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Various cognitive and perceptual factors have been
shown to modulate the duration of fixations during
visual exploration of complex scenes. The majority of
these studies have only considered the mean of the
distribution of fixation durations. However, this
distribution is skewed to the right, so that an increase in
the mean may be driven by a lengthening of all fixations
(i.e., a right shift of the whole distribution) or only the
relatively longer ones (i.e., a longer right tail of the
distribution). To determine which factor is at play, the
distribution can be modeled with an ex-Gaussian
distribution, which is a convolution of a Gaussian and an
exponential distribution. Here we demonstrate the
usefulness of applying the ex-Gaussian model to
empirical distributions of fixation durations and the
reliability of its parameters across time. We
demonstrate how the ex-Gaussian model had
advantages over exclusive consideration of the mean, by
showing that an increase in the mean can stem from
specific changes in the components of the ex-Gaussian
distribution. Specifically, the type of image leads to a
change in the Gaussian component alone, indicating a
right shift of the main mass of the distribution. By
contrast, familiarity with the inspected image modifies
the exponential component, and results in a more
specific modulation of a subset of relatively long
fixations. Hence, estimating the ex-Gaussian parameters
may provide novel insights into the underlying processes
that determine fixation duration and can contribute to
the future development of process-based computational
models of gaze behavior.

Introduction

Vision is an active process in which viewers
continuously select where and when to move their
gaze. By shifting the locus of gaze approximately three
times a second, viewers select which visual information
will be processed by the high-resolution center of the
retina (i.e., the fovea) and for how long. Early studies
of complex scene viewing (Buswell, 1935; Yarbus,
1967) examined how gaze position is influenced by
instructions to observers and their level of expertise.
More recent studies have expanded on these findings by
examining how low-level features of visual input (e.g.,
Foulsham &Underwood, 2008; Itti, 2005; ; Itti & Koch,
2000; Itti, Koch, & Niebur, 1998; Parkhurst, Law, &
Niebur, 2002) and high-level observer factors (e.g., De
Haas, Iakovidis, Schwarzkopf, & Gegenfurtner, 2019;
Guy et al., 2019) modify where gaze is directed. In
addition to this stream of works, which has focused
on the spatial characteristics of fixations, other studies
have aimed to decipher the underlying processes that
determine the temporal aspect of fixations; that is,
how long gaze remains relatively stable before it is
shifted to a new location (i.e., fixation duration).
These studies have shown that fixation durations are
sensitive to different factors such as changes in the
luminance of the image (Henderson, Nuthmann,
& Luke, 2013), the image type (Kaspar & König,
2011), the characteristics of next saccade (Unema,
Pannasch, Joos, & Velichkovsky, 2005), the task at hand
(Nuthmann, 2017), and memory (Althoff & Cohen,
1999; Schwedes & Wentura, 2016). Although massively
contributing to the literature on the factors influencing
fixation duration, most of these works have used the
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Figure 1. Histogram of fixation durations of one participant from dataset 1. The ex-Gaussian fit is shown in red, the Gaussian
component (defined by μ and σ ) in green and the exponential (defined by τ ) in blue.

mean as a summary statistic for the distribution of
fixation durations. Here, we posited that this approach
may mask the actual nature of these distributions,
because an increase in the mean can result from at least
two different modifications of the distribution: either an
overall shift of the whole distribution, or lengthening
of only some of the fixations. Because an analysis
restricted to the mean cannot differentiate between the
two, we sought to determine whether another statistical
method could better characterize differences in the
shape of the distribution of fixation durations.

Inspired by manual reaction time research (Balota
& Yap, 2011; Shahar, Teodorescu, Usher, Pereg, &
Meiran, 2014), studies of gaze behavior during reading
have offered a solution to this issue by modeling the
distribution of fixation durations. For that purpose,
these studies used the ex-Gaussian distribution,
which is a convolution of Gaussian and exponential
distributions. This distribution, as well as the empirical
distribution of fixation durations, are skewed to the
right. Three parameters define this distribution: μ
and σ , which are the parameters of the Gaussian
distribution and τ , which is the parameter of the
exponential distribution (Figure 1). In reading, different
lexical factors have been found to relate to specific
modifications of the ex-Gaussian components. For
example, more predictable words (Staub, 2011) and less
lexical ambiguity (Sheridan & Reingold, 2012) were
found to be associated with a left shift of the Gaussian
component of the distribution; that is, smaller μ values.
Other studies have revealed that some factors influence
both the Gaussian and the exponential components,
such as word frequency (Staub, White, Drieghe,
Hollway, & Rayner, 2010) or whether the word is
visible in the parafovea before fixating on it (Reingold,
Reichle, Glaholt, & Sheridan, 2012). The existence of
different distributional modulation for these two factors
(e.g., word frequency and word predictability) would
suggest that there is a substantial difference between
the processes associated with each factor, and could

potentially drive other, more informative, process-based
models.

However, only a handful of studies have used
this statistical technique to characterize the fixation
duration distribution during the visual exploration
of scenes. To the best of our knowledge, the first
study to apply this method to scene viewing dealt
primarily with saccades and microsaccades, and
examined whether they shared the same generator
(Otero-Millan, Troncoso, Macknik, Serrano-Pedraza,
& Martinez-Conde, 2008). The findings showed that,
in both saccades and microsaccades, the μ values
of the fixation duration distribution were related to
the magnitude of the next saccadic displacement,
suggesting a common generator for both movements.
Even though more than a decade passed since the
publication of this report, it was followed by only a few
other studies, which focused mainly on the modification
of fixation durations owing to changes of the visual
input (flipping and spatial filtering: Glaholt & Reingold,
2012; masking: Luke, Nuthmann, & Henderson, 2013;
and luminance: Calen Walshe & Nuthmann, 2014).
These studies indicated that an abrupt modification of
the stimulus during viewing extended the durations of
the subsequent fixations. Specifically, stimulus changes
were associated with larger μ and σ values (i.e., a right
shift of the Gaussian component) compared with the
no-change condition. Moreover, the τ values only
increased when substantial modifications were made to
the dataset (e.g., low-pass filtering and major luminance
reduction). A change of τ was also apparent when
participants observed blurred rather than unmodified
images (Luke & Henderson, 2016).

Although these studies are sparse, they provide initial
evidence for the benefits of ex-Gaussian modeling
of fixation durations. Specifically, using ex-Gaussian
parameters may lead to a better understanding of
the processes that underlie visual exploration (Luke,
Smith, Schmidt, & Henderson, 2014) and cognitive
mechanisms in general (Luke, Darowski, & Gale, 2018).
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For example, Luke et al. (2018) examined the
relationship between individuals’ fixation duration
distribution and working memory span (measured
by operation, symmetric, and reading span tasks).
Participants performed a working memory task, viewed
scenes, and read text. The fixation duration distribution
during scene viewing was fitted to an ex-Gaussian
distribution, indicating lower τ values (smaller tail) and
larger μ values for participants with larger working
memory spans. These relationships between the
ex-Gaussian parameters and working memory span
could reflect two underlying processes that support
better memory span. First, the increase in the tail of the
distribution might reflect lapses of attention, which are
less frequent in individuals with higher spans (McVay &
Kane, 2012). Thus, relatively long fixations (captured in
the tail component) could reflect attentional processes
involved in working memory performance. Second,
the positive relationship between μ and working
memory span could indicate that individuals with
larger working memory spans typically have longer
fixations than individuals with smaller spans. This
factor might be due to their effort to extract and retain
more information during each fixation. Importantly,
this study showed that the working memory span has a
complex relationship with fixation duration; individuals
with higher spans had longer fixations in general (as
indicated by the higher μ), but also had fewer relatively
long fixations (as indicated by lower values of τ ). Thus,
this effect could have been missed if they had only used
the mean fixation duration instead of the ex-Gaussian
parameters (i.e., the lengthening of most fixations
might cancel out the lower number of relatively long
fixations). Taken together, this study demonstrates how
the use of ex-Gaussian parameters can reveal unknown
relationships between gaze behavior and broader
cognitive processes, which may serve to formulate new
working hypotheses as to the mechanisms underlying
these processes.

Beyond these contributions of the ex-Gaussian
modeling to cognitive research, this method has two
other important advantages for eye tracking studies of
scene viewing. Estimating the ex-Gaussian parameters
can pave the way for future studies by highlighting the
subgroup of fixations that are sensitive to the nature of
the manipulation: an effect of μwould indicate a general
effect on most fixations, whereas an effect of τ would
indicate a change in long fixations alone (Balota & Yap,
2011). Second, using the statistical tool of ex-Gaussian
modeling can guide process-oriented models that aim to
describe the mechanisms determining fixation duration
and visual exploration in general. The litmus test of
these models is their ability to explain reported effects in
the field of visual exploration. By identifying the factors
influencing specific parameters of the ex-Gaussian
distribution, the distribution of fixation duration can
be better characterized and enable models to predict

these distributional changes beyond those of the mean
(e.g., Nuthmann, Smith, Engbert, & Henderson, 2010).
This will help models to describe more fine-grained
characteristics of the empirical findings and enhance
their overall contribution.

The overarching goal of this article is thus to provide
a framework for the use of ex-Gaussian modeling in
scene viewing studies by relating to both theoretical
and practical aspects of this approach. We start by
showing that the ex-Gaussian model faithfully describes
the empirical fixation duration distribution. Then, we
explore whether the modeled ex-Gaussian distribution
of fixation durations varies across individuals in a
reliable manner. To do so, we examine the distributions
of fixation durations of the same individuals in two
different sessions, recorded 1 week apart. Finally, we
demonstrate how modulation of the mean fixation
duration, the most common measure used in the scene
viewing literature, can reflect two different changes
in the distribution. By reanalyzing published studies
that have solely addressed the mean fixation duration,
we show that the exploration of natural images, in
comparison with urban images, lead to a right shift
of the Gaussian component (as indicated by higher
μ values), whereas familiarity with the stimuli lead to a
longer tail of the exponential component (as indicated
by larger τ values). To make all these analyses more
accessible, we also provide the scripts for computing the
ex-Gaussian analysis.1

Methods

Datasets

We used three different datasets of participants’ gaze
behavior during scene observation. The first dataset
was collected from two different sessions and was used
to evaluate the reliability of the model parameters
over time. The other two datasets were taken from
published studies in which the mean fixation duration
was reported to reflect changes in cognitive processes.
Therefore, the data from these studies could be used to
examine whether the reported mean fixation duration
effects would manifest in different parameters of the
ex-Gaussian distribution. In what follows, we provide
a brief description of the aims, methods, and results
of the studies that motivated the collection of each
dataset.

Dataset 1: Reliability over time
This dataset comprises gaze samples from an

experiment consisting of two sessions, recorded 7 days
apart. Forty-two participants took part in the first
session and 37 returned for the second session. In each
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session, participants completed a free viewing task.
Images were presented for 3 seconds on a monitor with
a 1024 × 768 screen resolution, corresponding with a
screen size of 56.0° × 33.5° of visual angle, situated
at a distance of 50 cm. Monocular gaze position
was tracked at 1000 Hz with an Eyelink 1000 (SR
Research Ltd., Mississauga, Ontario, Canada). The
data were originally collected to examine the reliability
of various eye movement measures (e.g., mean fixation
duration) over time. The correlation between the mean
fixation duration in session 1 and session 2 was highly
significant, r = 0.82, p < 0.0001, replicating previous
studies (Guy et al., 2019; Henderson & Luke, 2014).

Dataset 2: Different types of images
This dataset includes data from three experiments

taken from an open database (Wilming et al., 2017).
Overall, the dataset is composed of gaze samples of
118 observers (48, 47, and 232 participants in
experiments 1, 2, and 3, respectively). In all the
experiments, participants were asked to freely view
a set of images from different categories (natural,
urban, fractal, pink noise). The images were displayed
on a monitor with a 1280 × 960 screen resolution,
corresponding with a screen size of 29° × 22°, 35°
× 26.5°, and 28° × 21°, at a distance of 80, 65,
and 80 cm for experiments 1, 2, and 3, respectively.
Each image was presented for 6 seconds in the first
and third experiments, and for 5 seconds in the
second experiment. Monocular gaze position was
tracked at 500 Hz with an Eyelink 2 (experiment
1 and 3) and Eyelink 1000 (experiment 2; SR
Research Ltd.).

The three experiments were designed to explore
different aspects of gaze behavior during the inspection
of complex images. The first experiment examined how
gaze behavior is modified by the type of the image
(e.g., natural vs. urban). The two other experiments
investigated how the effect interacts with the handedness
of the observer (experiment 2) and age (experiment 3).
All the experiments involved the inspection of natural
and urban images, which have been shown to elicit
different patterns of fixation durations (Kaspar et al.,
2013). Specifically, the inspection of natural images
is accompanied by longer fixations, on average, than
urban images.

Dataset 3: Repetitive displays
This dataset comprised three experiments. The

first two experiments have been published elsewhere
(Lancry-Dayan, Kupershmidt, & Pertzov, 2019). Note
that the original study included another experiment
that was excluded here because of a problem in its
design (also reported in the original article). However,
the results of this experiment are consistent with the

other experiments, as discussed in the Supplementary
Materials. In addition, this dataset includes another
experiment, which is reported here for the first time.
Overall, gaze samples from 96 observers (30, 35, and
31 participants in experiments 1, 2, and 3, respectively)
made up this dataset. The stimuli were displayed
on a monitor with a 1024 × 768 screen resolution,
corresponding with a screen size of 46.5° × 27.0°,
situated at a distance of 60 cm. Monocular gaze
position was tracked at 1000 Hz with an Eyelink 1000+
(SR Research Ltd.).

The goal of these experiments was to examine
changes in gaze behavior across repetitive exposures
to the same set of images during a memory encoding
task (experiment 1 and experiment 2) and free viewing
(experiment 3). In each experiment, participants
were asked to view a set of images, each of which
was presented for 5 seconds. In the first and second
experiments, participants were told that the viewing
phase would be followed by a memory test. In all
experiments, the same set of images (experiment 1,
40 images, experiments 2 and 3, 20 images) was
repetitively presented across separate blocks
(experiment 1, four blocks; experiments 2 and 3, three
blocks). In the second and third experiments, each
block included another set of novel images, which was
interleaved between blocks and was counterbalanced
across participants. These sets were included to isolate
the effect of familiarity from other possible effects
resulting from repetitive exposures (e.g., fatigue).
Finally, although the first experiment included four
blocks, for comparability we only included the first
three blocks in the analysis.

Overall, the previous study (Lancry-Dayan et
al., 2019) reported a similar pattern of results in all
experiments: as the images became more familiar
across repetitive exposures, the mean fixation duration
increased significantly. In the second and third
experiments, these findings were only observed for the
repeated images (and not for the novel images that
changed on each block), thus strengthening the claim
that familiarity is likely to be the cause of the prolonged
fixations.

Data exclusion criteria
Based on the exclusion criteria implemented in

previous studies on scene viewing (Calen Walshe &
Nuthmann, 2014; Luke & Henderson, 2016), we
excluded fixations shorter than 50 ms and longer than
1200 ms. This procedure resulted in the exclusion
of 2.13% of the fixations (reliability across time
dataset, 3.59%; different types of images dataset,
1.62%; repetitive displays dataset, 2.15%). We excluded
participants with estimated parameters above/below the
mean ± 3 standard deviations. This led to the exclusion
of three participants out of 251.
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Modeled distributions

Fitting the modeled distribution
Wefitted the distribution of fixation durations of each

participant to an ex-Gaussian distribution (convolution
of an independent Gaussian and an exponential
distribution) with three free parameters: (1) μ – the
expected value of the Gaussian distribution, (2) σ – the
standard deviation of the Gaussian distribution, and (3)
τ – the scale parameter of the exponential distribution.
We used the built-in function timefit from the retimes
package of R to estimate the values of the μ, τ , and τ
parameters for each distribution of fixation’s durations.
The timefit function uses maximum likelihood values
to estimate the ex-Gaussian parameters. As an
optimization function, we used the simplex method
(Nelder &Mead, 1965), the default option of the timefit
function. For further information on timefit see the
“retimes” package in R (Massidda, 2013).

The fitting of the model was carried out separately
for each participant and each condition of the different
datasets:

(1) Reliability across time dataset. The experiment
in this dataset included two sessions in which
participants were asked to freely view images of
scenes. Thus, two ex-Gaussian distributions were
fitted for each participant, once for each session.

(2) Different types of images dataset. In this dataset,
gaze position was recorded when participants
inspected natural and urban scenes. Accordingly,
for each of the three experiments in this dataset,
we fitted the ex-Gaussian model twice for each
participant, once for natural scenes and once for the
urban scenes.

(3) Repetitive displays dataset. In the experiments that
composed this dataset, participants saw the same
set of images in three blocks. Accordingly, we fitted
an ex-Gaussian model for each block. In addition,
in the second and third experiments, participants
also saw a set of novel images in each block. Thus,
in these experiments the fixations of the novel
images were fitted separately from those of the
repeating images. Taken together, we fitted three
models per participant (one for each block) in the
first experiment, and six models per participant
(according to block, separately for repeating and
novel images) in the second and third experiments.

Data analysis

Evaluation of the model

Goodness of fit
To evaluate the goodness of fit of the ex-Gaussian

distribution to the data, we examined the fit in two

ways. The first was to test whether the ex-Gaussian
distribution described the data better than a Gaussian
distribution alone (which is often assumed to be the
distribution, even if implicitly). Accordingly, we used a
Bayesian information criterion (BIC) to compare the fit
of the ex-Gaussian distribution to the fit of theGaussian
distribution. The BIC is a common criterion for model
selection that takes into account both the goodness of
fit of the model (as assessed by the likelihood function)
and the threat of overfitting (as assessed by a penalty
according to the number of parameters).

The second evaluation involved examining the
congruency between the empirical distribution of
fixation durations to the modeled ex-Gaussian
distribution (i.e., the distribution obtained for the
estimated parameters). To do so, we derived a random
sample from the modeled ex-Gaussian distribution
of the same size as the empirical distribution. We
used two methods to examine the hypothesis that the
simulated and empirical samples originated from the
same distribution. A significant result would suggest
that this hypothesis should be rejected, indicating that
the two samples come from different distributions.
First, we used the Kolmogorov–Smirnov test (with α =
0.05). Because this procedure has a random component
to account for sampling from the modeled distribution,
we repeated this procedure 1,000 times and calculated
the mean p value of the Kolmogorov–Smirnov tests.
Additionally, consistent with the overall maximum
likelihood approach we added another goodness
of fit test, the empirical likelihood goodness of fit
(Gurevich & Vexler, 2011), by using the R-package
“dbEmpLikeGOF” (Miecznikowski, Vexler, &
Shepherd, 2013). This test is based on the likelihood
ratios of the two distributions and the p value is
calculated using a Monte Carlo procedure (for further
details see Miecznikowski et al., 2013). We ran this test
in the same manner as the Kolmogorov–Smirnov test,
with 100 repetitions and 100 samples from the empirical
and modeled distributions (lower values are due to the
extended running time of this procedure) and calculated
the mean p value across all repetitions. Based on
previous research on combining the p values of multiple
dependent tests (Vovk &Wang, 2012), we multiplied the
mean p value by 2 for both the Kolmogorov–Smirnov
and the empirical likelihood goodness of fit methods.
A mean p value larger than the α was considered as
an indication that the empirical distribution was not
significantly different from the modeled one and was
a good fit. In the main text, we report the number of
models that were not classified as poor fits out of the
total number of models fitted for each experiment.

Correlations between parameters
The advantage of using ex-Gaussian modeling

instead of the mean fixation duration is that modeling
provides more parameters of the distribution and
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therefore a richer description. However, having more
parameters is only useful if they reflect different aspects
of the mechanisms that generate the distribution. That
is, if two parameters are highly correlated, it implies
that they may reflect the same mechanism and therefore
should be addressed as a single factor. In contrast,
failing to find such correlations would indicate that the
parameters may at least partially be related to different
mechanisms. Although theoretically the parameters are
independent, it is possible that dependencies can occur
in the empirical data of fixation durations. Therefore,
we calculated the correlations between the different
parameters within each model to assess for statistically
independent (uncorrelated) parameters. Owing to
the large number of models, in the main text we
report the mean value of these correlations calculated
separately for each of the experiments and conditions.
To assess the statistical significance of the correlation
results, we first applied Fisher’s z transformation to
the correlation coefficients (thereby converting the
correlation coefficient values into a normally distributed
variable amenable to parametric statistical testing) and
then conducted one sample t tests to assess whether the
correlations were significantly different than zero.

Reliability of the parameters
In addition to the cross-subject correlations between

the model parameters, we also examined to what extent
these parameters were reliable over time. This issue is
more than a technicality related to the fitting of the
model, but rather reflects to what extent the model
parameters characterize stable gaze characteristics
of the observer. The reliability of a measure is often
regarded as a prerequisite for a meaningful examination
in the cognitive sciences: if a measure is not reliable, it
will result in different values under the same conditions
and will be less informative for research. Specifically,
we examined whether the model parameters were a
credible characteristic of the observer, beyond any
possible momentary effects. To do so, we calculated
the test–retest correlations between gaze behavior
parameters that were collected on two different sessions
(1 week apart) under similar conditions.

Reanalyzing data: The ex-Gaussian parameters
versus the mean fixation duration

After evaluating the quality of the model and the
relationships among its parameters, we analyzed how
different manipulations affected these parameters.
This analysis provides insights into changes in fixation
durations distributions related to different cognitive
factors. Importantly, previous attempts to characterize
these modifications have focused on changes in the
mean fixation duration in different conditions. The aim
of this analysis was to examine how these reported

effects on the mean of the distribution are manifested
in the different parameters of the distribution, and
whether ex-Gaussian modeling could provide further
insights that fail to be captured when exclusively
analyzing the mean.

Different types of images dataset
Longer fixations, on average, were associated with

the observation of natural as compared with urban
images. To assess whether image type had an influence
on specific parameters of the ex-Gaussian distribution
we conducted a one-way analysis of variance (ANOVA)
with image type (natural/urban) as the within-subjects
factor, separately for each parameter.

Repetitive displays dataset
To determine whether specific parameters of the

ex-Gaussian distribution changed across repetitive
exposures, we carried out a one-way ANOVA with
block (1/2/3) as the within factor separately for each
parameter. Because each block in the second and third
experiments included a set of novel images in addition
to the set of repeating images, we conducted this
analysis twice for each of these experiments: once for
the repeating images and once for the changing ones.

Quantiles analysis
To further illustrate the relationship between changes

in the estimated parameters and changes in the
empirical distribution of the fixation durations, we
plotted a quantile graph for the different conditions
of each dataset (see Balota & Yap, 2011 for a similar
analysis). Specifically, for the different types of
images datasets we contrasted the natural and urban
conditions, and in the repetitive displays dataset we
contrasted the two extreme conditions, the first block
and the third block. For each condition, we calculated
the mean fixation duration of each decile. We carried
out a paired t test (different types of images dataset:
natural vs. urban; repetitive displays dataset: first block
vs. third block) to determine which differences between
the conditions were statistically significant.

Results

Evaluation of the model

Goodness of fit
In each experiment, an ex-Gaussian distribution

was fitted to the distribution of fixation durations of
each participant. In all experiments the ex-Gaussian
distribution exhibited better goodness-of-fit than the
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Dataset Experiment BIC ex-Gaussian BIC Gaussian

Reliability over time Experiment 1 24,924 (9,337) 25,895 (9,765)
Different types of images Experiment 1 13,732 (1,912) 14,165 (1,986)

Experiment 2 3,760 (588) 3,897 (606)
Experiment 3 5,903 (709) 6,111 (742)

Repetitive displays Experiment 1 7,092 (1,338) 7,333 (1,357)
Experiment 2 3,846 (502) 3,967 (502)
Experiment 3 3,414 (483) 3,543 (497)

Table 1. Means and standard deviations of BIC scores across individuals, for each experiment, for the ex-Gaussian and the Gaussian
models.

r values

Dataset and experiment Tau–Mu Tau–Sigma Mu–Sigma*

Stability over time
Experiment 1 Ses1: r(39) = −0.3

Ses2: r(34) = −0.09
Ses1: r(39) = −0.05
Ses2: r(34) = 0.13

Ses1: r(39) = 0.73
Ses2: r(34) = 0.68

Different types of images
Experiment 1 r(45) = 0.15 r(45) = 0.23 r(45) = 0.75
Experiment 2 r(43) = −0.06 r(43) = 0.04 r(43) = 0.61
Experiment 3 r(21) = 0.02 r(21) = 0.11 r(21) = 0.56

Repetitive displays
Experiment 1 r(28) = −0.17 r(28) = 0.06 r(28) = 0.78
Experiment 2 r(33) = −0.33 r(33) = 0.01 r(33) = 0.69
Experiment 3 r(29) = −0.02 r(29) = 0.01 r(29) = 0.84

Table 2. Correlations between parameters in each session (first dataset) and condition (second and third datasets). Notes: For each
experiment, we present the mean correlation across all ex-Gaussian models that were fitted separately for each participant and
condition. Only the mean correlation between μ and σ was significantly different from zero, as indicated by an asterisk.

Gaussian distribution, as indicated by lower BIC scores
(Table 1).

In addition, we examined the congruency between
the empirical and the fitted ex-Gaussian distributions
(for further details, see the Methods). Almost none
of the fitting procedures led to significantly different
distributions on the Kolmogorov–Smirnov test (overall,
5/795; reliability across time dataset, 3/77; different
types of images dataset, 2/232; repetitive displays
dataset, 0/486) and the empirical likelihood (overall,
0/795), indicating an adequate fit between the empirical
and modeled distributions. For illustrations of the best
and worst fits, see the Supplementary Materials.

Correlations between parameters
To assess the dependency between the parameters

of the ex-Gaussian distribution, we examined the
correlations between the different parameters in each
session or condition (Table 2). Then, to examine
whether the relationship between parameters was
significant across experiments, for each two parameters,
we conducted a two-tailed student t-test after

performing a Fisher transformation. This showed that
the relationship between μ and σ was significantly
higher than zero, t(6) = 11.746, p < 0.0001. The other
relationships were not significantly different from
zero, τ and σ : t(6) = 2.366, p = 0.056; τ and μ: t(6)
= –1.403, p = 0.21. Therefore, although there was a
strong positive correlation between the two parameters
of the Gaussian distribution (μ and σ ), the scaling
parameter of the exponential distribution (τ ) was
weakly correlated with the other parameters (note that
there was not even a consensus across experiments in
the sign of these correlations).

Reliability of the parameters
To examine whether the parameters of the

ex-Gaussian reflected a stable characteristic of the
observer, we calculated the correlations between
the same parameters across two different sessions.
These correlations demonstrated high reliability of
the parameters: τ , r = 0.8, p < 0.0001; μ r = 0.81,
p < 0.0001, and σ , r = 0.8, p < 0.0001, suggesting
that the parameters captured a reliable trait of visual
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Figure 2. Scatter plots, regression lines and confidence intervals between individuals’ ex-Gaussian parameters in the first and second
sessions of the reliability over time dataset (x-axis and y-axis, respectively).

exploration behavior (Figure 2). Note that the sessions
took place 1 week apart, indicating a persistence of the
parameters over relatively long periods of time.

The ex-Gaussian parameters versus the mean
fixation duration

Here, we reanalyzed data from published studies that
used the mean fixation duration as a proxy for fixation
duration behavior. Unlike the original studies, we
considered the ex-Gaussian parameters instead of the
mean fixation duration. We show how differences in the
mean fixation duration can reflect distinct modifications
of the distribution of fixation durations; specifically,
these differences are suggested to stem from an overall
shift of the main mass of the distribution (manifested
in changes of μ), a modification of the tail (manifested
in changes of τ ) or a combination of both.

Image type as example of μ modulation
All the experiments in this dataset showed that

exploration of natural images was accompanied, on
average, by longer fixations in comparison with urban
images. We examined whether using the ex-Gaussian
parameters, which describe the distribution more
precisely, would provide additional insights. We
conducted a one-way ANOVA with image-type
(natural/urban) as the within-subject factor, separately
for each estimated parameter. Higher μ values were
observed in fixations on natural images compared with
urban images, experiment 1: F(1, 47) = 78.289, p <
0.0001, R2 = 0.113; experiment 2: F(1, 44) = 60.209,
p < 0.0001, R2 = 0.141; experiment 3: F(1, 22) =
43.357, p < 0.0001, R2 = 0.186. The same pattern was
observed for the σ parameter, experiment 1: F(1, 47)

= 127.82, p < 0.0001, R2 = 0.216; experiment 2: F(1,
44) = 51.033, p < 0.0001, R2 = 0.189; experiment 3:
F(1, 22) = 22.912, p < 0.0001, R2 = 0.12. However, the
τ parameter did not differ significantly between image
types, experiment 1: F(1, 47) = 1.634, p = 0.207, R2 =
0.005; experiment 2: F(1, 44) = 1.333, p = 0.25, R2 =
0.004; experiment 3: F(1, 22) = 2.495, p = 0.129, R2 =
0.01. Moreover, the change in the values of τ according
to image type was not consistent across experiments;
whereas in the first and third experiments the τ values
were slightly higher in the natural condition, in the
second experiment higher τ values were observed in the
urban condition (Figure 3). Finding higher values of μ
and σ without any significant effect of τ suggests that
the original effect of mean fixation duration derived
from a right shift of the Gaussian component of the
distribution. Therefore, the impact of different types
of images on fixation durations may be global, causing
a change in the duration of the majority of fixations
and not a specific change in only a small number of
fixations.

Repeated displays as example of τ modulation
The three experiments in this dataset showed that

mean fixation duration increased across repetitive
displays of the same images. This effect vanished when
the set of images changed between blocks, indicating
that the increase in the mean fixation duration can be
attributed to familiarity. We report a reanalysis of the
same data by fitting an ex-Gaussian distribution for
each participant in each block. For each parameter,
we conducted a one-way ANOVA with block as the
within-subject factor. Similar to the original work,
in the second and third experiments, which included
a set of novel images in each block, we conducted
an additional one-way ANOVA for novel images. As
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Figure 3. Different types of images dataset: The results of the three experiments are presented in different columns. Estimated
parameters of the ex-Gaussian distribution are presented in different rows, with a schematic illustration of the fitted distribution
(black) and the relevant component (red). The results are depicted separately for natural (pink) and urban (blue) images. *p < 0.05.
Error bars indicate ±1 standard error across participants.

displayed in Figure 4, all experiments showed a stable
increase across blocks in the τ parameter when viewing
the same images, experiment 1: F(2, 58) = 6.305, p =
0.003, R2 = 0.02; experiment 2: F(2, 68) = 15.032, p <
0.0001, R2 = 0.062; experiment 3: F(2, 60) = 5.038, p =
0.009, R2 = 0.031. However, no consistent modulation
of the μ parameter, experiment 1: F(2, 58) = 0.126,
p = 0.882, R2 = 0.001; experiment 2: F(2, 68) = 7.711,
p = 0.001, R2 = 0.051; experiment 3: F(2, 60) = 0.248,
p = 0.781, R2 = 0.003, or σ parameter, experiment 1:
F(2, 58) = 0.246, p = 0.115, R2 = 0.017; experiment 2:

F(2, 68) = 1.698, p = 0.191, R2 = 0.018; experiment 3:
F(2, 60) = 0.395, p = 0.675, R2 = 0.005, was observed.
Specifically, whereas in the first and third experiments
the μ values increased slightly across blocks, in the
second experiment they actually decreased. When
observing the novel images, a significant increase in
σ values was only found in the second experiment,
experiment 2: F(2, 68) = 6.829, p = 0.002, R2 = 0.06;
experiment 3: F(2, 60) = 0.691, p = 0.505, R2 = 0.007.
Importantly, no effect of τ was observed when the
images were novel, experiment 2: F(2 ,68) = 0.026,
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Figure 4. Results of the repetitive displays dataset. Parameters of the ex-Gaussian are presented in different rows, with an illustration
of the fitted distribution (black) and the relevant component (red). The results are depicted separately for the first block (blue),
second block (purple), and third block (pink). *p < 0.05. Error bars indicate ±1 standard error.

p = 0.974, R2 = 0; experiment 3: F(2, 60) = 0.211, p =
0.81, R2 = 0.001.

The significant increase in the τ values in all
experiments indicates that repetitive exposures to the
same images led to an increase in the length of relatively
long fixations (i.e., a longer tail), leading to a more
prominent exponential component. Interestingly, the
impact of repetitive exposures to the same images
on the μ parameter was not consistent across blocks.
Thus, familiarity with the visual input did not change
the duration of all fixations, but rather only a small
subset of relatively longer fixations. To shed light on the
source of these effects in the empirical distribution, we
conducted a quantile analysis.

Quantile analysis
Based on previous studies (Balota & Yap, 2011)

we conducted a quantile analysis to compare the
mean fixation duration of each decile in the different
conditions in each experiment (different types of images

dataset: natural vs. urban; repeated exposures dataset:
first block vs. third block) (Figure 5). Higher fixation
duration means were observed in natural images almost
in all deciles in all experiments (except the highest decile
in the second experiment). This pattern of significant
differences across all quantiles matches the results of
simulations that exclusively changed μ (for a simulation
of the ex-Gaussian parameters, see Balota & Yap,
2011). In contrast, the main effect owing to repeated
exposures was only observed in the high quantiles.
Specifically, the difference between the first and third
block was significant from the second quantile in the
first experiment, and from the fifth quantile in the
second and third experiments. These results resemble
the quantile analysis that simulated a change in the
value of τ . In particular, in the second experiment
an opposite effect was found in the first quantile (i.e.,
the fixation duration was shorter in the third block
than in the first). This finding is consistent with the
parametric analysis showing that repeated exposures
leads to a decrease in μ in the second experiment,
but not in the others. Taken together, the quantile
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Figure 5. Quantile analysis of the different types of images dataset (left) and repetitive displays dataset (right). Each dot represents the
mean fixation duration (y axis) of a certain decile (x axis). Significant differences between the two conditions are depicted by asterisks.

analysis demonstrated that a change in the Gaussian
component indicates a general modification of all
fixations, regardless of their duration. However, when
there is a change in the exponential component, it
reflects an alteration in some the fixations (i.e., only
the relatively long ones). The ex-Gaussian modeling
emerged as sensitive to even more fine-grained changes
in the empirical distribution; that is, when the durations
of the relatively long and short fixations were modified
simultaneously, the ex-Gaussian modeling indicated a
change in the values of both μ and τ .

Discussion

The mean has become one of the most popular
estimators of empirical data for a number of reasons
including the fact that it has certain useful properties
(e.g., unbiasedness and consistency) and meets
important theoretical criteria (e.g., the central limit
theorem). However, because it is a single measure that

only captures the center of the distribution, the mean
can provide a misleading description of the data. Thus,
when the overall structure of the distribution of the data
is known, modeling this distribution can provide a more
accurate account of the data. Studies on reaction time
have used the ex-Gaussian distribution to model the
right-tailed distribution of reaction times. These studies
have paved the way to modeling other right-tailed
empirical distributions, such as fixation durations.
Although this approach has been used as a way to
estimate fixation duration distributions in reading
studies (e.g., Sheridan & Reingold, 2012; Staub, 2011),
it is less frequently used in studies of visual exploration
of complex scenes, which still tend to rely on the mean
as the main reported measure. Although a handful
of studies on scene viewing has already adopted this
method (e.g., Glaholt, Rayner, & Reingold, 2013; Luke
et al., 2014), no study has provided a dedicated account
of the justifications, the reliability of the ex-Gaussian
parameters over time and the possible advantages of
this method in revealing differential modulations of
fixation duration by divergent experimental factors. In
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what follows, we discuss these issues and show that
ex-Gaussian modeling has potential benefits for future
studies and theories.

Does the ex-Gaussian distribution fit the
empirical distribution of fixation durations?

Before modeling a given set of data, it is crucial to
examine to what extent the model fits the empirical
distribution. Here, we approached this issue in two
ways. First, we used the BIC criterion for model
selection to demonstrate that the ex-Gaussian model
provides a better fit than the Gaussian model, which
is often (sometimes implicitly) assumed to be the
underlying distribution. Next, we evaluated the fit
of the model to each empirical distribution with the
Kolmogorov–Smirnov and the empirical likelihood
goodness of fit tests and showed that the empirical
distributions were not significantly different from the
estimated distribution. Taken together, the ex-Gaussian
distribution thus emerges as a proper model for the
distribution of fixation durations, both in terms of
comparison to other models and in its reflection of the
empirical data.

After establishing that the ex-Gaussian is a suitable
model, we further delved into the ways its parameters
vary across participants. Shedding light on variation
across individuals is important in demonstrating
the usefulness of the model: if all parameters are
correlated, they could represent the same underlying
phenomenon. In contrast, if the different parameters
are not correlated, each parameter could reflect a
different underlying mechanism. Across all experiments,
we found a strong positive correlation between the
two parameters of the Gaussian component: μ and
σ . This correlation is not surprising in light of the
characteristics of the dependent variable. Because
measures of duration are bounded by zero, when the
center of the Gaussian is closer to zero (i.e., a low value
of μ) the width of the Gaussian should be smaller
(i.e., a low value of σ ), because negative durations
of fixations are not applicable. Accordingly, lower
values of μ are accompanied by lower values of σ .
In contrast, when μ is larger, the value of σ is less
constrained and therefore can be relatively large. Thus,
the positive correlation between these two parameters
was expected. In contrast, the correlations between
the parameters of the Gaussian component (i.e., μ
and σ ) to the parameter of the exponential parameter
(i.e., τ ) were low and inconsistent in their sign across
experiments. This result suggests that the modeling
of the ex-Gaussian distribution may capture two
distinctive aspects of the mechanism that generates the
durations of fixations.

Finally, we completed the theoretical considerations
with an examination of the reliability of the parameters
over time. Reliability is a fundamental requirement for
all dependent variables because no meaningful insights
can be derived from a dependent variable that produces
a different result each time it is measured. As far as we
know, only one study has addressed the reliability of
individual differences in fixation duration distributions
(Henderson & Luke, 2014). Their results indicated that,
during a scene viewing task, the mean and variance
of the fixation duration distributions are reliable over
time. Note that the reliability of the mean and variance
of the entire ex-Gaussian distribution do not entail the
reliability of the ex-Gaussian parameters; rather, both
the mean and the variance depend on the Gaussian and
the exponential components (mean = μ + τ ; variance
= σ 2 +τ 2). Therefore, to show that the ex-Gaussian
parameters were reliable characteristics of individuals,
we examined whether the parameters were correlated
over time. As shown in Figure 2, all three parameters
were highly reliable over several days, indicating that the
reliability was not due to momentary circumstances but
persisted. Thus, future scene viewing studies can use
ex-Gaussian parameters to reliably describe the fixation
duration distribution characteristics of the exploration
process.

What benefits can be gained from ex-Gaussian
modeling?

The ex-Gaussian distribution is an appropriate
model for the distribution of fixation durations. Next,
we would argue for the motivation to apply this model.
Specifically, we claim that new insights can be gained by
using the ex-Gaussian modeling that cannot be derived
from the traditional analysis of the mean. Then we
discuss possible contributions of ex-Gaussian modeling
in light of previous studies and visual exploration
models.

To highlight the benefits of ex-Gaussian modeling,
we reanalyzed two published datasets from studies
reporting changes in the mean fixation duration. In
the different types of images dataset, the mean was
larger for natural than for urban images, and in the
repetitive displays dataset it was larger for images that
had already been viewed. Fitting the ex-Gaussian
model demonstrated that these effects reflected two
different changes in the components of the distribution.
In the different types of images dataset, μ and σ were
significantly larger when viewing the natural images
as compared with the urban ones, but there was no
consistent change in the τ values. In contrast, in the
repetitive displays dataset, the values of τ increased
significantly as the image became more familiar from
repeated exposures. In one of the experiments, the effect
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on μ was in the opposite direction to the effect of the
mean (i.e., μ decreased across repetitive displays and
the mean increased). Thus, it can be argued that the
effect on the mean in this dataset was likely driven by
the change of τ . Moreover, the opposite direction of
the effects of τ and μ suggests that these effects may
cancel each other out when only inspecting the mean.
This finding may imply that some studies could have
missed important changes in the distribution by using
the mean as the measure of interest.

Taken together, we showed that the observed changes
in the mean could be accompanied by two types
of modification of the ex-Gaussian parameters: an
increase of μ or an increase of τ . To better illustrate the
two types of modifications on the empirical distribution
of the fixation durations, we compared the deciles of
the distributions of each condition. When comparing
fixations on the two types of images, the difference
between the deciles was consistent throughout the
whole distribution; all deciles of the distribution when
viewing the natural images were larger than the deciles
of the distribution when observing the urban images. In
contrast, the difference between the first observation of
the images and the third one was detected only in the
higher deciles. Thus, consistent with previous studies
on simulated data (Balota & Yap, 2011), this analysis
showed that the effect of μ stems from a shift of the
whole distribution, whereas the effect of τ reflects a
change mainly in the tail of the distribution.

Hence, although the manipulations in both datasets
changed the mean of the fixation duration, they clearly
affected different subsets of fixations. Observing natural
scenes led to an increase in the duration of all fixations,
whereas familiarity only led to an increase in the
duration of relatively long fixations. Therefore, using
the mean of the fixation duration masked the source
of the effect and could hinder future research. For
example, if familiarity causes a change in the duration
of the longer fixations, studies on memory-guided
gaze should perhaps primarily examine these fixations.
Characterizing these fixations (e.g., their location)
could shed light on the underlying processes that
guide gaze during the inspection of familiar scenes. If
longer fixations are deployed toward regions that have
been previously scanned, it could be inferred that the
lengthening of fixations might be related to recognition
and recall processes. In contrast, if these fixations are
deployed toward new regions of the scene, this behavior
could be attributed to the encoding of new patches
of the image. Thus, the ex-Gaussian parameters can
provide a more detailed description of the effect, guide
future hypotheses, and result in a better understanding
of the underlying phenomena.

Studying individual differences is a promising
approach in the field of eye movements, as in other
fields in cognitive and vision sciences. Previous studies
have shown that individuals exhibit reliable differences

in eye movement characteristics acquired in both basic
oculomotor tasks, such as prosaccade (Bargary et al.,
2017), and in more complex tasks such as reading and
scene viewing (e.g., Guy et al., 2019; Henderson & Luke,
2014). A recent study by Luke et al. (2018) exploited
the ex-Gaussian modeling to investigate individual
differences by exploring the relationship between
fixation duration distributions and working memory
capacity. The findings revealed that participants with
a larger memory span also exhibited lower τ values (a
smaller tail) of fixation durations in both reading and
scene viewing. This finding is consistent with manual
reaction time studies showing a relationship between
working memory capacities and τ values (e.g., Shahar
et al., 2014). The Luke et al. study (2018) points to
two important advantages of using the ex-Gaussian
distribution. It allows for a comparison between studies
that use different measures that can be modeled with
the ex-Gaussian distribution (e.g., reaction times
and fixation duration). These comparisons enable a
generalization of findings across different fields of
research, which may result in a more comprehensive
understanding of different cognitive phenomena.
In addition, exploring individual differences in the
ex-Gaussian parameters and their relationship to
other cognitive processes may help to account for the
nature of the variance in cognitive abilities between
individuals.

Finally, the ex-Gaussian parameters can contribute
to process-oriented models of visual exploration in
complex scene viewing. Whereas most eye movements
studies used the mean to describe fixation duration
distributions, models of visual exploration took the
distributional nature of fixation duration into account
(e.g., Nuthmann et al., 2010; Tatler, Brockmole, &
Carpenter, 2017). At least two main attempts have
been conducted to model gaze behavior during the
inspection of scenes. The first is the LATEST model,
which describes the fixation duration as the time until
a decision to move the eyes is made (see Tatler et al.,
2017). The second is the CRISP model that assumes
fixation duration to be determined by two components:
1) a random walk process which determines the
timing of the upcoming saccade and 2) a cancellation
mechanism which can interrupt and restart the random
walk process (for further details, see Nuthmann et
al., 2010). These process-oriented models considered
the skewedness to the right of the fixation duration
distribution, but they did not directly address the
ex-Gaussian structure of the distribution. Importantly,
the distribution of the output of the models should not
be restricted to the ex-Gaussian distribution, because
other types of distribution may fit empirical data well.
However, the findings derived from using the statistical
tool of ex-Gaussian modeling can be harnessed to
fine tune process-oriented models. For example, in
the CRISP model, the cancellation mechanism leads
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to a small number of long fixations. Familiarity with
the image also modulates the long tail of the duration
distributions, which may hint at a possible link between
saccade cancellation and familiarity.

How should the parameters of the ex-Gaussian
distribution be interpreted?

There is an ongoing debate in the literature that
has modeled empirical data with an ex-Gaussian
distribution whether the components of the ex-
Gaussian model can be mapped to distinct underlying
cognitive processes. Some studies have argued that
each parameter of the distribution reflects a different
cognitive process. For example, one study (Kieffaber et
al., 2006) claimed that the μ component of the manual
response time distribution is related to perceptual
processes, whereas τ is related to decision processes.
By contrast, a later study (Matzke & Wagenmakers,
2009) claimed that this interpretation was specious.
By simulating data from the Ratcliff diffusion model
(Ratcliff, 1978), they showed that the ex-Gaussian
parameters do not correspond with specific parameters
of the diffusion model. According to this view,
there is a solid evidence that each parameter of the
diffusion model is uniquely associated with a distinct
psychological processes (Voss, Rothermund, & Voss,
2004; Wagenmakers, Van Der Maas, & Grasman, 2007).
Thus, finding that a parameter of the ex-Gaussian
model is associated with several parameters of
the diffusion model implies that the ex-Gaussian
parameters do not reflect a unique cognitive process.
For this reason, Matzke and Wagenmakers (2009)
called on researchers not to interpret the parameters,
but rather to use the ex-Gaussian modeling purely as a
descriptive tool.

Between these two approaches, an intermediate
solution to the issue of interpreting the parameters
of the ex-Gaussian distribution should be considered.
This solution takes the view that the components of the
ex-Gaussian model do not necessarily reflect a single
distinct cognitive process; nevertheless, dissociations
between the components can still shed light on
cognitive processes by indicating which processes
share overlapping mechanisms and which do not. For
example, in the reading literature, finding different
modulations of the ex-Gaussian parameters in terms of
the frequency of a word or its predictability strongly
suggests that the mechanisms involved in these two
phenomena are somewhat distinct (Staub, 2015).

Although this debate has unfolded in other research
domains, such as in the literature on manual response
times, it is highly relevant to studies of fixation
durations during visual exploration. Because the
use of the ex-Gaussian model in visual exploration

remains infrequent the question of how to interpret
the parameters remains open. The accumulation
of data on different manipulations that affect each
component would enable future studies to examine
whether the components can be attributed to distinct
cognitive processes. Meanwhile, ex-Gaussian modeling
is a valuable technique for identifying dissociable
mechanism that determine fixation durations.

Conclusion

Although ex-Gaussian modeling has become a
common method in studies on manual reaction time
and reading, it is rare in studies of visual exploration.
Here we demonstrated its advantages in modeling
fixation duration during scene viewing, in terms of both
theories and models of gaze behavior. Specifically, we
showed that a change in the mean fixation duration can
be driven by distinct modulations of each ex-Gaussian
component. Differentiating between these modulations
can shed light on the underlying processes that
determine fixation durations. By providing practical
guidelines and access to analysis scripts, we hope to
encourage future studies to use the ex-Gaussian as
a reliable tool to analyze the distribution of fixation
durations.

Keywords: scene exploration, ex-Gaussian, eye
movements, fixation duration

Acknowledgments

Supported by Israeli Science Foundation (ISF) grant
2414/20 to YP.

Commercial relationships: none.
Corresponding author: Yoni Pertzov.
Email: yoni.pertzov@mail.huji.ac.il.
Address: Department of Psychology, Hebrew
University of Jerusalem, Mt. Scopus, Jerusalem 91905,
Israel.

*NG and OCL-D contributed equally to this work.

Footnotes
1Code for the analysis is available at https://osf.io/8ckvh/?view_only=
2c46aa4ffdbe40c7abd4c16374a01ae3.
2Originally, the experiment was composed of 58 participants, including
children, students and the elderly. To ensure that the sample would be
age-matched with the other experiments only the student subsample is
included here.
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