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Abstract

Cooperation is crucial to overcome some of the most pressing social challenges of our

times, such as the spreading of infectious diseases, corruption and environmental conserva-

tion. Yet, how cooperation emerges and persists is still a puzzle for social scientists. Since

human cooperation is individually costly, cooperative attitudes should have been eliminated

by natural selection in favour of selfishness. Yet, cooperation is common in human societies,

so there must be some features which make it evolutionarily advantageous. Using a cogni-

tive inspired model of human cooperation, recent work Realpe-Gómez (2018) has reported

signatures of criticality in human cooperative groups. Theoretical evidence suggests that

being poised at a critical point provides evolutionary advantages to groups by enhancing

responsiveness of these systems to external attacks. After showing that signatures of criti-

cality can be detected in human cooperative groups composed by Moody Conditional Coop-

erators, in this work we show that being poised close to a turning point enhances the fitness

and make individuals more resistant to invasions by free riders.

1 Introduction

Cooperation is a backbone of our existence as an extraordinary social species. It enables the

joint pursuit of political objectives and the more prosaic foundations of everyday life [1, 2],

especially in group interactions [3, 4]. Yet how human cooperation is achieved and persists is

still a significant puzzle in science [5–9]. Since human cooperation is individually costly, on

first assessment, cooperative attitudes should have been eliminated by natural selection in

favour of selfishness. Yet, cooperation is common in human societies, so it must have features

which make it evolutionarily advantageous.

A recent work [10], whose main results are summarized in the Appendix of this paper, has

reported that groups composed of humans facing a social dilemma are posed near a critical

regime: traditionally, the concept of criticality arises in statistical mechanics in the study of

phase transitions, and identifies an equilibrium configuration of a system poised at the
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boundary between a disordered and an ordered phase (as for instance liquid and solid, ferro-

magnetic and paramagnetic, and so on) [11–14]. Evidence of critical behaviour has been

detected also in animal societies, such as flock of birds [15], ant groups [16], or communities

of macaques [17], but to our knowledge [10] is the first to attest signatures of criticality in

human cooperative systems too. Theoretical evidence suggests that being poised at a critical

point provides functional advantages to a social system [11], which when is far from criticality

is either not responsive enough, favouring maladaptive behaviours, or too uncoordinated with

its members behaving independently of each other. In both extremes the system as a whole is

not very responsive to external changes, while around a critical point it is strongly correlated

and highly sensitive to these changes. In particular, reference [11] connects theoretically social

and biological systems with criticality, showing that the latter is the evolutionary stable out-

come of a group of individuals who continuously tune and adjust their behaviour to the behav-

iour of others in their attempt to cope with complex and heterogeneous environments.

The aim of this paper is to test the effects of being poised close to a turning point on the fit-

ness of the group and its ability to resist to external attacks. In particular, we focus here on a

laboratory experiment described in [18], different from the one investigated in [10], and show

that when playing a Prisoner’s Dilemma Game, groups composed by Moody Conditional

Cooperators (MCCs), a behavioural strategy according to which players choose whether to

cooperate or not on the basis of their previous action and the actions of their neighbors, poise

close to a turning point. We then prove that MCCs have their fitness enhanced and are more

resistant to invasions by free riders when poised close to this point. With respect to [10], in

this work we not only investigate whether signatures of criticality can be detected in human

groups, but we also test its effect on human cooperative behaviour (and it differs from [16]

where the effect of criticality is studied in groups of ants). Finally, we also show that, despite

such turning point can not be considered critical in proper terms, it is endowed with features

in many ways similar to the ones associated with criticality. To this aim, we conceived a game-

theoretical model with a double time-scale dynamics: first, a short-time scale dynamics based

on decision-making rules at the level of single games repeated a finite number of rounds, cor-

responding to that of the experiment we analyze [18] and able to reproduce its results. Sec-

ondly, a long-time scale evolutionary dynamics, which allows the advantages of being close to

a transition emerge.

The rest of this paper is organized as follows. Section 2 provides a description of the labora-

tory experiment we study [18] and introduces the short- and long-time dynamics we analyze.

Section 3 presents the results of numerical simulations showing that groups of MCC agents

playing Prisoner’s Dilemma Game (PDG) poise through evolution near a turning point, where

they are more resistant to invasion by free riders. The last section summarises our main con-

clusions. In the the Appendix we provide further technical details.

2 Model definitions

2.1 Structure of the Prisoner’s Dilemma Game studied

Our model follows accurately the experimental set-up by [18], where human subjects strategi-

cally interact repeatedly with their Kmax neighbours on a two-dimensional lattice (while in [19]

analysed in [10] the players are posed on a scale-free network). Similarly to [19], agents inter-

act pairwise among themselves according to the so-called Weak Prisoner’s Dilemma Game

(wPDG), whose payoff matrix is given in Table 1 below. While in the classical PDG, coopera-

tion is always costly with respect to defection, in the wPDG a cooperator and a defector receive

the same payoff against a defector. In this game, defection is not a risk dominant option,

which enhances the possibility that cooperation emerges [20, 21]. Nevertheless, defection
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results in a better payoff than cooperation when the opponent cooperates, thus making this

setting relevant to study the emergence of cooperation.

At each round, every subject plays a PDG with her neighbours in the network and is

rewarded with the overall payoff obtained in her interactions with each of her neighbours. The

gained payoff is defined as the player’s fitness, and depends on both her action and those of

her neighbours’, calculated on the basis of the matrix given in Table 1. Here, as in [18], the net-

work is a square lattice with a Moore neighbourhood, i.e. K = 8 (for further details, see [18]).

2.2 Types of players and results of the laboratory experiment

Here we summarize the main results of the laboratory experiment reported in [18] that we

analyze: (i) the cooperation level starts from a given point (30% in the first realization and 60%

in the second one), and progressively decreases until reaching a seemingly steady state of

about 20%; (ii) changing the structure of the network does not significantly affect cooperation

as long as the number of neighbours is kept fixed; (iii) players do not take into account the

earnings of their neighbours when deciding to cooperate during the game; (iv) three types of

players can be identified according to their strategy: “absolute cooperators” (< 5%), i.e., play-

ers that always cooperate, free riders or “absolute defectors” (’ 30%), players that always

defect, and Moody Conditional Cooperators (MCCs) [18, 22]. The rule of behaviour of MCC

players is the following:

After defection: If the agent has defected in the previous round, in the next one she will coop-

erate with probability

PD!C ¼ q; ð1Þ

After cooperation: If the agent has previously cooperated, in the next round she will cooperate

with probability

PC!C ¼ minð1; pK þ rÞ; ð2Þ

where K is the number of nearest neighbours who have cooperated, and p, q and r two

model parameters. The min function guarantees that PC!C� 1.

We highlight the role of the parameter p, which is the more meaningful. Indeed, it is the

multiplying factor of K, that is, it tunes the driving force of the cooperating neighbours: for

p! 0+ the cooperating neighbours do not influence the agent’s behaviour at all, whilst in the

limit p! 1− such influence is the biggest possible.

Based on these experimental observations, in our simulations we consider three type of

agents: absolute cooperators, absolute defectors, and MCCs. Following Eqs (1) and (2), the

MCC rule is completely specified by the values of three non-negative parameters, p, q, r. The

empirical values reported in the experiment that interests us fluctuate due to the diverse

Table 1. Payoff matrix for a generic 2 × 2 game. In the experiments [18, 19] studied here, the values of the payoffs are

meant in units of Euro cents; this is called a weak PDG (wPDG) because the payoff is always zero when the opponent

defects, so agents are not directly punished for cooperating when their peers defect.

C D

C (7,7) (0,10)

D (10,0) (0,0)

https://doi.org/10.1371/journal.pone.0246278.t001
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conditions, but are in the ranges:

p � 0:08� 0:09; q � 0:15� 0:22; r � 0:35� 0:38 ;

(see data of ‘exp. 2’ in Table 1 of [18]). Therefore, for simplicity we assume for such parameters

the following values:

p ’ 0:085; q ’ 0:2; r ’ 0:4: ð3Þ

2.3 Simulations

Starting from the empirical results obtained in [18, 19, 23–25], in this work we consider popu-

lations made up of the three types of agents introduced above (absolute cooperators, absolute

defectors and MCCs), which play a weak PDG (see Sec. 2.1 and Table 1) on a square lattice

with coordination number Kmax = 8. Absolute cooperators and defectors always cooperate or

defect, respectively, whilst MCCs at each round decide how to act according to probabilities

which depend on their own and their neighbours’ previous actions.

Such populations follow two types of dynamics at two different time scales. First, agents

play for a given number of rounds (in our simulations we set 100 rounds) behaving according

to their type, that is, adapting their actions but keeping their strategy fixed during the entire

game. In particular, the behaviour of an agent is not affected by her neighbours’ payoffs, con-

sistent with recent experimental findings [18, 19, 22, 25]. Second, at an evolutionary time

scale, agents with the most successful strategy, or fitness produce more offspring, allowing the

best strategies to propagate over time. Here we refer to fitness as the average payoff accumu-

lated by a player after a given number of rounds T, according to the payoff matrix given in

Table 1. Consistent with standard evolutionary dynamics, the update of the strategies does

take into account the (average) payoffs obtained by other agents [26].

We set this double-scale dynamics in order to make the population evolve and test the

behaviour of each type of agent according to their interactions with others. More precisely, the

dynamics at long scales is useful to make the best strategies naturally survive at the expense of

the worse ones. This will allow us to get an evolutionary rationale of the behaviours observed

in the lab. In what follows we discuss in more detail how we implement these two dynamics.

2.3.1 Non-evolutionary adaptive dynamics within a game. During the game players

may change their actions (cooperate/defect), but they keep their strategy fixed. That is, after

fixing the MCC parameters p, q and r, at each round agents play simultaneously with their

neighbours, deciding whether to cooperate or defect according to the rules given in Subsec.

2.2.

To explore how the agents’ collective behaviour depends on the parameters of the model,

we first study a population composed only of MCC agents. In order to single out the transition

more effectively, we keep the parameters q and r fixed and close to the experimental values,

q = 0.2 and r = 0.4 [18], and study the cooperation level reached at the steady state of the

dynamics as a function of the parameter p. Afterwards, we carry out the simulations with more

realistic conditions, using the proportions of MCC players, absolute cooperators, and absolute

defectors observed in the laboratory experiment.

To have reliable statistics, we consider a system of N = 32 × 32 = 1024 agents and average

over two thousand independent realizations. Each realization starts from completely random

initial conditions and is run until a steady state is reached. In contrast, the laboratory experi-

ment [18] considers two independent sessions (plus a control) of Nr = 13 × 13 = 169 subjects

and 50�60 rounds, which may not be enough to reach completely a steady state (assuming
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that the real system can reach one). All the other settings, i.e., the network structure, the payoff

matrix and the rules of the game coincide with those of the laboratory experiment (see Sec. 2).

2.3.2 Evolutionary dynamics of strategies over many games. Here, we describe the evo-

lutionary dynamics used in our simulations. The dynamic rules we employ do not necessarily

faithfully represent human actual evolutionary dynamics. Our aim is not to explain how the

Homo sapiens has evolved up to the behaviour observed in the experiments under study, but to

provide some theoretical insights on why in these experiments it is convenient for the individ-

uals to stay as close as possible to a turning point. Nevertheless, (see Sec. 3.1), some of the main

features we observe with the simple dynamics we used should also be observed in more realis-

tic dynamics.

The evolutionary algorithm we study is the following:

Interaction stage: Agents play a game repeatedly during a number of T rounds; here we select

T = 100.

Update stage: At the end of the interaction stage, each agent selects a neighbour at random

and checks her payoff accumulated during the previous interaction stage. If her neighbour’s

accumulated payoff is strictly larger than her own, the agent imitates her neighbour’s cur-

rent action (i.e., cooperation or defection) and strategy (i.e., absolute cooperator, absolute

defector, or MCC player).

New generation: After the update stage, the agents reset their fitness and start a new interac-

tion stage.

The rule described in the update stage is similar to that of replicator dynamics [27]. We also

used replicator dynamics but it was too slow and the system did not reach the steady state in a

reasonable time. This rule takes into account the neighbours’ payoffs, which is apparently

against the experimental observations reported in [18, 25]. Yet, this evolutionary dynamic

operates over many generations, i.e., over many games played, while the experimental findings

mentioned apply at the scale of a single game, i.e., played over a fixed number of rounds.

Indeed, we let the agents accumulate their payoff during the interaction stage so that when

they have to update them, the best strategy have indisputably emerged.

3 Results

In this section, we first present a theoretical analysis of the MCC strategy. Later, we present the

results of the non-evolutionary simulations. Finally, we summarize the outcomes of the evolu-

tionary simulations.

3.1 General analysis of the Moody Conditional Cooperation strategy

3.1.1 Theoretical analysis. To better understand the results below, we include a general

analysis of Eqs (1) and (2). As this analysis is independent of the dynamics used, we expect that

some of the main features we observe in the simulations can be common to other more realis-

tic dynamics as well.

Since p, r> 0, the maximum valuePmax
C!C of the left hand side of Eq (2) is obtained when

K = Kmax = 8. For a fixed value of r, the parameter p can be classified in three regimes as

follows:

1. p <
1 � r
Kmax

so that Pmax
C!C < 1, i.e., an agent has a finite probability to defect even when all her

neighbours cooperated: this may decrease the global fitness of the system (that is, the sum

of the payoffs earned by all the players), as it is likely to foster defection by other agents.
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2. p �
1 � r

Kmax � 1
, i.e., an agent cooperates with 100% probability even if at the previous round

one neighbour (or more, if p is large enough) had defected; this may render the subject vul-

nerable to cheating.

3.
1 � r
Kmax

� p <
1 � r

Kmax � 1
, i.e., an agent cooperates with 100% probability if all her neighbours

has cooperated, and defects with a finite probability if at least one neighbour have defected.

In this case, an agent can in principle punish free riders by applying a sort of soft tit-for-tat.

When Kmax = 8, the condition in item 3 above becomes 0.075 ≲ p≲ 0.086, which largely

constrains the value of p. We can see that the experimental value for p (see Eq (3)) is consistent

with this constraint. It results that, in the laboratory experiment [18], the parameters charac-

terizing the MCC agents are such that pKmax + r’ 1, so Pmax
C!C ’ 1. Setting p� = (1 − r)/Kmax,

this indicates that when trying to be as cooperative as possible, but in a way that allows them

not to be exploited by defectors (that is, for p! p�, see item 2 above), MCC agents reach a

turning point (see Sec. 3): in Subsec. 3.4, we will provide evidence that being poised close to

this point enables the system to be resistant to invasions by free riders.

3.2 Non-evolutionary adaptive game dynamics simulations

We now discuss the results of computer simulations conducted to assess the effect of different

values of the MCC parameters on the social dynamics of the system. In particular, we analyze

the final state reached by the system as a function of the model parameters initially assigned,

and compare the outcomes with the observed behaviour of the population in the experiment

with humans reported in [18]. This analysis may allow us to better understand what may be

the advantages for the population parameters to be close to the empirical ones. We present a

set of simulations reproducing the main conditions (Kmax, lattice structure, payoff matrix, ini-

tial conditions) of the experiment presented in [18], we leave only the system size free, in order

to study the features of the model depending on it. The results are reported in Fig 1, where the

final cooperation level reached by the system is shown as a function of the parameter p.

First, it is possible to notice an abrupt change at p = 0.09’ p�, where the final cooperation

rate suddenly raises to 1: if the system is composed only of MCC players, when approaching p�

they suddenly tend to act as absolute cooperators and always cooperate. As it can be expected,

the presence of other types of players smoothens the transition, but the effect is still clearly dis-

cernible. The actual value of p measured in the experiments is close to this point.

Second, results show that, when the population is distributed according to the mix of MCC

players, absolute cooperators, and absolute defectors, at p = p� observed in the experiment (red

line), the final cooperation level reached in the simulations turns out to be very close to the

one observed in the experiments with humans [18] than to other values of p, that is, slightly

larger than 20%.

3.3 Evolutionary dynamics simulations

In order to better understand the experimental results and the effect on the system of being

poised nearby p�, we consider the outcomes of the evolutionary simulations defined in Subsec-

tion 2.3.2.

In Fig 2, we show the average cooperation rate and the density of MCC agents reached in

the final state by the system for sizes N = 225 and N = 1024, respectively, as functions of the

parameter p. As it is easy to see, for p = p� ’ 0.09 MCC agents comprises near all the popula-

tion and achieve near full cooperation. In contrast, for p< p�, MCCs and absolute defectors
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coexist, resulting in a lower cooperation rate. This situation arises because MCC agents react

to free riders by defecting themselves. Finally, for p> p�, MCCs can easily be exploited by

defectors who can then comprise the majority of the population. We also show that absolute

cooperators are always quickly wiped out by selection and vanish before the dynamics reaches

the steady state (see the Appendix for details), since, in this case, they have a non-zero proba-

bility to cooperate also when interacting with free riders.

Fig 1. Long-term cooperation level reached by a population of agents interacting on a square lattice playing a

PDG as described in [18]. The population is composed either exclusively of MCC agents (black line), or of a mixture

of MCC players and “stubborns”, that is, absolute cooperators and absolute defectors, in a proportion equal to that

reported in [18] (about 65%, 5%, and 30%, respectively). The results are illustrated as a function of p, being the

remaining parameters fixed to the experimental values q = 0.2, r = 0.4; the arrow points at the experimental outcome,

showing that the system of agents is very close to p�. Inset: Time behaviour (i.e., as game rounds go by) of the

cooperation level for a system with p’ p� (empirical value), which is qualitatively very similar to the experimental one

(see Fig 1 of Ref. [18]).

https://doi.org/10.1371/journal.pone.0246278.g001

Fig 2. a) Steady state values for cooperation level, and b) MCC density for populations of agents interacting on a

square lattice, with 8 nearest neighbours per individual, according to a weak Prisoner Dilemma game (see Table 1). We

performed simulations also for size N = 2500 (not shown), but the results were essentially the same as those for

N = 1024.

https://doi.org/10.1371/journal.pone.0246278.g002
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3.4 Footprints of criticality at the turning point

We now provide evidence that the critical phenomenon observed around the point p� � 0.09

is connected to the phenomenon related in [10] and shows interesting properties of criticality

introduced in [11]. Since the value of p� is close to the experimental value p� 0.085 reported

in [18], this suggests that the human experimental group is near the turning point.

Figs 1 and 2 suggest that at p = p� cooperative behaviours invade completely the whole sys-

tem. That is, the transition takes place when the largest cluster of (cooperating) MCCs coin-

cides with the entire system. So, in order to describe better this phenomenon, we resort to the

correlation length, ξ, which measures the spatial memory of the system (in practice, two agents

can influence each other if separated at most by a distance ξ) and diverges at least linearly in

critical phenomena [28]. We can estimate the correlation length by means of the linear size of

the largest connected clusters of cooperators [29]:

x � maxf‘C : ‘C linear size of clusters of connected cooperatorg: ð4Þ

Fig 3 shows how the quantity ξ/L depends on the linear system size L for different values of

p near p�. We can see that, apart from the case p = p�, it tends to vanish as the system size

increases. At p = p�, instead, for large enough systems, the largest connected cluster of coopera-

tors is about the same size as the system, ξ* L. So, a system large enough—i.e., a system with

about 30 × 30 agents according to Fig 3—cooperation percolates through the system only

around p� p�.
How can we interpret this result? Consider a population composed only of MCC agents: as

shown in Fig 1, the overall fitness is maximized for p� p� (see Subsec. 3.1). Therefore, on the

basis of fitness alone, with fixed q = 0.2 and r = 0.4, MCC players could indifferently distribute

their p value along the interval [p�, 1]. To understand why p� is effectively the selected value,

we have to take into account the outcomes of the evolutionary simulations, which help us to

shed light on the benefit of being near p� for MCC players.

The results shown in Fig 2 can be easily understood as follows. First, for p< p�, the MCC

players do not cooperate much but they can nevertheless avoid exploitation and partially

Fig 3. Behaviour of the ratio ξ/L as a function of the linear size of the system for different values of p near the

transition point: Only at p� it rapidly reaches 1, while for p 6¼ p� it tends to vanish in the thermodynamic limit.

https://doi.org/10.1371/journal.pone.0246278.g003
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survive. So, the cooperation rate is relatively low due to the coexistence of defectors with MCC

players, who cooperate from time to time. However, in this case MCC players are not respon-

sive enough to the cooperation of their MCC peers and end up with a lower level of coopera-

tion than possible. Secondly, for p> p�, MCC agents tend to cooperate too frequently, even

when their neighbours are pure defectors. In this case MCC players are not responsive enough

to defection. Therefore, MCC agents can be exploited by free riders and become extinct, leav-

ing a population of only defectors. Finally, when p� p�, MCC players can eliminate most

defectors yielding a cooperation rate very close, or equal, to 1. In this case, MCC agents are

responsive enough to both cooperation and defection. In a sense, for p� p� MCC agents opti-

mally respond to both cooperation and defection by their peers in a strategy analogous to the

tit-for-tat strategy in pair interactions, and this allows the development of long range correla-

tions poising the system nearby the turning point. Indeed, Fig 3 shows that ξ grows in propor-

tion to the size of the system, L, around p = p�, while for p far from p� it grows sublinearly.

More precisely, at p = p� MCC players invade the population, therefore their largest cluster

corresponds to the whole system. It is important to highlight that the presence of absolute

defectors—i.e., free riders—is the key factor inducing MCC players to poise themselves near

p�: actually, staying close to the critical point can be viewed as the optimum response to the

attempt of exploitation by free riders. The behaviour of the correlation length ξ recalls what

happens in second-order phase transitions, and we interpret it as a footprint of criticality. Nev-

ertheless, it is not enough to declare the observed phenomenon as a full manifestation of criti-

cality: for instance, the clusters of cooperating MCCs near to p� do not show scale-invariance,

as reported in Fig 5. Therefore, it may be considered a sort of quasi-critical phenomenon.

It is important to notice, though, that there are other sources of resistance to free riders.

Indeed, a system of MCC agents located on a fully-connected network rather than on a square

lattice, displays the same phenomena of Fig 1 (black solid line) when only the non-evolution-

ary dynamics is considered, as could be shown by simulations or a mean field analysis (results

not shown). However, unlike the case of a square lattice considered here, once (deterministic)

evolutionary dynamics is considered, defectors take over the system. The reason is that in a

fully-connected graph, MCC players cannot form clusters in which cooperators can be isolated

from free riders and will therefore always be subject to exploitation by defectors. So, in line

with the literature on cooperation [30], here clustering is what allows MCC to survive. On the

other hand, the properties of criticality detected in the emergence of a giant cluster of coopera-

tors, allows MCC to thrive by driving defectors to extinction. Nevertheless, if we consider the

stochastic evolutionary dynamics associated with finite populations, it is still possible that a

small fraction of defectors would become extinct due to drift. Whether criticality can enhance

the effects of drift for finite populations is left for future work.

At p = p� the MCC population is evolutionarily stable so, it is resistant to invasions by free

riders. To illustrate this, Fig 4 shows the temporal dynamics of the density of MCCs in a system

initially populated only by MCCs which, at a given time, is invaded by a 5% of absolute defec-

tors. As we can see, the invasion is completely absorbed at the turning point, only partially

absorbed for p< p�, whilst for p> p� the invaders end up invading the system completely and

the MCC players become extinct. This finding is coherent with [11], where it has been proven

in general terms that criticality helps a biological system be also stable.

3.5 Spatial distribution of agents

To better understand the mechanisms at work in the phenomenology described up to now, it

is useful to consider the spatial distribution of agents and strategies adopted at the metastable

state—which coincides with the final state when the system size approaches infinity. In Fig 5
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we show the final distribution of agents (a) and strategies (b) for a system of size 101 × 101 (in

this case we used a larger lattice to make its properties clearer). As we can see in Fig 5a, abso-

lute defectors (black) are relatively few and confined in small clusters that appear to be con-

nected to each other by percolating-like filaments. However, Fig 5b indicates that despite the

small presence of defectors, the most adopted action is defection even by the majority of MCC

players. This result is because MCC agents directly linked with a cluster of absolute defectors

have a high probability to defect in their turn, so that also the MCC agents connected to them

are likely to defect: for an MCC agent to be safe from free-riding it is necessary to be far away

from absolute defectors. Therefore, only few MCC agents are really free to cooperate. As a con-

sequence, a relatively small percentage of absolute defectors is enough to make the level of

cooperation to diminish, and that is why only for p = p�, or very close to it, cooperation level

can be high.

Naturally, a numerical and/or theoretical analysis of the model in higher dimensions could

shed more light on the nature of this turning point and its relationship with proper critical

Fig 4. Time evolution of the MCC density for a population of size N = 1024, initially made up of MCC agents only.

After 200 iterations, 5% of absolute defectors are injected into the population. MCC agents are able to get rid of most

free riders for p = 0.09 = p�, but not for p = 0.15> p� nor p = 0.05< p�.

https://doi.org/10.1371/journal.pone.0246278.g004

Fig 5. Spatial distribution of a) agent types (black: absolute defectors, white: MCCs—absolute cooperators extinct) and

b) actions (blue: defection, yellow: cooperation) in the metastable state for a 101 × 101 system with p = 0.085.

https://doi.org/10.1371/journal.pone.0246278.g005
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phenomena. In this paper we limited the study to the experimental configuration (that is, a

two-dimensional system with K = 8), leaving such a systematic study of the transition for

future works.

4 Conclusions

The simulations and theoretical results presented in this paper, based on the experimental

results reported in [18], provide additional evidence that signatures of criticality can be identi-

fied in human cooperative groups composed by Moody Conditional Cooperators with the

effect of enhancing their fitness and making them more resistant to the invasions by free rid-

ers. Our results show that being poised near a turning point provides evolutionary advantages

to the population: indeed, MCC players can thrive because they can cooperate when all their

neighbours cooperate, and defect when interacting with defectors, thus potentially inducing

the latter ones to cooperate. More precisely, when the probability to cooperate again after

cooperation (given by p) is smaller than p�, MCC players do not always cooperate, even when

surrounded by cooperators, which can negatively impact their fitness in the long term. For val-

ues of p larger than p�, instead, MCC players cannot avoid being exploited by free riders,

because they cooperate also when interacting with some defectors. The property of this transi-

tion in fostering cooperation recalls criticality because of the scarce effect of the network’s

details: that is, even though a structure is necessary to allow the formation of connected clus-

ters of (cooperating) MCCs isolated from free riders, the details of the topology are not impor-

tant. Although the transition at p� can not be considered as critical in classical terms, it has

important features in common with critical phenomena: the sudden change in the outcome of

the dynamics (Fig 1), and the maximization of the global fitness of the whole population (Fig

2), the divergence of the correlation length (Fig 3), due to an optimal response in the interac-

tions among individuals, as described in [11]. In line with previous theoretical work [11], our

model shows that when poised near a phase transition, human cooperative groups can more

effectively resist invasions by free riders. This unexplored feature of human cooperative sys-

tems may help explain why cooperation has evolved despite its costs. More specifically, MCC

players increase cooperation because the creation and survival of clusters of cooperators are

largely fostered at p� (see also in the Appendix). As soon as a defector enters the system, her

neighbours reduce their tendency to cooperate with her, thus lowering the defector’s fitness.

In this way, being at the transition enhances the system to reach stability and, as a conse-

quence, the ability to resist invaders.

Up to now, the only experiments with human subjects which have shown signs of criticality

are the ones described in references [18] and [19], but it would be certainly interesting to find

similar instances in other experiments and generalize our analysis to different and, when possi-

ble, more realistic situations. Indeed, if the role of criticality is confirmed in human collective

behaviour, fields beyond biology as sociology, psychology, history, and many others in human-

ities, will have a new, valuable tool to understand the dynamics of society. Therefore, a next

step of this kind of research should be to find more compelling empirical manifestations of

criticality in human behaviour: new laboratory experiments aimed to find proper phenomena

of criticality in this field will be considered for the forthcoming future.

Appendix: Linking the macroscopic dynamics with cognitive

mechanisms

In this section, we connect the MCC macroscopic dynamics studied above with a more micro-

scopic modelling framework, based on empirically-sound cognitive assumptions, that com-

bines individual and norm-based motivations, with model-free and model based learning
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mechanisms. The first empirical evidence of criticality in cooperative human groups was iden-

tified in [10]. In [10] a population of agents is considered. Such agents have internal mecha-

nisms which allow them to learn and adopt the best strategy to maximize their fitness. This

internal dynamic is modelled using the so-called EWAN algorithm. EWAN builds on the

Experience-Weighted Attraction (EWA) algorithm introduced in [31] and it is extended to

allow agents to recognize, reason and comply with social norms. This integration has been

done to account for growing evidence that when choosing whether to cooperate, humans do

not always act in order to maximize their personal payoffs, but they also care about behaving

in line with the social norms shared by group, namely informal and shared behavioural rules

that, unlike legal norms, are not codified but are learnt through social interaction. Those rules

prescribe what individuals ought or ought not to do, and whose violation is often enforced

through informal punishment, such as ostracism, gossip or dishonour for the transgressor

[32–36]. Social norms provide information about how members within a certain group will

behave and more impor-tantly about how they are dictated to behave. This ability is modelled

via a modified pay-off matrix that includes not only the individual economic gains, as usually

done in classical game theory work but also the gains obtained when complying with the social

norm. Even though the agents are all of the same type, initially in the same state, and the learn-

ing algorithm is rather general, the system reaches a final active configuration with players

behaving as MCCs that are poised at a critical point, reproducing results in close agreement

with the ones observed empirically [18].

As discussed in [10] and summarized below, under the assumptions of slow adaptation and

absence of network reciprocity (experimental finding (ii) mentioned in the Sec. 2.2), it is possi-

ble to obtain an effective dynamical equation for a single representative agent. Such an effective

equation predicts three long-term dynamic regimes: mono-stability, bi-stability, and non-

equilibrium.

Let s denote the strategy played by the representative agent of the population: s = 1 if the

agent cooperated and s = 0 otherwise. According to the EWAN rules, in the mono-stable

regime, the probability for a representative agent to cooperate at a generic round, given that at

the previous round the agent played strategy s and n of her neighbours cooperated, is given by

(see Appendix E in [10]).

PEWANðCjs; nÞ ¼
1

1þ y1� a
1

e� bDUðs;nÞ
; ð5Þ

where y1 = (1 − x1)/x1, with x1 the only fixed point, ΔU(s, n) = (as + b)n + 2hs − h, and (a, b, h,

α, β) are parameters defining the mean field dynamics of the model.

When β is small we obtain

PEWANðCjs; nÞ ¼ msn=K þ rs; ð6Þ

where K is the number of neighbours in the graph,

ms ¼ bKJðasþ bÞ; ð7Þ

rs ¼ I þ bJhð2s � 1Þ; ð8Þ

and

I �
1

1þ y1� a
1

; ð9Þ
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J �
y1� a

1

ð1þ y1� a
1
Þ

2
: ð10Þ

On the other hand, the MCC rule defined in Section 2 can be written as

PMCCðCjs; nÞ ¼ min½1; sðp nþ rÞ þ ð1 � sÞq�: ð11Þ

So, in the linear regime, i.e. when the min function is not saturated, we have

~p ¼ Kp � bKJðaþ bÞ; ð12Þ

q � I � bJh; ð13Þ

r � I þ bJh; ð14Þ

and the slope after defection should be vanishing, i.e., βKJb� 0. Notice that ~p is the slope

when we work with the density of neighbouring cooperators, rather than the actual number.

This is relevant for heterogeneous systems where the number of neighbours varies. If we want

to focus exclusively on homogeneous systems, then we can just compute p ¼ ~p=K, where K is

the total number of neighbours. It is important to notice that this estimation is done under the

assumption that the min function in the MCC never saturates. If this assumption is not valid,

we need to do a more careful estimation.

Eqs (12)–(14) connect the MCC parameters with the more cognitively based parameters of

the EWAN model. In Ref. [10] it was shown that, in a mean field approximation, the EWAN

model predicted that human groups playing a Prisoner Dilemma Game in Zaragoza [19] are

poised near a critical point. Whereas the authors of [10] did not analyze the Madrid experi-

ment, in our analysis here, our results presented in the main text suggest such critical behav-

iour can be quite common also in humans.
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