoxygenated hemoglobin increases,
resulting in an increased intravoxel phase dispersion
thereby lowering the apparent transverse relaxation
time, T2*. Thus changes in T2* in response to an
ischemia-reperfusion paradigm can serve as a relative
marker of tissue oxygenation [7]. The BOLD signal orig-
inates not only from changes in blood oxygen level, it is
also sensitive to changes in perfusion, cellular pH, vessel
diameter, and vessel orientation [9,21,23,38-40]. It has
been postulated, however, that the BOLD signal changes
primarily result from changes in the concentration of
deoxyhemoglobin in the capillary bed [40]. Quantifica-
tion of T2* can be achieved by fitting signal intensity
data from a multi-echo GRE to a monoexponential
function. Prior studies have shown the utility of investi-
gating dynamic skeletal muscle BOLD during exercise
[41-43], ischemia [38], reactive hyperemia [8], and in
disease states [26,44].

Simultaneous measurement of perfusion, SvO2,
and T2*
By interleaving a multi-echo GRE sequence in the PLD
of a PASL sequence, perfusion, SvO2, and T2* can be
concurrently measured. From multi-echo GRE data, the
difference in signal phase between venous blood and
surrounding tissue yields SvO2, while fitting the ampli-
tude of the same data to a monoexponential function
yields T2*. The sequence, termed Perfusion, Intravascu-
lar Venous Oxygen saturation, and T2* (PIVOT), makes
use of the PLD dead time inherent to all PASL se-
quences to acquire SvO2 and T2* data at a separate slice
location with a multi-echo GRE (Figure 1). This allows
dynamic quantification of perfusion, SvO2, and T2*
within a single scan.
In PIVOT, as in SATIR, tag and control conditions for

perfusion imaging are achieved using SS and NS inver-
sion pulses, respectively. During the PLD, a keyhole [45]
multi-echo GRE sequence acquires data at a distal slice
for SvO2 and T2* quantification. The distal location was
chosen to ensure that the multi-echo GRE interleave
does not impact the signal from previously labeled per-
fusing blood. Because the NS inversion affects both the
PASL and multi-echo GRE slices, only multi-echo GRE
data acquired following SS inversion are analyzed,
though the interleave is run every PLD to control for
magnetization transfer effects. The multi-echo GRE is
immediately followed by a GRE-EPI readout at isocenter
to capture data for perfusion quantification.

Methods
Study design
The University of Pennsylvania’s Institutional Review
Board approved all imaging procedures, and each subject
provided informed consent prior to his or her participa-
tion. To evaluate PIVOT compared to the standard
measurement methods, five young healthy male subjects
(27 ± 2 years old) were recruited and imaged on two
separate occasions (Visit 1 and Visit 2). Four ten-minute
scans were run in both sessions, each scan consisting of
one minute baseline, three minute arterial occlusion,
and six minute recovery. PIVOT, a repeat of the PIVOT
scan (PIVOT Repeat), an otherwise identical PASL-only
sequence, or otherwise identical multi-echo GRE-only
sequence were run in a randomized order. To ensure
the PASL interleave did not impact quantification of
SvO2 and T2*, dynamic SvO2 and T2* results obtained
with PIVOT were compared to the multi-echo GRE-
only derived SvO2 and T2* results. Similarly, to ensure
the multi-echo GRE interleave did not confound perfu-
sion, the perfusion results obtained with PIVOT were



Figure 1 Pulse sequence diagram of PIVOT. A slice-selective (shown by SS only gradient) or non-selective adiabatic inversion pulse labels
blood for perfusion imaging. During the PLD a keyhole multi-echo GRE acquires data downstream from the perfusion slice location for SvO2

(blue) and T2* (green) analysis. An EPI readout at isocenter (red) is used to acquire the images for perfusion quantification.
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compared to the PASL-only derived perfusion data.
PIVOT was repeated to provide data on the intra-
session variability of these parameters.
In addition, five PAD patients (67.2 ± 6.8 years old,

ankle-brachial index (ABI) = 0.61 ± 0.14, 3 male) were
drawn from an ongoing study and PIVOT imaging was
performed during a single ischemia-reperfusion para-
digm. For experiments in PAD patients, the total scan
time was 12 minutes, with 2 minutes of baseline, 5 mi-
nutes of arterial occlusion, and 6 minutes of recovery.
Since repeated arterial occlusions were not performed in
PAD patients, a longer ischemic duration was used to
ensure a maximal hyperemic response.

Imaging
PIVOT, PASL-only, and multi-echo GRE-only sequences
were written in SequenceTree [46] and exported for use
on a 3T scanner (Siemens Medical Equipment; Erlanger,
Germany). Each subject was positioned with the max-
imum girth of the calf centered in an 8-channel trans-
mit/receive knee coil (Invivo, Inc; Gainesville, FL). For
proximal arterial occlusion, a cuff was secured around
the thigh and was rapidly inflated to 75 mmHg above
the systolic pressure using the Hokanson E20 AG101
Rapid Cuff Inflation System (D. E. Hokanson, Inc;
Bellevue, WA). Perfusion images were acquired with a
partial Fourier GRE-EPI readout with the following
parameters: FOV = 250 × 250 mm2; acquired matrix =
80×50, reconstructed to 80 × 80; slice thickness = 1 cm;
slice location = isocenter; TR/TE = 1 s/8.05 ms; PLD =
952 ms. The keyhole multi-echo GRE used the following
parameters: FOV = 96 × 96 mm2; keyhole acquired matrix =
96 × 24, (for SvO2 data analysis, reconstructed matrix =
96 × 96 using a fully sampled reference image obtained
immediately after the dynamic PIVOT or multi-echo GRE
acquisition; only dynamic data were used for T2* analysis);
slice thickness = 1 cm; slice location = 3 cm inferior from
isocenter; TR/TE1/TE2/TE3/TE4/TE5 = 38.12/3.78/6.99/
12.32/19.32/26.32 ms. Perfusion, SvO2, and T2* each were
quantified with two-second temporal resolution.

Data analysis
Perfusion: Perfusion was measured in the soleus
muscle. High spatial-resolution scout images were used
as a reference, and a region of interest (ROI) in the so-
leus was visually selected on the EPI images. As the
GRE-EPI data are inherently T2*-weighted, SI variation
occurred throughout the ischemia-reperfusion para-
digm due to the BOLD effect. Direct subtraction be-
tween adjacent NS and SS images would yield data with
a mixture of perfusion, and ΔT2*-weighting. To account
for this potential confound, NS time-series data were
linearly interpolated to temporally match the SS time-
course prior to perfusion quantification [47]. Perfusion was
calculated using Equation 1 [16]. In order to correct for
baseline perfusion offset, the average perfusion during the
period of arterial occlusion was calculated and subtracted
from each time-point as described in [47]. Peak hyperemic
flow (PHF), time to peak (TTP), hyperemic flow volume
(HFV), and hyperemic duration were measured (Figure 2a).



Figure 2 Schematic of time-course for perfusion (a), SvO2 (b),
and T2* (c) illustrating the time-course-derived metrics for each
parameter. Grey box indicates the period of proximal
arterial occlusion.
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Oximetry: Dynamic SvO2 images were reconstructed
to a matrix size of 96 × 96 using outer k-space data from
a fully sampled reference image acquired immediately
after the dynamic scan [45]. A phase difference image
was generated for each of the dynamic time-points and
the low spatial-frequency phase modulation was re-
moved as described in [48]. An ROI was prescribed in
the larger of the peroneal veins, and reference tissue was
selected in an ROI immediately surrounding the
peroneal vein. The phase accumulation was calculated
from echoes at TE1 and TE2, with ΔTE = 3.21 ms and
the difference between the intravascular and extravascular
phase accumulation (Δφ) was computed. SvO2 was calcu-
lated from equation 2 [24]. Hematocrit of 0.45 was as-
sumed for the healthy subjects, and in the PAD patients
hematocrit was measured by blood draw. Washout time
(time at which minimum SvO2 occurs), upslope, repre-
senting the rate of venous resaturation (maximum slope
during recovery), and overshoot (peak SvO2 – baseline
SvO2) were recorded (Figure 2b).
T2*: T2* analysis was performed on keyhole-only data

since high spatial resolution is not as critical (acquired
matrix = reconstructed matrix = 96 × 24). T2* was calcu-
lated by fitting a monoexponential function to magnitude
SI from echoes TE2-TE5. Even though TE1 should have
highest SNR, TE1 was not included in the mono-
exponential fitting because large switching gradients just
prior to TE1 induced significant eddy current effects that
would potentially confound T2* quantification. For BOLD
analysis, average SI in an ROI prescribed in the soleus
muscle for each of the four echoes was fitted to a mono-
exponential function to determine T2* at each time-point.
T2* values were normalized to the baseline average and
relative T2*min, relative T2*max, and time to peak (TTPT2*)
were determined (Figure 2c).

Statistical analysis
The average and standard deviation of every time-point
across all subjects and both sessions was calculated for
PIVOT, PASL, and multi-echo GRE time-course data.
Pearson’s correlation coefficient was calculated to com-
pare the time-courses measured with PIVOT and the
standard methods.
For each key time-course-derived parameter, Wilcoxon

signed-rank tests were used to assess whether statisti-
cally significant differences exist between PIVOT and the
standard method. Specifically, PIVOT-derived perfusion
parameters were compared to results obtained with
PASL-only, and PIVOT-derived SvO2 or T2* parameters
were compared to results from the multi-echo GRE-only
scan. Wilcoxon signed-rank tests were also used to deter-
mine whether significant differences exist between key pa-
rameters measured with PIVOT and PIVOT Repeat.
Wilcoxon signed-rank tests were used in lieu of a standard
paired Student’s t-test as only five subjects were enrolled
in the evaluation study and thus it cannot be assumed that
the data are normally distributed. Statistical significance
was set at p < 0.05.
To assess both intra-session and inter-session repea-

tability, the average within-subject coefficient of vari-
ation (CV) was calculated. Specifically, to calculate
intra-session repeatability, for each parameter the
within-subject standard deviation across PIVOT and
PIVOT Repeat from Visit 1 was averaged across sub-
jects, then divided by the between-subject mean par-
ameter value from Visit 1. The same analysis was
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performed for intra-session repeatability on data ac-
quired during Visit 2. Similarly, to calculate inter-
session repeatability, the within-subject standard devi-
ation across all PIVOT scans from Visit 1 and Visit 2
(4 measurements per subject) was averaged across all
subjects and divided by the between-subject mean par-
ameter value from both visits.
In the PAD patients, all time-course parameters de-

scribed above were calculated, but no statistical ana-
lyses were performed since patients included in this
preliminary study have varying disease severity and the
ischemia-reperfusion paradigm was slightly different.
The purpose of including PAD patient data was for
proof of principle and to explore differences that exist
between patients and healthy subjects.
Figure 3 Example images from a representative young healthy subje
inferior (b), corresponding to the PASL and multi-echo GRE slice locations,
blue arrow points to the peroneal vein. Perfusion images represent baselin
baseline (e) and the washout time (f). Note the increased phase accrual in
The blue arrow identifies the peroneal vein that was used for dynamic SvO
times used to quantify T2* are shown in (g).
Results
PIVOT evaluation in young healthy subjects
Example images are shown for a representative subject
in Figure 3. High-resolution images corresponding to
the PASL (isocenter) and multi-echo GRE slices (3 cm
inferior) along with highlighted regions indicating the
muscle or vein of interest are included in panels (a) and
(b). Sample baseline and peak hyperemia perfusion maps
are shown in (c) and (d), respectively. These images
highlight the dramatic increase in perfusion that occurs
in response to induced ischemia. The green box in (b)
shows the full FOV of the multi-echo GRE. Because the
FOV of the multi-echo GRE was only 96 × 96 mm,
aliasing along the phase-encoding direction occurred in
several subjects. In this subject, the tibialis anterior
ct. High-resolution scout images located at isocenter (a) and 3 cm
respectively. The soleus is indicated in red (a) and green (b), and the
e (c) and peak hyperemic flow (d). Phase images are shown for
the three veins at washout time, corresponding to a decrease in SvO2.

2 analysis. Multi-echo GRE magnitude images for each of the echo



Figure 4 Average time-course data measured with PIVOT
and standard measurement methods. (a) Average perfusion
time-course across all young healthy subjects measured with PIVOT
(red) and PASL (black). Average SvO2 (b) and T2* (c) time-courses
measured with PIVOT (blue, green, respectively) and a multi-echo
GRE (black). Error bars indicate standard deviation. Grey box
indicates period of arterial occlusion.
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muscle has wrapped posteriorly, and part of the gastro-
cnemius muscle has wrapped anteriorly. This aliasing
did not affect the quantification of SvO2, and wrapped
regions were avoided when selecting the soleus ROI for
T2* measurement. Sample phase images used for SvO2

quantification at baseline and hyperemia (corresponding
to the minimum SvO2, which occurs at the washout
time) are shown in (e) and (f ). Keyhole reconstruction
was used for the phase images to achieve higher appar-
ent in-plane spatial resolution (1 × 1 mm), which is ne-
cessary in order to resolve the veins. However, since
spatial resolution is less critical for T2* only data ac-
quired every TR was used for analysis. Thus each image
in (g) has in-plane resolution of 1 × 4 mm.
Data for all healthy subjects were averaged to yield

an average perfusion, SvO2, or T2* time-course in
order to investigate the correlation of the results be-
tween PIVOT and PASL-only or multi-echo GRE-only
methods. For each parameter, average and standard de-
viation of the time-courses across all subjects is shown
in Figure 4. Following cessation of arterial occlusion,
the typical reactive hyperemia response is seen in each
of the measured parameters. The time-course mea-
sured with PIVOT is in good agreement with PASL-
only or multi-echo GRE-only-measured responses. The
correlation coefficient between PIVOT and PASL aver-
age perfusion time-course is 0.99, and between PIVOT
and multi-echo GRE average SvO2 and T2* time-
courses are 0.98 and 0.99, respectively.
Average (standard deviation) of key time-course pa-

rameters from PIVOT and the standard measurement
methods are shown in Table 1. The Wilcoxon signed-
rank tests did not detect statistically significant differ-
ences between PIVOT and PIVOT Repeat, or between
PIVOT and the standard measurement method for any
of the key time-course parameters (p > 0.05). Table 2
summarizes the intra-session and inter-session repeat-
ability measured with PIVOT.

PIVOT in PAD patients
Figure 5 shows the reactive hyperemia time-courses for
perfusion, SvO2, and T2* measured with PIVOT in a
single PAD patient and a representative young healthy
subject. A summary of key time-course parameters
measured in individual PAD patients is presented in
Table 3 along with average values for young healthy
subjects. The perfusion time-course data show that pa-
tients experienced a lower PHF, a delay in TTP, a
prolonged hyperemic duration, and a greater HFV. The
SvO2 response was also delayed and blunted; PAD pa-
tients exhibited a longer washout time, and reduced
upslope and overshoot. T2* data showed characteristic
changes expected in patients with reduced endothelial
function. PAD patients had higher T2*min, even though
the ischemic duration is 5 minutes instead of 3 minutes
as in the healthy subjects. Patients’ T2*max was lower
and TTPT2* was delayed. These results are in agree-
ment with previous findings measuring perfusion [17],
SvO2 [10,25], or T2* [26,44] individually in PAD
patients.



Table 1 Means and standard deviations (in parentheses) of key time-course metrics measured with PIVOT
and standard measurement methods in five young healthy subjects on two separate occasions

Visit 1 Visit 2

PIVOT PIVOT Repeat Standard Method PIVOT PIVOT Repeat Standard Method

Perfusion (Standard Method = PASL)

PHF (mL/min/100g) 34.8 (7.5) 34.5 (10.2) 37.9 (9.0) 39.2 (4.1) 38.3 (6.0) 37.6 (5.6)

TTP (s) 19.6 (3.6) 18.0 (3.5) 17.2 (2.3) 18.4 (5.7) 17.2 (4.1) 17.6 (5.2)

HFV (mL/100g) 17.0 (5.3) 14.0 (5.0) 16.2 (5.6) 16.7 (5.4) 14.4 (1.9) 16.1 (2.3)

Hyperemic duration (s) 53.6 (15.7) 46.8 (13.8) 53.6 (10.4) 48.8 (14.9) 44.8 (10.3) 49.6 (14.2)

SvO2 (Standard Method = multi-echo GRE)

Washout time (s) 11.6 (2.2) 10.0 (2.0) 10.4 (1.7) 12.4 (3.6) 11.2 (4.8) 10.0 (1.4)

Upslope (%HbO2/s) 0.83 (0.32) 1.08 (0.47) 1.21 (0.54) 1.14 (0.42) 0.91 (0.43) 1.13 (0.48)

Overshoot (%HbO2) 17.6 (7.5) 17.1 (6.1) 16.8 (7.1) 18.6 (6.5) 16.5 (7.6) 18.3 (5.0)

T2* (Standard Method = multi-echo GRE)

Baseline T2* (ms) 23.4 (1.4) 22.5 (1.5) 23.1 (2.0) 22.0 (1.9) 21.7 (1.6) 22.2 (2.0)

Relative T2*min 0.90 (0.04) 0.93 (0.03) 0.92 (0.01) 0.92 (0.03) 0.93 (0.04) 0.94 (0.02)

Relative T2*max 1.09 (0.03) 1.13 (0.04) 1.16 (0.05) 1.14 (0.05) 1.15 (0.05) 1.18 (0.05)

TTPT2* (s) 34.0 (11.6) 29.2 (3.6) 26.8 (5.2) 28.4 (3.6) 24.8 (5.0) 28.4 (4.8)

No statistically significant differences were detected in any measured parameter.
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Discussion
PIVOT repeatability
The repeatability assessment comparing perfusion, SvO2,
and T2* metrics derived from the two successive PIVOT
scans show some intra-session variability. This variability
could be physiologic in nature or could be due to noise
in the time-course data. Given the low average baseline
signal standard deviation (perfusion: 1.6 mL/min/100g;
Table 2 Summary of intra-session and inter-session
repeatability for all time-course-derived metrics is
presented as the within-subject coefficient of variation

Intra-session Intra-session Inter-session

Visit 1 Visit 2 Visit 1 vs. 2

Perfusion

PHF (mL/min/100g) 6.3% 5.0% 12.4%

TTP (s) 6.0% 11.1% 16.4%

HFV (mL/100g) 18.8% 23.4% 18.9%

Hyperemic duration (s) 15.2% 25.4% 19.9%

SvO2

Washout time (s) 15.7% 12.0 % 18.9%

Upslope (%HbO2/s) 26.2% 15.8% 37.3%

Overshoot (%HbO2) 15.3% 18.3% 6.5%

T2*

Baseline T2* (ms) 3.1% 1.3% 4.6%

Relative T2*min 2.4% 0.9% 1.8%

Relative T2*max 3.0% 1.1% 3.9%

TTPT2* (s) 17.9% 9.6% 19.9%
SvO2: 1.5 %HbO2; T2*: 0.5%) it is likely that intra-session
variations of key measured parameters are outweighed
by physiologic variability during separate ischemia-
reperfusion episodes. In all cases there were no signi-
ficant differences detected between time-course parame-
ters measured with PIVOT and PIVOT Repeat (p>0.05),
suggesting that there was no training effect due to mul-
tiple periods of ischemia. This finding justifies the com-
parison of within-session PIVOT to PASL-only or to
multi-echo GRE-only sequences, even though the data
were acquired separately.

PIVOT effect on perfusion quantification
In comparing perfusion metrics measured with PIVOT
to those measured with an otherwise identical PASL-
only sequence, it is evident that the two measurements
provide similar values of all perfusion time-course-de-
rived metrics. Specifically, there were no significant dif-
ferences between any of the key parameters measured
with PIVOT or with PASL. This suggests that the multi-
echo GRE interleave does not impact the quantification
of perfusion.
Perfusion time-course metrics had expected results for

longitudinal reproducibility. A CV of approximately 20%
has been reported in previous studies [15,49]. Perfusion
varies physiologically with time of day [50], hydration
level [51], and hormonal fluctuations [52] among other
factors [53]. Care was taken to schedule Visits 1 and 2 at
the same time, and all subjects were instructed to refrain
from caffeine intake and vigorous activity for 12 hours
prior. Yet even within a single scan there was variability



Figure 5 Time-courses measured with PIVOT for perfusion (a),
SvO2 (b), and T2* (c) in one representative young healthy
subjects and one PAD patient (PAD #5 in Table 2). Light colored
lines represent healthy subject, and dark colored lines represent PAD
patient. Grey box indicates period of arterial occlusion. PAD patient
exhibits a blunted and delayed hyperemic response for each of the
measured parameters compared to the young healthy subject.

Englund et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:70 Page 9 of 13
http://www.jcmr-online.com/content/15/1/70
in the hyperemic response from one ischemia-reperfusion
episode to another, suggesting that these physiologic
factors cannot be completely controlled. The time-course
data averaged over all experiments and all healthy subjects
showed good correlation in the shape and magnitude of
the reactive hyperemia response, reflected by the high
correlation coefficients. Thus not only were the key
time-course-derived metrics not significantly different,
but that the overall response was highly similar.
Peak hyperemic flow measured with either PIVOT or

PASL was somewhat lower than previously reported
values, where PHF was measured to be 50 ± 13 mL/min/
100 g using the same SATIR perfusion preparation, but
with a RARE readout [16]. PHF in the soleus in our study
was lower, reaching only 37.0 ± 6.1 mL/min/100 g. This
difference in perfusion could be attributed to the fact that
Raynaud et al. quantified whole-leg perfusion [16], while
individual muscle perfusion was calculated here. Addition-
ally, care was taken to exclude vessels from the ROI, as
their inclusion would increase measured perfusion. In
another study by Proctor and colleagues, perfusion was
measured in the calf of 64 men using strain gauge plethys-
mography [54], a technique considered to be a standard
for limb perfusion measurement. Peak perfusion in the
calf was found to be 35.1 ± 1.1 mL/min/100 g following a
period of 10 minutes of ischemia. This work and that by
Raynaud [16] and Proctor [54] report much lower PHF
than a similar study by Wu et al. using continuous arterial
spin labeling (CASL). In Wu’s study, PHF in the soleus
muscle was found to be 116 ± 57 mL/min/100 g [15],
however the temporal resolution in CASL was limited to
16 seconds. Using an EPI readout, the magnitude signal
over the course of an ischemia reperfusion paradigm var-
ies substantially due to the BOLD effect. If the time course
is not sampled with high enough temporal resolution, the
changing signal intensity due to the BOLD effect may con-
taminate the quantification of perfusion [55]. The higher
temporal resolution data acquired with SATIR can track
the changes in signal intensity better and thus may be less
susceptible to BOLD contamination, allowing more accur-
ate quantification of perfusion.
Time to peak perfusion agreed with Raynaud’s values

[16], however it was much shorter than the TTP
reported by Wu [15]. Again, this discrepancy between
our work and that of Wu et al. could be due to the bet-
ter temporal resolution of SATIR over CASL. The



Table 3 PIVOT results in individual PAD patients and for
the average of all young healthy subjects

Healthy PAD
#1

PAD
#2

PAD
#3

PAD
#4

PAD
#5

ABI N/A 0.41 0.52 0.68 0.72 0.74

Perfusion

PHF (mL/min/
100g)

37.0 (6.1) 26.9 22.0 31.3 29.9 37.3

TTP (s) 19.0 (4.5) 110 72 90 52 32

HFV (mL/100g) 16.9 (5.1) 48.2 26.5 78.7 37.7 33.8

Hyperemic
duration (s)

51.2 (14.6) 182 124 240 110 108

SvO2

Washout time (s) 12.2 (2.2) 48 50 22 36 22

Upslope (%HbO2/s) 1.0 (0.6) 0.24 0.18 0.45 0.69 0.45

Overshoot (%
HbO2)

18.1 (6.5) 16.4 17.9 13.2 16.7 12.9

T2*

Baseline T2* (ms) 22.6 (1.7) 22.2 22.4 21.6 20.4 20.0

Relative T2*min 0.91 (0.03) 0.93 0.94 0.92 0.95 0.94

Relative T2*max 1.11 (0.04) 1.04 1.04 1.11 1.04 1.12

TTPT2* (s) 32.8 (8.8) 120 60 94 56 68
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temporal resolution for PIVOT and SATIR was 2 sec-
onds, while that of the CASL sequence employed in
Wu’s work was 16 s. The improvement in temporal reso-
lution was in part due to the pulsed tagging scheme used
in SATIR, in which arterial tagging takes only 8 ms in-
stead of 2 seconds as in CASL.
Hyperemic flow volume quantified the total blood de-

livery during hyperemia, and along with the hyperemic
duration may provide more qualitative measures of
hyperemia. HFV in particular may be less sensitive to
time-course noise compared to PHF and TTP. PHF and
TTP are determined based on a single data-point,
whereas HFV is the total integrated area. The values we
reported for HFV and hyperemic duration were lower
and shorter than those reported by Wu, et al. [15],
which is not surprising since our measured PHF and
TTP are lower and shorter as well.
PIVOT effect on SvO2 quantification
High spatial resolution is necessary to measure the phase
in the vein; therefore the keyhole multi-echo GRE data
was supplemented with outer k-space data from a fully-
phase-encoded reference scan that was run at the end of
the dynamic acquisition. Langham et al. have previously
shown that keyhole reconstruction provides accurate
SvO2 results with high temporal resolution during react-
ive hyperemia in the femoral vein [56].
No significant differences were detected between time-
course metrics measured with PIVOT or with the multi-
echo GRE. While inter-session variability was present, it
was comparable to the intra-session variability measured
between PIVOT and PIVOT Repeat on the same visit.
Average washout time was slightly lower than previously
reported in the femoral vein of young healthy subjects
(17 ± 7 s), but upslope and overshoot were in agreement
with prior results [10]. The lower washout time could be
explained by the fact that the tourniquet system used in
this study deflated much more quickly than that used in
[10]. The resulting decrease in the resistance to arterial
flow could potentially shorten the washout time. An-
other potential reason that washout time differs is that
we investigated SvO2 in the peroneal vein, as opposed to
the more superior femoral vein. Thus not only does the
peroneal vein collect from a smaller volume of muscle,
but the distance between the capillary bed and peroneal
vein was also smaller. Overall, key parameters measured
with PIVOT agree with multi-echo GRE-derived data,
suggesting that inclusion of the PASL interleave does
not impact quantification of SvO2.

PIVOT effect on T2* quantification
In both PIVOT and multi-echo GRE T2* data, the signal
intensity in the ROI was first averaged then fit to a
mono-exponential function. The fitting of average signal
intensity was nearly perfect with an overall average R2

for all T2* fits of 0.999.
During the period of arterial occlusion, relative T2*

was found to decrease as the deoxyhemoglobin concen-
tration in the capillary bed increases. Following cuff
release, hyperemic arterial inflow replenishes blood in
the capillary bed, bringing oxygenated arterial blood in
and moving desaturated blood into the large draining
veins. Relative T2* increased during reactive hyperemia
due to the increase in perfusion and the decrease in
deoxyhemoglobin in the capillary bed. Even though per-
fusion and T2* were measured at separate slice locations,
they both represent changes that occur in the soleus
muscle. TTPT2* was longer than perfusion TTP, sug-
gesting that the increase in oxygen concentration at the
level of the capillary bed lasted longer than the increase
in microvascular flow. This finding is in agreement with
a prior study investigating the combined measurement
of perfusion and BOLD during reactive hyperemia [28].
Duteil et al. suggest that because the brief period of ar-
terial occlusion does not cause significant oxygen debt
in muscle (as shown by [57]), the muscle’s demand for
oxygen remains unchanged and thus the increase in per-
fusion results in a decrease of oxygen extraction, causing
the BOLD signal to increase [28]. The decrease in oxy-
gen extraction also physiologically manifests as the SvO2

overshoot.
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The measured values are consistent with previous litera-
ture reported values for baseline T2* [58], relative T2*min

[44], T2*max [26,59], and TTPT2* [26]. Comparisons be-
tween PIVOT and multi-echo GRE key time-course pa-
rameters yielded no significant differences, and the T2*
time-course data measured with PIVOT and multi-echo
GRE were highly correlated (Pearson’s r = 0.99). These re-
sults indicate that T2* quantification in a downstream slice
with PIVOT is not affected by the PASL interleave.

Considerations for applying PIVOT in PAD patient studies
Statistical comparisons between PAD patients and
young healthy subjects were not made because the is-
chemic duration differed in the two cohorts. As re-
peated periods of arterial occlusion were used to
compare PIVOT to standard measurement methods in
healthy subjects, a shortened ischemic duration was
used, allowing enough time for the four scans to be
performed during one hour of scanning. PAD patients
included in this preliminary evaluation had varying dis-
ease severity, represented by the diverse ABIs. A five-
minute period of arterial occlusion was employed in
PAD patients to ensure the maximal hyperemic sti-
mulus. The PAD patient data were, however, included
to explore the range of values that exist between states
of health and disease. In agreement with the results of
Wu et al., PAD patients exhibited a decrease in PHF
and an increase in TTP [17]. SvO2 data showed a
blunted and delayed response, in agreement with
Langham et al. [10,25]. T2* data showed the character-
istic alterations during the period of ischemia [44] and
reactive hyperemia [26].
Quantification of multiple parameters may improve

diagnosis and enhance power for detection of the re-
sponse to therapeutic intervention. The traditional
marker of disease severity in PAD is the ankle-brachial
index (ABI), which is the ratio of systolic blood pres-
sures measured at the level of the ankle and in the bra-
chial artery. The ABI primarily represents occlusions
and stenoses on the macrovascular level. Previous stud-
ies have shown that physiologic improvements such as
increased peak walking time do not correlate with clin-
ically significant changes in ABI [60,61]. PIVOT pro-
vides a measure of microvascular function, thus may be
more sensitive to early treatment effects. By measuring
many parameters, PIVOT will provide insight into the
relationship between impairments in perfusion, SvO2,
and T2*.
In this study we showed that no major measurement

bias in key time-course parameters was introduced by
using PIVOT instead of the standard individual meas-
urement methods. However, it should be noted that the
small sample size affects the power to detect such a bias.
Even though no measurement bias was detected, the
precision and thus statistical power of PIVOT-derived
measures was limited by physiologic variability, which
cannot be completely controlled. In order to use this
method to assess disease presence or monitor a treat-
ment effect, the study must be well designed, controlling
for factors that are known to affect perfusion and the
hyperemic response [50-53].
The preliminary PAD patient data showed that for

many of the key time-course parameters there was a
relatively wide range of values that exist between states
of health and disease. A recent study performed at 1.5T
showed relatively poor repeatability of BOLD measure-
ments with the exception of TTPT2* during reactive
hyperemia in both healthy subjects and PAD patients
[49]. In our study a lower inter-session CV, and hence
better repeatability, was found for several key T2* pa-
rameters in healthy subjects. The improvement in re-
peatability may be due to the higher field strength,
which confers increased signal to noise ratio and
greater BOLD signal contrast. A longitudinal study will
be necessary to determine the repeatability of PIVOT
measures in PAD patients. Additionally vascular re-
activity decreases with age [25], therefore it will be im-
portant to compare PIVOT results obtained for PAD
patients to age-matched healthy controls to assess the
impact of age on PIVOT-derived measures of micro-
vascular function.
Conclusions
In summary, we have introduced a quantitative MR
method that measures perfusion, SvO2, and T2* simul-
taneously, thereby allowing a comprehensive assessment
of the functional integrity of the peripheral microvascu-
lature during a single ischemia-reperfusion paradigm.
The added value of the proposed approach will require
rigorous evaluation in cohorts of patients with impaired
peripheral circulation in comparison to their healthy
peers. In the future PIVOT could possibly serve as a
means to monitor disease progression and effectiveness
of intervention.
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