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ABSTRACT
Malignant mesotheliomas are aggressive, asbestos-related cancers with poor 

patient prognosis, typically arising in the mesothelial surfaces of tissues in pleural and 
peritoneal cavity. The relative unspecific symptoms of mesotheliomas, misdiagnoses, 
and lack of precise targeted therapies call for a more critical assessment of this 
disease. In the present review, we categorize commonly identified genomic 
aberrations of mesotheliomas into their canonical pathways and discuss targeting 
these pathways in the context of tumor hypoxia, a hallmark of cancer known to render 
solid tumors more resistant to radiation and most chemo-therapy. We then explore 
the concept that the intrinsic hypoxic microenvironment of mesotheliomas can be 
Achilles’ heel for targeted, multimodal therapeutic intervention.  

Etiology and clinical manifestations of pleural 
mesotheliomas

Determining cancer etiology is an intricate process 
because evidence from genetics, cellular and molecular 
biology, as well as epidemiology and pathology must 
be integrated to gain a complete understanding of 
carcinogenicity [1]. Malignant mesotheliomas (derived 
from the Greek word mésos “middle” and oma “tumor”) 
are rare cancers that originate from deregulated cellular 
proliferation of the mesoderm tissue lining the chest 
cavity, heart, lungs, the abdominal cavity, and the intra-
abdominal organs [2, 3]. Scans made via computed 
tomography (CT), magnetic resonance image (MRI), 
or positron emission tomography (PET) are required to 
determine the location and extent of the disease [4]. More 
than 70% of the diagnosed cases are pleural, 20% are 
peritoneal, and less than 1% are pericardial or testicular  
types (as depicted in Figure 1A) [5-7]. 

The annual incidence of malignant mesothelioma in 
the United States alone is approximately 3,200 cases/year 
[8-11] and expected to rise worldwide [12]. The standard 
of care for all subtypes is chemotherapy such as cisplatin, 
pemetrexed, carboplatin, gemcitabine, or doxorubicin [13-
15]. In selected specialized centers, a multimodal approach 
is employed which includes radical cytoreductive surgery 
followed by radiation, chemotherapy, or targeted therapy. 
The sequences of treatments is guided by clinical tumor 
stage or patients’ responses and depend on institutional 
experience [16-19]. Pleural mesothelioma has poor 
prognosis and patients have a median survival of 4-12 
months post diagnosis when treated with chemotherapy 
[16]. In some cases, although debated, patients treated 
with multimodal neoadjuvant therapy followed by radical 
surgery and adjuvant/targeted therapy survive longer for 
approximately 24 months [20, 21]. Recently, a meta-
analysis showed that adjuvant radiotherapy does not 
improve survival [22]. 
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Pathogenesis and pathology of malignant 
mesotheliomas

Mesothelioma is often caused by asbestos exposure 
[23, 24]. However, in addition to the six fibers collectively 
called asbestos (the only mineral fibers used commercially 
in the 1970s), many other mineral fibers (e.g. erionite) 
that are naturally present in the environment can cause 
mesotheliomas [23, 25]. Persistent asbestos fiber pressure 
exerts a slow inflammatory, toxicity, and mutagenic 
response that can drive mesothelioma [26]. This occurs 
through altering characteristics attributed to promotion of 
cell proliferation, high mobility group box 1 (HMGB1) 
protein secretion [27, 28], sustained angiogenesis [29, 
30], and alterations in the expression of redox dependent 
enzymes (e.g. MnSODs, SODs, catalases and oxygenase) 
[31-33]. Apart from domestic, environmental, and 
occupational exposure to asbestos or other carcinogenic 
mineral fibers, mesotheliomas can also be caused by 
inherited BAP1 germline mutations [34]. Moreover 
carriers of germline BAP1 mutations are at increased risk 
of mesothelioma when exposed to asbestos, including 
low doses that usually are not sufficient to cause cancer 
[35, 36]. In addition, immune deficiency [37], chronic 
inflammation [38, 39], ionizing radiation [40, 41], and 
Simian virus 40 infection have been linked to development 
of mesothelioma [42-46]. Secondary mesothelioma 
malignancies may also develop after radiation therapy 
treatment of lymphomas [47, 48], breast [49], and 
testicular cancers [50].

To reliably diagnose and determine pathological 
subtypes of the disease, diagnostic surgery and biopsies of 
malignant tissues are needed so they can be subjected to 
further histological examination [51, 52]. Mesotheliomas 
are classica lly divided into three pathologic subtypes (i.e. 

epithelioid, sarcomatoid and biphasic) that are identified 
via histological and immunohistochemical examinations. 
These subtypes present distinct morphology and molecular 
properties (Figure 1B). Epithelioid tumors consist of 
rounded to cuboidal-shaped cells, account for 80 to 90% 
of cases [53, 54] and are associated with longer survival. 
Sarcomatoid forms comprise of 10-20% of diagnosed 
cases, have spindle shaped cells and give rise to bulky and 
aggressive tumors [2, 54]. Biphasic tumor subtypes are as 
rare as the sarcomatoid and contain a mix of epithelioid 
and sarcomatous tissue [2, 54, 55]. 

Genomic alterations of mesotheliomas amenable 
to targeted therapy

Although the number of genomic aberrations in 
mesothelioma is typically lower when compared to other 
cancers [56], genome-wide profiling reveals enormous 
complexity in the underlying biology of these tumors [22, 
57-65]. The lack of effective therapies and development 
of resistance is exacerbated by inter and intra-tumor 
genomic heterogeneities. Genomic aberrations include 
aneuploidies, point mutations, as well as numerous 
chromosomal rearrangements that result in deletions, 
amplification, inversions and translocations [65-67]. 
Pleural mesotheliomas show considerable genetic 
variability between morphologic subtypes or patients 
[58, 59, 68-70], suggesting that a single targeted therapy 
is unlikely to be beneficial for all patients. Figure 2 
lists commonly affected genes in pleural mesothelioma 
grouped by canonical pathways [58, 59, 68-70]. Such 
classification is useful to help identify altered cellular 
mechanisms amenable to therapeutic intervention. Some 
of the commonly identified mutated or deleted genes in 

Figure 1: Common sites of incidence and pathological subtypes of pleural mesothelioma. (A) Tissues affected by mesothelioma 
and incidence rates. (B) Hematoxylin and eosin staining of two mesothelioma pathologic subtypes (epithelioid and sarcomatoid). Biphasic 
phenotype is a mixture of epithelioid and sarcomatoid types. The arrows indicate disorganized neoplastic tumor areas.
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pleural mesotheliomas such as BAP1 [67], NF2 [71], 
LATS1,2 [63, 72-74], PBRM1 [67], TP53 [75-77], AURKA 
[78], CDKN2A [79], RB1 [80], BRCA2 [81], CCND1 
[82], SETD2 [83], SMARCC1 [67] or PCNA [84] are 
also found in other cancer types. Knowledge of these 
commonly aberrant genes from other cancer types should 
be employed in mesothelioma research to help advance 
precision targeted therapy. 

In addition to the cancer cell intrinsic mediators 
of tumor progression listed above, the tumor 
microenvironment is known to regulate a variety of genes 
associated with tumor progression, treatment resistance, 
and an aggressively metastatic tumor phenotype. The 
potential role of the tumor microenvironment and tumor 
hypoxia in driving mesothelioma progression has been 
under-studied despite evidence that mesotheliomas contain 
hypoxic tumor cells [85-87]. In this review, we discuss the 
potential influence of hypoxia on mesothelioma biology 
and argue that consideration of hypoxia in addition to 
secondarily affected genes and pathways may permit 
the design of more specific multi-modal drugs that are 
activated in hypoxic environments for selective killing 
of malignant cells [88], improving clinical outcome, and 
reducing morbidity due to mesothelioma. 

The hypoxic microenvironment of mesotheliomas: 
clinical and biological evidence

Normal tissues exist over a range of oxygen 
tensions, and low levels of oxygen (hypoxia) are required 
for a variety of normal processes including embryogenesis, 
wound healing, and stem cell renewal in the bone marrow. 
In solid tumors, hypoxia (defined as pO2 < 10 mmHg, 
equivalent to < 1.3% O2 in vitro) is created when oxygen 
demand by the proliferating tumor cells exceeds the supply 
of oxygen provided to the tumor through the bloodstream 
[63, 89] (see Figure 3A). Tumor hypoxia is a significant 
barrier to effective treatment since hypoxic tumor cells are 
known to be resistant to radiation and most chemotherapy, 
while also promoting the enrichment of tumor cells with 
stem-like properties [90, 91]. Hypoxia is also associated 
with tumor progression and metastasis through the 
activity of the heterodimeric transcription factors hypoxia-
inducible factor-1 (HIF-1) and HIF-2’s [92], α and β 
subunits. In normoxic conditions, hydroxylated HIF-1α is 
ubiquitinated by von-Hippel-Lindau E3 ubiquitin ligase 
and degraded by the proteasome. However, HIF prolyl-
hydroxylases (using oxygen as a co-substrate), inhibited 
under hypoxic conditions, cannot hydroxylate HIF-1α 

Figure 2: Compilation of common pleural mesothelioma genes and biological pathways: genetic aberrations in pleural 
mesothelioma and affected downstream signaling pathways, data source extraction from [58, 59, 68-70]. 
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at its proline residues and thus stabilize HIF-1α [93]. 
Consequently, HIF signaling cascade activation, due to 
changes in cellular oxygen concentration, mediates the 
expression of genes having HIF-responsive elements 
in their promoters [94]. These genes are implicated in 
switching and regulating massive pathways such as 
angiogenesis, metabolism, and survival [95]. Therefore, it 
is imperative to consider the co-selection of interconnected 
pathways and their associations with the development of 
aggressive malignancy.

Laparoscopy or pleuroscopy show that the 
healthy intraperitoneal or intrapleural cavities exhibit 
negative pressures lower than atmospheric pressure 
[91, 96]. Physiological negative pressure in one 
study is associated with less than 4% oxygen [97]. 
Furthermore, mesotheliomas are particularly hypoxic 
solid tumor masses [85, 92] as evidenced by binding of 
2-nitroimidazole or pimonidazole as exogenous hypoxia 
markers [98, 99] and elevated levels of HIF-1α [100, 101] 
as endogenous hypoxia marker. Imaging evidence from 
[F-18] fluoromisonidazole (FMISO) PET-CT scanning 
confirms hypoxia being integral to mesotheliomas [97]. 

Cancer cells derive their energy from aerobic 
glycolytic metabolism for cellular processes based 
on Warburg’s classical observations [102]. Hypoxia, 
however, triggers a metabolic reprograming of cancers 
[91] to increase glucose uptake and the flux from pyruvate 
to lactate. This phenomenon is clinically assessed in 
mesotheliomas through PET/CT imaging with 2-[19F]-
fluoro-2-deoxy-D-glucose (F-FDG) tracers [89]. In vivo, 
F-FDG uptake in pleural mesotheliomas shows high 
correlations with GLUT1, HIF1, VEGF, CD34, Ki67, and 
MTOR upregulation [93], and poor patient prognoses. 
Interestingly, HIF-1 activation increases glucose transport 
(via GLUT-1) as well as glutamine and L-type amino 
acid transport (via LAT1) in pleural mesotheliomas 
[91, 95]. Hypoxia facilitates this switch from oxidative 
phosphorylation to anaerobic glycolysis [103]. 

In Figure 3B, we summarize hypoxia-related 
changes in pathways inherent to solid tumors and 
commonly aberrant genes found in mesotheliomas. 
Understanding how mesotheliomas respond to hypoxia 
and whether selective hypoxia-responsive prodrugs 
delivered to such tissues are more therapeutically effective 
remain largely under-investigated and unsolved questions 
in the mesothelioma field.

Hypoxia-targeting drugs and strategies for 
malignant mesotheliomas

Hypoxia as a unique feature of solid tumor biology 
provokes a need for clinically applicable gene expression 
signatures and poses a great opportunity for selective 
antitumor therapies [23, 34]. Apart from the promising 
direct targeting of HIF-1α in tumors, other potential 

avenues for therapeutic exploration are prodrugs and 
enzymes for treatment of cells or tumors under hypoxia. 
These are listed in table 1, adapted from [1, 104-106]. 

Therapeutically, hypoxia is exploited in cancer 
treatment by bioreductive prodrugs such as AQ4N, 
PR-104, TH-302 or hypoxia-responsive polymeric 
nanoparticles (containing chemotherapy) [104-107]. 
These can be likened to ‘Trojan horses’, i.e. normally 
inactive drug derivatives that undergo bioactivation via 
enzymatic or chemical transformations [85, 88, 107] 
under hypoxic conditions. Other strategies explored to 
date are hypoxia-responsive polymeric nanoparticles, 
magnetic nanoparticles, small molecule inhibitors, 
or hypoxia-triggered prodrug micelles that carry and 
selectively release therapeutic agents in the hypoxic 
microenvironment of the tumors. Several surrogate 
markers for recognizing tumor hypoxia are hypoxia-
related endogenous proteins (GLUT-1 and CA-IX due to 
presence of HIF-responsive elements in promoters) as well 
as exogenous bioreductive hypoxia drugs (Tirapazamine, 
PR-104, TH-302) [108-110]. 

Along with well-known GLUT-1 regulation, 
carbonic anhydrases (CA), large family of zinc 
metalloproteases, are strongly upregulated by HIF-1 
and are required for maintenance of pH, proliferation, 
and metastasis [111, 112]. CA-IX is a membrane 
associated isoform showing extensive diversity in tissue 
distributions and in subcellular localizations [71]. It 
is an established endogenous marker of hypoxia, and 
particularly overexpressed in VHL mutated clear cell 
renal cell carcinomas [113, 114], mesotheliomas [115, 
116], kidney [15], as well as other hypoxic solid tumors 
[113]. CA-IX expression is correlated with poor patient 
prognosis, metastasis, and therapy resistance [5, 71, 
117]. This is particularly interesting as more than 90% 
of mesotheliomas are positive for CA-IX [95, 115, 118] 
and so one would expect its inhibition would limit pH-
driven growth and metastasis. Monoclonal antibodies 
and small molecule inhibitors specific to CA-IX are 
being investigated for potential targeted therapeutics 
in the pre-clinical studies. Regardless, the sequence of 
administration in combination with other chemotherapies 
in mesotheliomas warrants careful investigation. Further, 
the modest improvements in disease-free survival 
following hypoxia-targeted therapies in over 30 clinical 
trials [119, 120] demonstrates the need for considering 
tumor heterogeneity, hypoxia assessment, and patient 
stratification prior to therapy.

Hypoxia-induced angiogenesis and mesothelioma 
pathogenesis

The vasculature delivers oxygen and nutrients to 
all cells within the body. Hypoxic regions trigger HIF-
related pathways that are key regulators of sprouting 
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angiogenesis via modulating vascular endothelial growth 
factor (VEGF) [121]. VEGF-induced pro-survival 
pathways in solid tumors is a pivotal and early event 
in the development of metastatic malignancies [122]. 
Strikingly, VEGF along with multiple RTKs essential 
for VEGF-mediated angiogenesis, including epidermal 
growth factor receptor (EGFR), MET, and AXL, are 
activated in pleural mesothelioma cell lines and tumors 
[123-126]. Although clinical trial results for EGFR 
inhibitors in mesothelioma have not been released, 
concurrent inhibition of various activated RTKs with pro-
apoptotic and anti-proliferative effects in mesothelioma 
cell lines have paved the way to such trials [127]. It is 
noteworthy that hypoxia induces the activity of tyrosine 
kinase inhibitors [128]. This selective activation under 
hypoxia would beis therefore an interesting avenue to 
explore [129] compared to conventional cytotoxic drugs 
that affect all cells. There are numerous studies using 
antiangiogenic agents Bevacizumab and Sunitinib (VEGF 
inhibitors), and Sorafenib (tyrosine kinase inhibitor) for 
cancer therapy with beneficial results for patients with 
other tumor types [101, 130]. A randomized phase II trial 
has not significantly improved progression-free survival 
in pleural mesothelioma patients [131], arguably for the 
same reason that patients aren’t stratified based on tumor 
hypoxia assessments [132]. Anti-VEGF inhibitors do elicit 
response in primary tumors but evasive resistance develops 
and results in aggressive regression in glioblastomas 
[99, 133]. Antiangiogenic effects of agents such as 
Bevacizumab in combination with hypoxia-activated 
prodrugs or HIF-1 inhibitors and standard chemotherapies, 
however, have served as attractive strategies to target the 
hypoxic tumor microenvironment in triple negative breast 
cancer and gliomas [115, 134, 135]. VEGF inhibitor 

(NCT00651456) in addition to chemotherapy in pleural 
mesothelioma patients is currently in phase III clinical 
trials with longer survival success [J Clin Oncol 33, 2015 
(abstract 7500)]. A consideration of sequential multi-
modal regimens of therapy is arguably the reason behind 
lack of improvements in patient survival rate. A sequential 
multi-modal regimen of chemotherapy, VEGF and HIF 
inhibitors in addition to other secondary hypoxia-activated 
pathways would require thorough preclinical and clinical 
investigations.

Hypoxia-induced proliferation inMesotheliomas

PI3K/AKT/MTOR is an oxygen and energy-sensing 
pathway essential for regulation of cell cycle progression 
and cell proliferation [136], and closely associated with 
hypoxic signaling (e.g. mediating HIF-1 regulation) 
[137, 138]. Epithelioid-type pleural mesothelioma cells 
show activation of PI3K/AKT/MTOR signaling [139-
141]. PI3K/AKT/MTOR signaling is partly dependent 
upon coordinated activation of multiple receptor tyrosine 
kinases (RTKs), such as EGFR, MET or AXL [127, 140]. 
Interestingly, signaling through these RTKs has also been 
found to be altered in 8 out of 9 pleural mesothelioma cell 
lines and 6 of 12 mesothelioma biopsies [136]. There are 
currently phase I, II, and III clinical trials evaluating AXL 
inhibitor (BGB324) in colon cancer [142], MET inhibitor 
(INC280) in papillary renal cell cancer, and EGFR 
inhibitor (NCT02206763) in non-small cell lung cancer 
and so re-purposing the successful ones for mesothelioma 
therapy will be essential. Further, although a direct link 
between PI3K/AKT/MTOR and hypoxia has not been 
established in mesothelioma, an integrated multi-modal 

Figure 3: Tumor hypoxia, therapy resistance, and alterations in downstream pathways. (A) Tumor hypoxia model of pleural 
mesothelioma: hypoxia arising in solid tumor tissue regions most distant from the vasculature. (B) Hypoxic cancer cells switch on target 
genes involved in cell proliferation, DNA damage, metabolism, proteolysis, and angiogenesis pathways leading to cancer cell survival and 
metastasis. Indicated genes in each pathway are specific to mesotheliomas but also found in other cancers.
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approach to target pathways affecting cell proliferation 
and survival under hypoxia remain to be investigated 
(Table 2). 

A tumor suppressor gene most commonly deleted 
or mutated in mesotheliomas (~60% of cases) is BRCA1 
associated protein-1 (BAP1), a C-terminal family of 
deubiquitinating enzymes (DUBs) linked to DNA 
damage repair regulation [36, 63, 67, 83, 143-145]. 
BAP1’s function has been implicated in various other 
cancer types such as uveal melanoma [113], clear cell 
renal cell carcinoma [114], and cutaneous melanocytic 
tumors [113, 116]. Although BAP1’s crystal structure has 
been solved [92], a therapeutic drug for patients carrying 
mutations of BAP1 has not been developed. Moreover, 
cell cycle related genes often found mutated in pleural 
mesothelioma and regulated by hypoxic stress [132, 
135] are cyclin-dependent kinases (such as ~15-45% 
incidence in deletions of CDKN1,2A) [22, 83, 146, 147]. 
Using drugs that target these genes in combination with 
hypoxia-specific cytotoxins warrants pre- and clinical 
investigations. Of note are CDK4 inhibitor (palbociclib) 
trials for non-mesothelioma cancer patients under way 
that could be repurposed for mesotheliomas. Interestingly, 
BAP1 inactivation is associated with carbonic anhydrase 9 
(CA-IX) expression [15]. 

Additionally, two important genes consistently 
found mutated or inactivated in pleural mesotheliomas 
are neurofibromin or merlin (NF2, with ~ 45% incidence 
of aberration), a negative regulator of E3 ubiquitin ligase, 
and the Large Tumor Suppressor kinase 1/2 (LATS1/2, 
with ~ 30% incidence of aberration), two components of 
the Hippo pathway [22, 83, 148]. Both NF2 and LATS2 
can be regulated by hypoxia [149] but this particular link 
has not been studied in mesothelioma. The co-targeting of 
both LATS2 and NF2 delivered into the hypoxic tumors 
may prove more potent and call for thorough clinical 
investigations (table 2). 

Hypoxia-induced DNA damage repair in 
mesotheliomas

Typically, as an adaptive response to hypoxia, 
tumors increase genetic instability by down regulating 
DNA repair genes such as MLH1, MSH2, RAD50-2 
and activating ATM and ATR DNA damage checkpoint 
pathways [121, 150, 151]. The homologous and non-
homologous recombination as well as mismatch are 
inhibited under hypoxia, increasing unrepaired replication 
errors and double stranded breaks [117]. More specifically, 
cells under hypoxia and/or reoxygenation are most 
sensitive to loss or inhibition of CHEK1, ATM, and ATR 
[152]. In pleural mesotheliomas, tumor suppressor genes 
MSH6 (heterodimer partner of MSH2) and RAD50 are 
highly overexpressed, especially post-chemotherapy 
[30]. Further, CHEK1, required for checkpoint mediated 
cell cycle arrest in response to DNA damage, is 
overexpressed [30] in pleural mesotheliomas. A CHEK1 
inhibitor, LY2606369, is currently used in clinical trials 
for breast cancer patients with BRCA1/2 mutations and 
could be re-purposed for treating pleural mesothelioma 
malignancy. Other DNA damage repair genes deregulated 
in mesotheliomas include Fanconi anemia group D2 
(FANCD2), RAD21 and RAN [153]. Thus, co-targeting 
DNA damage genes in addition to chemotherapy may 
improve patient survival.

RAD52, another key gene involved in homologous 
recombination repair, is important for chemotherapy 
resistance and can be translationally repressed by miR-210 
[150], a microRNA regulated by hypoxia. Additionally, 
there are many microRNAs identified to date to be 
associated with poor survival in mesotheliomas (miR-
210, mir-126, miR-125a-5p, miR-484, miR-320, and let-
7a, miR-29c, miR-16, miR-31, miR-34 [154-156], miR-
141, miR-200a, miR-200b, miR-200c, miR-203, miR-205, 
and miR-429 [157], and miR-193, miR-200, and miR-192 
[158, 159] with diagnostic confidence). Remarkably, 

Table 1: Bioreductive prodrugs or polymeric nanoparticles targeting tumor hypoxia 
Hypoxia-activated cytotoxins Examples

Nitro- cyclic compounds PR-104, TH-302
Aromatic N-oxidases TPZ, SR4233
Aliphatic N-oxidases AQ4N

Quinones Porfiromycin, RH1, EO9
Metal complexes Cobalt/nitrogen/copper complexes

Polymeric nanoparticles HR-NPs

Hypoxia Inhibition Examples
HIF1 inhibitors Topotecan, YC-1, PX-478
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hypoxic cells also show lower expression levels of miR-
141 [86]. The therapeutic potential of using microRNA 
mimics [160, 161] in conjunction with hypoxia-
responsive polymeric nanoparticles in vivo demands closer 
investigations and gives countless potentially druggable 
targets for the development of innovative cures. 

Hypoxia-induced proteolysis in mesotheliomas

Under cellular stress conditions (e.g. low nutrient 
or oxygen levels), alteration/induction of proteasome and 
autophagic lysosome degradation pathways occurs as an 
adaptive response to mitigate the new cellular energy 
demands [162, 163]. Specifically, severe hypoxia increases 
unfolded protein response (UPR), causes accumulation 
of unfolded proteins in the endoplasmic reticulum 
(ER), and leads to more stress [88, 164]. Further, UPR 
can subsequently activate autophagy to alleviate stress 
via inducing apoptosis, increasing cell survival and 
proliferation [165]. Interestingly, the ubiquitin-proteasome 
pathway is differentially regulated in epithelioid versus 
biphasic pleural mesotheliomas [166]. Epithelioid pleural 
tumors have lower levels of ubiquitin specific proteases 
and higher levels of ubiquitin-activating enzyme E1, 
which associates with long term survival [167]. Short-
term survivors have higher proteasome subunits [168]. 
Higher levels of Cullin 4A, an ubiquitin ligase E3, are 
reported in pleural mesotheliomas [169]. The selective 
ER stress-inducing agents and UPR inhibitors can 
be particularly promising in mesothelioma targeted 
therapy. For instance, inhibiting the UPR (with MG132 
and PSI) results in apoptosis and inhibition of invasion 
in malignant pleural mesothelioma cells [170, 171]. 
Proteasome inhibitor, Bortezomib is currently in phase II 
clinical trials in combination with chemotherapy showing 

improved patient outcome for pleural mesothelioma [172]. 
Intriguingly, the link between hypoxia and proteolysis has 
not been thoroughly investigated in mesotheliomas. 

CONCLUDING REMARKS 

Some of the outstanding questions in the field of 
malignant mesothelioma biology include deciphering 
which molecular events are involved in the genesis of 
mesotheliomas and would this inter and intra-heterogeneity 
among tumors change from onset to progression? 
Understanding the genomic landscape of mesotheliomas 
and integrating that knowledge for designing optimal 
and tailored therapeutic strategies is critical for 
improved patient outcome. Another important aspect is 
to understand whether and how the microenvironment 
of malignant mesotheliomas contributes to changes in 
oxygen permeability, nutrition and pH of tumors [173] 
and whether sustained HIF induction is necessary for 
continued growth and survival of these tumors.

Hypoxic cells within the tumor mass are distant 
from blood vessels, resistant to most anticancer drugs, and 
present a major obstacle to delivery of targeted therapies. 
In this review, we suggest that the hypoxic environment 
of solid tumor mesotheliomas can be used as the Achilles’ 
heel for targeted drug delivery. We ask whether new 
therapies for pleural mesothelioma, such as those being 
used in clinical trials worldwide (Table 2), prove more 
effective if tumor-hypoxia is carefully assessed and 
therapies are administered in combination with hypoxia-
based therapies.

How we address the challenge of individualized 
and direct assessment of oxygen pressure within 
mesotheliomas, correlate that measurement to tumor 
function, and incorporate it as part of a standard of care 
remain outstanding areas for investigations.

Table 2: Clinical Trials in Pleural Mesothelioma
Clinical Trial ID Phase Agent Tested Mechanisms of Action

NCT01675765 I CRS-207 Immunotherapy Against Tumor Associated Antigen Mesothelin
NCT01870609 II VS-6063 Tumor NF2 Antagonist
NCT02071862 I CB-839 Glutaminase Inhibitor
NCT00685204 II TL139 Taxane
NCT02372227 I VS-6063 Dual PI3K/mTOR Inhibitor
NCT01655225 I LY3023414 Inhibit CYP3A4-mediated Metabolism
NCT01997190 I AdV-tk Adenovirus-mediated Herpes Simplex Virus Against Thymidine Kinase
NCT00996567 II Cetuximab Antibody Against EGFR
NCT01938443 I GSK2256098 FAK Inhibitor
NCT01358084 II NGR-hTNF Vascular Targeting Agent 
NCT01211275 II Axitinib VEGF Angiogenesis Inhibitor
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