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Interferometric measurements 
of refractive index and dispersion 
at high pressure
Yong‑Jae Kim1*, Peter M. Celliers1, Jon H. Eggert1, Amy Lazicki1 & Marius Millot1

We describe a high precision interferometer system to measure the pressure dependence of the 
refractive index and its dispersion in the diamond anvil cell (DAC). The reflective Fabry–Perot fringe 
patterns created by both a white light and a monochromatic beam are recorded to determine both 
the sample thickness and its index at the laser wavelength and to characterize the dispersion in the 
visible range. Advances in sample preparation, optical setup, and data analysis enable us to achieve 
10

−4 random uncertainty, demonstrated with an air sample, a factor of five improvement over the 
best previous DAC measurement. New data on H

2
O liquid water and ice VI up to 2.21 GPa at room 

temperature illustrate how higher precision measurements of the index and its optical dispersion open 
up new opportunities to reveal subtle changes in the electronic structure of water at high pressure.

Refraction is one of the most common optical phenomena, indicating the bending of non-perpendicular incident 
waves at the interface between two different media. It reflects the dynamic polarization of atoms and/or molecules 
under electromagnetic radiation inducing oscillations of electron clouds and/or rotations of polar molecules1,2. 
By definition, the refractive index n determines the phase velocity of the electromagnetic wave in a given mate-
rial v compared to the speed of light in vacuum as n = c/v . Empirically, it has been found to correlate strongly 
with other material properties such as density and polarizability3–6. In electro-magnetic theory, the complex 
refractive index can be defined as the square root of the complex relative dielectric constant1,2. The variations of 
the refractive index with photon energy, called the dispersion, can be used to reveal electronic properties such 
as the band gap energy7–9.

Measuring the refractive index accurately is therefore a powerful, contact-less way to probe how pressure 
alters the electronic charge distribution and the inter-atomic/molecular distances. Refractive index at high pres-
sure has been extensively investigated using diamond anvil cells (DACs)9–28. With known refractive index, sample 
thickness in the DAC can be estimated for the further evaluations of the volumetric strain and equation of state 
(EOS) as well as for the detection of phase transitions12,22. One can also use the measured pressure dependence 
of the refractive index to estimate the density change using the Lorentz–Lorenz relation with the assumption of a 
constant molecular polarizability27. Compression-induced electronic transitions, like band-gap closure and metal-
lization, have also been investigated by analyzing the dispersion15–17,23. Brillouin spectroscopy measurements 
with 90° and 180° scattering geometries require the refractive index to calculate the sound velocity and elastic 
properties of sample from the raw data27,29. Finally, the refractive index of the compressed sample is crucially 
needed to extract the accurate shock EOS data in shock compression experiments using optical velocimetry30–32.

Fabry–Perot interferometry is an elegant way to measure the refractive index of a sample in the DAC. If the 
incident beam is reflected multiple times between two sample-diamond interfaces, the reflected (or transmitted) 
beams from the DAC interfere with each other to form a fringe pattern (Fig. 1). Writing the optical path differ-
ence, �S , we can determine the phase difference, δ , and the order of interference, k, as followed, 
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where ns and ts are the refractive index and thickness of the sample, nair is the refractive index of air (1.000278 
at the laser wavelength �L of 532 nm33), θi and θs are the incident and refractive angles of the beam which are 
related by Snell’s law, �i is the wavelength of the incident beam, and A is the geometric calibration constant 
( A = r/ tan θi ) which is related to the working distance of the objective lens and allows us to use the radius 
of interference pattern (r) instead of its incident angle ( θi)11. According to Eq. (1c), the refractive index of a 
sample in the DAC can be measured by analyzing the fringe patterns which are obtained from different sample 
thicknesses9 or incident angles22 at a known wavelength. The intensity of the fringe pattern at a fixed thickness 
and angle can also be used to calculate the reflectivity at the sample-diamond interface and the refractive index 
of the sample17,25,34. However, experimental constraints have limited the measurement precision. As examples, 
a spacer plate inside the sample chamber provides a thickness difference but, at the same time, makes the fringe 
pattern much more complicated9. The rotation of the DAC is limited to only a few degrees22. Sample thickness 
in the DAC cannot be exactly estimated due to the misalignment and cupping of the anvils9,22. And, since the 
refractive index of the diamond anvil does not change much with moderate pressure24, if the diamond culets are 
not coated, the fringe contrast decreases significantly with increasing sample index during compression. This 
contrast loss can be utilized in the refractive index matching technique12,21, but this simple method provides at 
most two refractive index values in the typical DAC.

In this study, we built a Fabry–Perot interferometer setup to measure the refractive index of a transparent 
sample in the DAC, building on previous work by Le Toullec et al.10–12. They used a parallel white light and a 
converging monochromatic beam to probe the refractive index and thickness of a sample in the DAC indepen-
dently at a single sample location. Our method has advantages for overcoming the issues in other Fabry–Perot 
techniques described above. Several improvements in the experimental setup and the data analysis methodology 
(such as anti-reflection coatings on the diamonds, the use of an objective lens with a high numerical aperture, 
and a sinusoidal fitting of the fringe spectrum after a Hilbert transform) allow us to reach the random uncer-
tainty as good as 10−4 in the refractive index and its dispersion, which is demonstrated with an air sample in the 
empty DAC. We illustrate the use of our advanced interferometry technique by examining the refractive index 
and dispersion of water at high pressure and revealing the subtle change in its electronic structure. Finally, we 
discuss the possible sources of random and systematic uncertainties in this experiment.

In addition to the optical properties and the electronic structure, this technique can be further extended 
to study the polarizability, the equation of state (EOS) and the phase diagram of pure materials as well as their 
mixtures at high pressure. For example35, reported the mixing of water and methane ( CH4 ) at high pressure 
which are immiscible at ambient condition due to their polar and non-polar characters. As water and meth-
ane are expected to be among the main constituent materials of icy planets such as Uranus and Neptune, this 
interferometry technique can provide information on the structure and differentiation deep inside the planets.
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Figure 1.   Schematic of the multiple reflections of an incident beam in the sample chamber acting as a Fabry–
Perot cavity between the two diamond culet surfaces. Red arrows indicate the optical path difference ( �S ) of the 
first two reflected beams from the DAC.
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Experiments
Sample preparation.  We used four-pin stainless-steel DACs to generate high pressure conditions in the 
GPa range. Two diamond anvils with a thickness of 1.2 mm were anti-reflection (AR) coated for 532 nm on their 
table surfaces and glued on tungsten carbide seats with epoxy. A 25 µm thick tungsten plate was drilled with a 
500 µm diameter hole and placed on the 800 µm diameter culet surface of the bottom anvil to serve as a gasket 
and create a cylindrical sample chamber. Deionized water (Sigma-Aldrich) was loaded inside the sample cham-
ber together with a 5–10 µm diameter ruby ball36, and pressure was applied by tightening compression screws. 
We note that using a high-pressure gas membrane would be beneficial since it allows one to increase the pres-
sure without realigning the cell. Pressure was measured from the shift of the R1 ruby fluorescence peak excited 
by a 532 nm laser37. We assumed negligible pressure gradient in the sample at the relatively low pressure level 
examined in this study (2.21 GPa).

Optical setup.  The interferometer used in this study consists of two parts using a white light source and a 
laser beam (Fig. 2). First, the initially divergent white-light (KL 2500 LED, Schott) is reduced by passing through 
two irises and focused at the middle of the sample in the DAC with an infinite conjugate, plan-apochromatic 
objective lens having a magnification of 50× and a numerical aperture (NA) of 0.55 (378-805-3, Mitutoyo). The 
sample region probed by the white light is ∼ 5 µm diameter. An imaging relay, including spatial filtering through 
a confocal pinhole to improve the signal-to-background ratio of the fringe spectrum, transports the reflected 
white light from the DAC to the entrance of a fiber-coupled spectrometer (HR 4000, Ocean Optics) having a 
600 lines/mm grating, a 25 µm entrance slit, and a 0.75 nm resolution in 450–900 nm range. A CCD camera 
with a resolution of 2592 × 1044 pixels and a pixel size of 2 µm (a2A2590-60ucBAS, Basler) allows us to record 
snapshots of the sample chamber during the measurements with a field of view (FOV) of 94 × 70 µ m 2 and a 
total magnification of 55× . Note that the notch filter shown in Fig. 2 is inserted only for pressure measurements.

The sample is also illuminated with a monochromatic Gaussian laser beam with a wavelength ( �L ) of 532 
nm (CPS532, Thorlabs). The laser is expanded to the pupil diameter of the objective lens (4.4 mm) by a beam 
expander (2–5 × , BE02-05-A, Thorlabs) and inserted in the optical path of the white light using a 50/50 cube 
beam splitter to co-propagate onto the sample through the objective lens. The Gaussian beam is focused to a 
∼ 1 µm spot ( w0 ) with an intrinsic divergence of ∼ 10° ( �L/πw0 ). An interference ring pattern is captured by an 

Figure 2.   Schematic of our experimental setup. Interference fringe spectrum and ring pattern are obtained 
from the sample in the DAC with white (yellow) and laser (green) beams, respectively. Arrows indicate the 
direction of beam propagation from light sources to the sample through the objective lens and to the camera or 
the spectrometer. We also use a laser to align the tilt and rotation angles of the DAC (black dotted). The focal 
lengths of the achromatic doublet (L1 and L2) and plano-convex (L3 and L4) lenses are 50, 50, 100, and 200 mm, 
respectively. A 300 µm diameter pinhole is at the focus of L1. Bottom left inset shows the focuses of a parallel 
incident beam (black dotted) and two reflected beams (red and yellow) at the conjugate focal planes (black 
dashed).
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additional CCD camera at the conjugate aperture plane where two reflected beams from the sample-diamond 
interfaces are focused and the real image of the ring pattern is formed (see the inset of Fig. 2). To optimize the 
intensity of the patterns, we use neutral density (ND) filters to adjust the incident laser intensity.

Measurement procedure.  Prior to inserting the DAC, we carefully align the optical setup with the 532 
nm laser source, making sure that the beam is centered on the optics and detectors and that the white and laser 
beams are co-aligned. The spectrometer dispersion is calibrated with a standard Ne lamp.

Once the DAC is loaded with a sample and inserted in the beam path, the faint laser reflection from the culet 
surface of the back anvil is utilized to align the DAC by adjusting the xyz position and the tilt and rotation angles 
of the DAC. Then, pressure is measured by focusing a laser spot onto a ruby ball and collecting the characteristic 
R1 and R2 luminescence pattern with the fiber-coupled spectrometer. During the ruby luminescence measure-
ments, the laser intensity was reduced by ND filters to prevent a possible temperature rise in the ruby. Then, 
after making a focus at the middle of the sample (see section “Focus position”), we collected the monochromatic 
interference ring pattern image and then the white-light fringe spectrum. A reflection spectrum from the gasket 
surface was obtained to normalize the wavelength-dependent intensity of the light source in the white light fringe 
spectrum. As particles or boundaries can distort the interferograms, it is important to make the measurement in 
a clear, uniform region of the sample. This procedure is repeated after each pressure change and equilibration.

An additional reference measurement with a known refractive index is needed to determine the geometric 
calibration constant (A) in Eq. (1c). Here, an empty gasket filled with air is used as the reference. The empty cell 
is prepared before the sample loading in the DAC. We also measure this cell at the end of the high pressure run 
after removing the sample from the DAC. Although both cells yield almost identical A values within ∼ 0.1%, 
we usually adopt the latter one obtained with the thinner gasket. The experimental sequence for the reference is 
identical to the one described above: alignment, ring pattern, then fringe and reflection spectra.

Data analysis.  Calibration constant from an empty DAC.  Interference order and sample thickness from 
fringe spectrum.  The first step in the data analysis is to analyze the fringe spectrum obtained from the empty 
DAC. The reflected beams at the first diamond-sample and second sample-diamond interfaces are 180° out-of-
phase. Therefore, intensity minima in the reflective interference spectrum satisfy the integral interference orders. 
By comparing two interference orders at adjacent peak minima (Supplementary Information S1), Eq. (1c) with 
a normal incidence ( θi = 0°) can be re-written in terms of wavenumber ( ν = �

−1 ) as

This equation implies that, once the oscillation period �ν is determined from the fringe spectrum at a spe-
cific wavenumber, the values of ts and k can be calculated for the following analysis of the ring patterns. We note 
that Eq. (2) is only valid when the dispersion of the index is negligible, like in air, and �ν is much smaller than 
ν (Supplementary Information S1).

Figure 3 shows in detail how �ν is determined. From the raw spectrum, we first subtract the reflection spec-
trum obtained from the gasket surface (Fig. 3a). The residual intensity offset after the subtraction is removed by 
using a locally weighted scatterplot smoothing (LOWESS) method with a span of 5–8% of the data points. The 
intensity of the zero-mean spectrum is normalized by using an envelope generated with the Hilbert transform 
(Fig. 3b and Supplementary Information S2). Then, �ν is determined using a sinusoidal fitting (Fig. 3c). As 
shown in Fig. 3c, the fitted curve shows an excellent match with our data despite the slight noise in the data. Since 
the dispersion of air is negligible (Fig. 5c), the fitting range between ν1 and ν2 is set to be as wide as possible to 
cover the entire range of the observed oscillation. The obtained oscillation period more precisely corresponds 
to the period at the mean of the fitting range; �νmean at νmean = (ν1 + ν2)/2 . Based on Eq. (2), we calculate the 
sample thickness at νmean , ts = 1/(2ns�νmean) , then the interference order at the laser wavenumber νL (= �−1

L  ), 
kL = 2nstsνL = νL/�νmean . As an example shown in Fig. 3, ts and kL are calculated as 18.411 ± 0.002 µm and 
69.228 ± 0.006, respectively.
Calibration constant from ring pattern.  The expanded laser beam converges onto the sample through the 
objective lens and the reflective interference ring pattern results from the succession of the destructive and 
constructive interferences as a function of the incident angle of the beam (Eq. 1c). Recording an image of the 
ring pattern allows us to readily obtain the radius of m-th ring, rm , in pixel rather than its incident angle, θi,m , 
where m is the order number of rings from the center (1, 2, 3, …). We can therefore determine the interference 
order of the m-th ring, km , which is an integer by using kL (i.e., k at θi = 0 or at the center of the pattern) and the 
calibration constant ( A = r/ tan θ ) in Eq. (1c):

where [kL] means the integer part of kL . Then, using ts obtained above, Eq. (3) can be solved with the measure-
ment of rm to calculate A.

The way to obtain rm and A is described as followed (Fig. 4a). The radial intensity profiles from a rough center 
position are extracted over 360° with a fixed angular binning (typically 10°). From each profile, intensity minima 
are determined with a local Gaussian fitting. Then, the exact center position and the ring radii, rm , are obtained by 
using a multiple-circle fitting method on all intensity minima. Finally, the calibration constant, A, is determined 

(2)k = 2nstsν =
ν
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by fitting a series of km and rm values with Eq. (3). As an example, measuring ten ring patterns from the empty 
DAC in Figs. 3 and 4, we obtain A of 1254.9 ± 13.8 pixel.

Correction of image aberration.  With all the known parameters in Eq. (3), the experimental interference pat-
tern is compared with a theoretically calculated one. The intensity of the interference pattern in reflection mode, 
IR , is expected to follow the Airy pattern1:

where Ii is the incident beam intensity and the finesse F depends on the reflectivity R at the sample-dia-
mond interface: F = 4R/(1− R)2 with R = |(ns − ndia)/(ns + ndia)|

2 . The phase difference δ in Eq.  (4) 
varies with the ring radius r and, from Eq. (1b), can be expressed in terms of the calibration constant A as 
δ = (4π ts/�L)

√

n2s − r2/(A2 + r2).
As shown in Fig. 4b, the calculated radial intensity profile slightly deviates from the experimental one. This 

discrepancy is likely due to image aberrations, introduced, for example, by the use of the thick diamond anvils as 
the optical windows, their cupping and misalignment38, and the objective lens12 having a high numerical aperture 
(NA). To mitigate this issue, we empirically adopt a third-order polynomial fitting between the measured ring 
radii (r) and the calculated ones ( rab ) for the empty DAC using Eq. (3) as shown in Fig. 4c;

This image aberration correction relation (Eq. 5) is used to correct the experimental radial distance during the 
ring pattern analysis for the sample.

(4)IR =
F sin2( δ

2
)

1+ F sin2( δ
2
)
Ii ,

(5)rab = ar3 + br2 + cr.

Figure 3.   Analysis of the interference fringe spectrum obtained from the empty DAC with a white light. (a) The 
reflection spectrum from the flat gasket surface (blue line) is subtracted from the raw fringe spectrum (black 
square). In the subtracted spectrum (red circle), the residual intensity offset is determined with a smoothing 
method (blue dashed) and subtracted. (b) The envelope of the zero-mean spectrum (black square) is obtained 
with the Hilbert transform (red line). (c) The oscillation period ( �ν ) is obtained through a sinusoidal fitting 
(blue line) of the intensity-normalized spectrum (red circle). Pink dotted vertical line indicates the laser 
wavenumber ( νL).
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Refractive index of a compressed sample.  Once the calibration constant A (Eq. 3) and the image aberration 
correction relation rab (Eq. 5) are determined from the empty DAC, we are now ready to calculate the refractive 
index of the sample. The data analysis method is almost identical to the one discussed above for the empty DAC 
(see section “Calibration constant from an empty DAC”.

The white-light fringe spectrum from the sample is analyzed first. After the intensity normalization, 
the oscillation period �νmean near νmean is obtained by a sinusoidal fitting. Then, kL at νL is calculated using 
kL = νL/�νmean . If the dispersion of the index in the sample is nontrivial, the value of ν/�ν in Eq. (2) is no longer 
equal to the interference order. This dispersion-induced error in determining k can be eliminated by using a thin 
sample (15–30 µm, in this study) and obtaining the interferograms when the first ring in the laser interference 
pattern is big enough (for more details, see section “Sample thickness” and Supplementary Information S1).

Then, in the interference ring pattern, the intensity minima are determined through a local Gaussian fitting. 
The ring radii rm are obtained using a multiple-circle fitting method and corrected for the image aberration rm,ab 
using Eq. (5). Finally, a series of km and rm,ab are fitted with Eq. (3) to provide ns and ts.

Dispersion of refractive index.  In addition to the determination of the refractive index at �L , our advanced 
setup allows us to evaluate the dispersion through further analysis of the white light fringe spectrum (Fig. 5). 
As explained in section “Calibration constant from an empty DAC”, the interference order, k, is an integer (or 
half-integer) at the peak minimum (or maximum). From kL at �L , we can trace the change of k at every peak 

Figure 4.   Analysis of the interference ring pattern obtained from the empty DAC ( ts = 18.41 µm and kL = 
69.23) with a 532 nm laser. (a) The intensity minima (red circle) are determined with a local Gaussian fitting of 
radial intensity profiles and fitted with a multiple-circle fitting method (blue dotted line) to determine the center 
and the radii of each ring. (b) The experimental (black dotted) and corrected (red) radial intensity profiles are 
compared with a calculated one (blue). Note that we overexpose the pattern in order to accentuate the locations 
of the minima and the amplitude of the calculated profile is properly adjusted to improve the visual comparison 
with the experimental profile. (c) Third-order polynomial fitting (red) between the experimental and calculated 
ring radii (black circle) with an identity line (gray dash).
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(Fig. 5a,b). For example, with kL = 69.23 at 532 nm in Fig. 3, k = 69 and 69.5 at the minimum and maximum 
peaks near 532 nm. Finally, the refractive indices at the peaks can be calculated using Eq. (2) with the obtained 
ts . The data points in Fig. 5c are scattered within ± 2 × 10−4 which may be due to the uncertainty in determining 
peak positions and sample thickness, and follows well the expected trend from Ref.33 considering 15 °C, 101,325 
Pa, and 0% humidity with 450 ppm CO2.

Results
Refractive index of water.  To demonstrate the validity and accuracy of our interferometry measurements, 
the refractive index of water is examined up to 2.21 GPa at room temperature and compared to previous studies 
(Fig. 6a). As expected, the refractive index continuously increases with pressure in liquid water and ice VI with 
a sudden jump at 1.29 GPa. This discontinuity and the overlapped pressure range of their indices ( ∼ 1.2 to 1.3 
GPa) are due to the freezing of supercompressed liquid water at 1.29 GPa to ice VI causing a pressure drop to the 
equilibrium melting level of ice VI (0.96 GPa at 25 ◦C40). One index is obtained also from supercompressed ice 
VI at 2.21 GPa slightly above the equilibrium transition pressure to ice VII (2.15 GPa40). The suppressed phase 
transition in the supercompressed phases is monitored by the camera during compression and evidenced by 
the continuity of the index with pressure (Fig. 6a) and density (Fig. 7a). Our dataset at 532 nm agrees well with 
previous studies12–14,17–20,39. The measured refractive index in liquid phase is almost overlapped with the index-
pressure relation provided by Dewaele et al.12 and in a relatively good agreement with the results of Refs.18,20,39. In 
ice VI phase, our dataset is close to the results from previous studies 12,13,19, while the slope of our data is slightly 
lower. In Fig. 6c, we compare our dataset to the index-pressure relation provided by Ref.12, as our data are very 
close to their results and their measurement precision (or reproducibility) of 5 × 10−4 is the best among other 
studies on water. The difference is less than 2 × 10−3 in low-pressure liquid regime, but increases with pressure 
to 8 × 10−3 in ice VI.

We find that our data for the increase of the refractive index with pressure can be well fitted with a power-
law model12, n = a1 + b1(1+ c1P)

d1 . Alternatively, we also provide a fit with a Murnaghan-type model19, 
n = a2[1+ (b2/c2)P]

1/b2 , that assumes a linear dependence of the index with density (like a modified Glad-
stone–Dale relation4,12) in the first-order Murnaghan pressure-volume EOS. We use as few parameters as pos-
sible to avoid parameter uncertainty and provide the comparison with previous studies; a1 and c2 are fixed as 
the values in the literature12,19. As our experimental dataset exhibits a clear trend in relatively narrow pressure 
range, both equations provide excellent fits. The fitting residual of a power-law model in liquid and ice VI phases 
has a standard deviation of ∼ 2 × 10−4 (Fig. 6b), smaller than the best previous precision of 5 × 10−4 (Ref.12). The 
residual of a Murnaghan-type model is ∼ 2 × 10−3 , less satisfactory particularly in water phase only due to a c2 
constraint. The fitting parameters and covariance matrices of both models to the pressure-dependent refractive 
index are summarized in Tables 1 and 2. 

Figure 5.   Dispersion of air. (a) Normalized spectrum (black square) in Fig. 3c with marks at the peaks (red 
circle). (b) Interference order at each peak (blue triangle) calculated with kL at �L (pink dotted). (c) The obtained 
refractive index (green triangle) is compared with the literature data33 (thick blue line).
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Figure 6.   (a) Refractive index of H2O in liquid and ice VI phases measured at 532 nm in this study with 
literature values12–14,17–20,39. Our dataset is fitted with power-law12 and Murnaghan-type19 models (red solid and 
blue dashed lines) and the fitting curves are extrapolated to 0 and 2.4 GPa (thin red and blue dash-dotted lines). 
Equilibrium pressure levels for water-to-ice VI and ice VI-to-ice VII transitions (0.96 and 2.15 GPa at 25 ◦

C40) 
are indicated with black dotted vertical lines. Error for pressure is 0.03 GPa. Random and systematic errors for 
the index are 10−4 and 5 × 10−4 , respectively. (b,c) The differences of our data from the power-law fitting curve 
(red square), the recalculated index using another correction relation for the image aberration r′

ab
 (see section 

“Image aberration”, blue circle), and the literature result12 (green triangle).

Figure 7.   (a) Refractive index of water as a function of density. Our datasets in liquid and ice VI 
phases are fitted with a modified Gladstone–Dale model and compared with the model equations in the 
literatures12,18,26,41,42. (b) Molecular polarizability calculated using the Lorentz–Lorens model with literature 
values12,18.
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Gladstone–Dale relation.  The refractive index is plotted again in terms of density, ρ , in Fig. 7a using the 
equation of states of liquid water43 and ice VI44.This relation is often described with a modified version of the 
Gladstone–Dale model3,4,12;

Our data are well fitted to this linear model with a fitting residual of ∼ 2 × 10−4 but with slightly different 
slopes in each phase. In liquid water, our data match well the results by Refs.18,41 and are close to those by Refs.12,42. 
Our ice VI data still have a good agreement with the result by Refs.18, although their high density data near 1.4 
g/cm3 were obtained from liquid phase at a higher temperature (293–673 K) and pressure (0–7.1 GPa) regime. 
Further studies are required to determine if the refractive index is the sole function of density or is indeed affected 
by both external pressure-temperature condition and microstructure. For example, Courchinoux and Lalle42, 
provided two linear relations below and above 1.26 g/cm3 , and Dewaele et al.12 gave their best fits of the modi-
fied Gladstone–Dale model for liquid and ice VII phases separately. Otherwise, the relation of liquid water by 
Sanchez-Valle et al.18 is very close to our ice VI data, and Hanna and McCluskey26 provided one model fit for liq-
uid, ice VI and ice VII. The fitting parameters and covariance matrices of this model are summarized in Table. 3.

Application to shock wave velocimetry in water.  The obtained index-pressure and index-density 
relations [n(P) and n(ρ) in Tables 1 and 3] can be utilized for correcting optical velocimetry measurement dur-
ing shock compression experiments. When a shock wave propagates through an initially transparent sample 
and the interface between the shocked and un-shocked sample is reflective, a measured, apparent shock velocity 
( Us,app ) can be corrected using the refractive index of the initial sample which is precompressed in a DAC or at 
ambient pressure;

where Us is the true shock velocity and n0 is the refractive index at a initial sample pressure n(P0) or density n(ρ0)
30–32. Instead, if an interface behind the shock front is viewed through a transparent, shocked sample or window, 
an apparent particle velocity ( up,app ) is measured. Then, the true particle velocity can be obtained as

where a is n ( ρ = 0 ) or the zero-density intercept of the modified Gladstone–Dale model30,45,46.

Molecular polarizability of water.  The polarizability of water molecule can be extracted from the refrac-
tive index-density data through the Lorentz–Lorenz relation1,5,6,

(6)n = a+ bρ.

(7)Us = Us,app/n0,

(8)up = up,app/a,

(9)RLL =

(

n2 − 1

n2 + 2

)

ρ−1 =

(

4πNA

3M

)

α,

Table 1.   Fitting parameters of power-law and Murnaghan-type models for the refractive index of water 
(0.05–1.29 GPa) and ice VI (1.17–2.21 GPa). The subscripts 1 and 2 refer to power-law and Murnaghan-type 
models, respectively.

Phase a1 (fixed) b1 c1 d1 a2 b2 c2 (fixed)

Water 0.900 0.432 ± 0.0001 2.653 ± 0.044 0.126 ± 0.001 1.327 ± 0.002 30.182 ± 2.036 6

Ice VI 0.425 0.995 ± 0.008 0.555 ± 0.479 0.065 ± 0.029 1.398 ± 0.0009 36.607 ± 0.961 14

Table 2.   Covariance matrix elements for the power-law and Murnaghan-type fittings given in Table 1.

Phase σb1b1
σb1c1

σb1d1
σc1c1 σc1d1

σd1d1
σa2a2 σa2b2

σb2b2

Water 1.938× 10
−8 −3.646× 10

−6
6.139× 10

−8
1.915× 10

−3 −4.453× 10
−5

1.491× 10
−6

5.707× 10
−6

4.287× 10
−3 4.145

Ice VI 6.143× 10
−5 −3.724× 10

−3
2.246× 10

−4
2.283× 10

−1 −1.383× 10
−2

8.394× 10
−4 7.400× 10

−7
8.177× 10

−4 0.923

Table 3.   Fitting parameters and covariance matrix elements of the modified Gladstone–Dale model for water 
(0.05–1.29 GPa) and ice VI (1.17–2.21 GPa).

Phase a b σaa σab σbb

Water 1.020 ± 0.001 0.314 ± 0.001 1.632× 10
−6 −1.381× 10

−6
1.175× 10

−6

Ice VI 1.064 ± 0.010 0.285 ± 0.007 9.451× 10
−5 −6.751× 10

−5
4.824× 10

−5
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where RLL is the Lorentz–Lorens molar refractivity, M is the molar mass (18.015 g/mol for H2O ), NA is the Avoga-
dro number ( 6.0221× 1023 mol−1 ), and α is the mean polarizability. Figure 7b shows that the polarizability (in 
Å 3 ) decreases almost linearly from 1.47 to 1.42 in the liquid and from 1.41 to 1.40 in ice VI. The corresponding 
Lorentz–Lorens molar refractivity (in cm3/g) is 0.206–0.198 in the liquid and 0.198–0.195 in ice VI. Our values 
are consistent with the results of previous studies12,18 but are found to exhibit significantly less scatter. Such a 
decreasing polarizability with density can be understood as evidence for the reducing extent of the electronic 
cloud and the increasing confinement of the intermolecular interactions12,18. However, as the Lorentz–Lorenz 
model is only suitable for symmetric entities (e.g., gases which freely rotate and non-polar liquids)12,47 and 
assumes a point dipole without the overlap of electron distributions by the nearest neighbors17, further theoreti-
cal development would be needed to precisely determine the polarizability of compressed H 2 O phases using 
refractive index measurements.

Dispersion of water.  The wavelength dependence of the refractive index of water with pressure is illus-
trated in Fig. 8a. A very subtle increase of the refractive index with decreasing wavelength (or increasing photon 
energy) is revealed: the dispersion is as small as 0.5% over 500–700 nm (or 2.48–1.77 eV) and 0.05–2.21 GPa 
ranges examined in this study (Fig. 8b). Previous study reported the absence of noticeable pressure effect on 
the dispersion up to 35.4 GPa12. However, we find that, with increasing pressure, the dispersion of the index 
(or dn/d� ) increases in liquid phase and remains almost constant. This discrepancy is possibly attributed to 
the small dispersion of water and the inherent difficulty of such measurements, often limited to relatively nar-
row wavelength ranges. Using the current improved setup and analysis techniques, we can now resolve subtle 
pressure-induced changes in the dispersion. The dispersion data can be used to infer the electronic structure of 
material8,9,17,48. A detail analysis of the dispersion and electronic properties such as the band gap up to a higher 
pressure level will be discussed in our forthcoming paper.

Error analysis
In this section, we detail several important steps necessary to reach the 10−4 precision in the refractive index 
that we report for the air sample.

Coating of the diamonds.  The first air-diamond interface is a possible source for a strong reflection due to 
the large difference of their refractive indices; R = |(ndia − nair)/(ndia + nair)|

2 = 0.173 . Such a strong reflec-
tion induces detrimental distortion and degradation to the sample interferograms. In this study, we used anti-
reflection coatings of 84 nm thick Al2O3 on the outer table surfaces of the anvils (Fig. 1). To explore a much 
higher pressure regime, additional partially-reflective coating on the inner culet surfaces22 may be desirable. 

Figure 8.   (a) 3-dimension plot of the refractive index in liquid water and ice VI as a function of wavelength and 
pressure. (b) The refractive index is normalized by subtracting the index at 700 nm to highlight the dispersion. 
The color scale represents the pressure levels on both panels (a,b).
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Such coatings could help to prevent the contrast loss in the interferograms as the refractive index of sample 
approaches that of diamond and the anvil surfaces are cupped with increasing pressure.

Sample thickness.  The precise determination of k in the fringe spectrum is one of the most important 
requirements for a high precision measurement, as an error of ±1 in k brings a significant error of 1–10% in ns . 
In a sample with a nontrivial dispersion, the value of ν/�ν (Eq. 2) is not equal to the interference order k. Their 
discrepancy increases with increasing k or, equivalently, ts . Therefore, the use of a thin sample helps to avoid this 
dispersion-induced error in determining k (for more details, see Supplementary Information S1). Also, with a 
thin sample, we can minimize the error from wrong focus position (see section “Focus position”) and obtain the 
low-frequency fringe spectrum with sufficient data points per a single oscillation period for a better determina-
tion of �ν through a sinusoidal fitting. In contrast, as ts decreases, the number of rings that can be observed 
within the numerical aperture of our optical system decreases, which affects the accuracy of our multiple-circle 
fitting procedure. In this study, the optimum value of ts is found as ∼ 15 to 30 µm, compromising a clear resolu-
tion in the fringe spectrum and a number of ring patterns which is at least 4.

Alignment and spatial filtering.  Non-uniform sample thickness inside the DAC is an inherent experi-
mental limitation which also leads to difficulties in the EOS measurement12,22. As the interferogram is sensitive 
to the sample thickness, two independent white and laser beams are coincidently aligned to illuminate the same 
sample location. Also, the extension of the region probed by the white light beam is reduced as small as possible 
( ∼ 5 µm) using two irises near its source (Fig. 2), matching as much as possible the ∼ 1 µm focus spot of the laser 
beam.

Lens choice.  The selection of a proper objective lens is critical for the ring pattern analysis. In addition to a 
working distance (WD) longer than the thickness of the upper half of the DAC, a high numerical aperture (NA) 
is required to preserve a wide incident angle and to collect multiple ring patterns, enhancing the accuracy of the 
multiple-circle fitting and of the ns and ts measurements. For example, when an objective lens with NA = 0.42 is 
replaced by that with NA = 0.55, the number of rings increases by 50% (Fig. 9). The use of high NA lens pays off 
especially at high pressure as both of sample thickness and ring pattern number diminish together, although it 
possibly increases the Image aberration (see section “Image aberration”).

Focus position.  Once all the error sources mentioned above are resolved, the accuracy of our interferom-
etry measurements is now mainly dependent on the focus position. Particularly, the focus position significantly 
affects the ring pattern analysis due to its angular resolution. The interferograms are taken at the middle of the 
sample thickness between the front- and rear-anvil culets. We first define the z positions of the two sample-anvil 
interfaces by manually adjusting the z-axis micrometer stage and focusing at the gasket surface and the dust par-
ticles on the culets, and then move the stage to their mid-position. The uncertainty related to the focus position 
is evaluated by measuring ten independent ring patterns from an empty DAC having a ∼18.4 µm gap. At each 
measurement, the focus position (in z axis) is re-adjusted while the sample location (in x and y axes) is fixed. The 
refractive indices from ten measurements at 0 µm (the middle of sample thickness) are scattered within 10−4 as 
shown in Fig. 10, which is our random measurement uncertainty. In addition, we find a linear increase of the 
refractive index with varying focus position. Given that the depth of field [DOF = � (n2 −NA2)0.5/(2NA2) ] is 
less than 2 µm and the z-axis micrometer has 10 µm division in this study, the precision within ± 5 µm focus 
position is only 2 × 10−4 . Therefore, the 10−4 precision in our interferometry measurements, which is much 
smaller than the random uncertainties in previous studies on water from 0.0113,14,18,19 to 0.00112 and to 0.000512, 
is reasonable. As our method provides the refractive index and thickness of a sample independently (see section 
“Refractive index of a compressed sample”), we obtain also a random error for the sample thickness measure-
ment to be 0.01% from the same ten measurements described above.

Image aberration.  The use of thick diamond anvils as the optical windows, their misalignment and 
cupping38, and the high NA objective lens possibly cause the image aberration as stated in “Correction of image 
aberration”. Since the deformation of anvils is negligible in the few GPa range and the anvils are well aligned 

Figure 9.   Comparison of ring patterns obtained from objective lenses having different numerical aperture (NA) 
values of (left) 0.42 and (right) 0.55. More rings can be obtained by a lens with a higher NA. The patterns are 
obtained from the empty DAC with an air gap.
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using a typical Newton ring method, the correction relation for the image aberration (Eq. 5) in the individual 
DACs would not change during the tests, but could be different from each other. To estimate the related uncer-
tainty, we measure another empty DAC to obtain the correction relation r′ab and recalculate the refractive index 
of water in Fig. 6a with this relation. The difference between the initial and recalculated indices shows a standard 
deviation of 5.0 × 10−4 as shown in Fig. 6c, which we consider as our dominant sources of systematic uncertainty, 
five times higher than the random uncertainty (10−4 in section “Focus position”). Then, the total uncertainty, a 
quadrature sum of the random and systematic uncertainties, is 5.1 × 10−4 . Following the error analysis on the 
refractive index, the systematic error is estimated to be 0.2% yielding a 0.2% total uncertainty on the determina-
tion of the sample thickness.

Conclusion
We demonstrated the accuracy of the refractive index measurement in the DAC using our advanced interferom-
eter setup. The improvements in the experimental setup and the data analysis methodology enable us to achieve 
a 10−4 random error. Using this technique, the index at 532 nm and the dispersion over 500–700 nm of water 
are reported in the liquid and ice VI phases with increasing pressure up to 2.21 GPa. We describe the linear 
index-density relations in each phase with the modified Gladstone–Dale model and reveal the pressure-induced 
change in molecular polarizability with the Lorentz–Lorens model. Detailed studies of the pressure, density, and 
wavelength dependences of the refractive index of water and water-rich planetary ices mixtures as well as their 
high-pressure electronic structures will be described in upcoming publications.
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