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Peptide hormones commonly binding with G-protein coupled receptors (GPCRs) achieve

their function in reproduction. The peppermint shrimp Lysmata vittata popular in marine

ornamental trade and is known to display protandric simultaneous hermaphrodite

(PSH). Knowledge on reproductive biology of this commercial species is critical for

resources management and aquaculture. This study employed Illumina sequencing

and bioinformatics analysis to identify peptides and their candidate GPCRs from male

phase (MP) and euhermaphrodite phase (EP) of L. vittata. A total of 61 peptide and 40

peptide GPCR transcripts derive from 44 peptide families and 13 peptide GPCR families

were identified, respectively. Among them, insulin-like androgenic gland hormone and

crustacean female sex hormone have two unique mature peptides, respectively, and their

transcripts showed higher expression levels in MP than EP, which suggest that these sex

differentiation hormones might be involved in sexual characters than spermatogenesis or

vitellogenesis. Overall, the first study on identification of peptides and their GPCRs in the

genus Lysmata extends our knowledge of peptidergic signaling in PSH species, and

provides an important basis for development of aquaculture strategies.
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INTRODUCTION

Peptide hormones play an important role in crustaceans reproduction. Crustacean hyperglycemic
hormone superfamily (CHHs) are the typical crustacean peptide hormones. They are classified
into type-I [CHH-type, comprised of crustacean hyperglycemic hormone (CHH) and ion transport
peptide (ITP)] and type-II [MIH-type, comprised of molt-inhibiting hormone (MIH), mandibular
organ-inhibiting hormone (MOIH), and vitellogenesis/gonad-inhibiting hormone (VIH/GIH)]
peptides, involved in inhibiting ecdysteroid, methyl farnesoate, and vitellogenin synthesis (1).
Insulin-like androgenic gland hormone (IAG) secreted by a crustacean male-specific androgenic
gland (AG) is regarded as a peptidergic hormone and regulates male sex differentiation. IAG
silencing in the giant prawn Macrobrachium rosenbergii (2) and red claw crayfish Cherax
quadricarinatus (3) resulted in masculinization arrest and functional sex reversal, leading to the
production of monosex populations (4). Moreover, IAG is not the sole sex differentiation hormone
in crustaceans, and crustacean female sex hormone (CFSH), a specific hormone that plays critical
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role in female reproductive phenotypes was recently isolated
from the eyestalk of female blue crab Callinectes sapidus (5).
Silencing CFSH impairs the mating and maternal care structures
of females, such as absent or misplaced gonopores, sharper
abdomens, as well as shorter and fewer setae on pleopods (5).
Recent studies have found that several peptide hormones are
also involved in crustacean reproduction. This includes the
pigment-dispersing hormone (PDH) (6), neuroparsin (7), red
pigment concentrating hormone (RPCH) (8), neuropeptide F
(NPF) (9), short neuropeptide F (sNPF) (10), and allatostatin
(AST) (11).

The colorful Lysmata shrimp collected from their natural
environments is popular in marine ornamental trade, which
are collected from their natural environments (12). Considering
its growing demand in marine ornamental industry, it is
important to study its reproductive biology for natural
resources conservation and development of breeding techniques.
Different from the gonochoristic reproductive system in most
crustaceans, protandric simultaneous hermaphrodite (PSH)
has been confirmed in all known species in genus Lysmata
(13, 14). In PSH, the shrimp first develops as male (male
phase, MP), and later become simultaneous hermaphrodite
(euhermaphrodite phase, EP) which simultaneously produces
sperms and eggs (13–15).

The peppermint shrimp Lysmata vittata is a small red-
striped species, found in the coast of China, Japan, Philippines,
Indonesia, and Australia (16–19). This species was also
reported to have invaded the Atlantic Ocean, New Zealand
and Brazil (12, 20, 21). Based on its histological features,
four gonadal development stages (Stage I to IV) were
defined for L. vittata. Among the four stages, stage I to III
were defined as the male phase, during which testicular
part of the gonads gradually develops and matures but the
ovarian part remains immature. Stage IV was identified as
euhermaphrodite phase, where both the testicular part and
the ovarian part of the gonad mature (15). To date, study
on the reproductive biology of L. vittata has mainly focused
on: (1) the reproductive cycle of laboratory-reared (22), (2)
ontogenetic development of gonads, and (3) external sexual
characteristics (15). However, the reproduction molecular
mechanisms, especially the information about peptide
hormones is still unclear. Using Illumina sequencing and
bioinformatics analysis, this paper tries to identify the peptide
repertoire and their GPCRs in L. vittata, highlighting two
sex differentiation peptide hormones, IAG and CFSH. This is
useful for understanding specific PSH reproductive regulatory
mechanism, and for supporting aquaculture to meet the
emerging demand.

MATERIALS AND METHODS

Animals
L. vittata shrimps were cultured in the aquarium at Fisheries
Research Institute of Fujian, Xiamen, China. Prior to dissections,
the shrimps were anesthetized on ice for 5min. Our study does
not involve endangered or protected species.

Illumina Sequencing
Total RNA from mixed tissues of MP carapace (mixture of 5
individuals, body weight 86–100mg, stage I and stage II) and
EP carapace (mixture of 3 individuals, body weight 260–300mg,
stage IV), was extracted using Trizol Reagent (Invitrogen),
followed by Illumina sequencing. Briefly, mRNA with poly (A)
was isolated from total RNA using Oligo (dT) beads (Invitrogen).
ThemRNAwas broken into short fragments (about 200 bp) using
fragmentation buffer. These fragments were used as templates to
synthesize the first-strand cDNA with random hexamers, after
which a second-strand cDNA was synthesized. Adaptors were
ligated onto the second-strand cDNA following by Illumina
Hiseq sequencing (HiSeq 4000 SBS Kit (300 cycles), Illumina).
The raw reads were quality controlled using Trimmomatic
to generate clean reads, before performing de novo assembly
through Trinity (v2.5.1). All clean reads were aligned with
Bowtie2 (v2.3.4), followed by joint abundance estimation and
RSEM to calculate transcripts per million (TPM) values.

Bioinformatics Analysis
Peptide and GPCR sequences were collected from the shrimp
de novo assembly. To identify peptide, we used the well-
established workflow (23). Signal peptide of the peptide
precursors were predicted using SignalP 4.1 (http://www.cbs.
dtu.dk/services/SignalP/). Prohormone cleavage sites prediction
based on the standards were defined by Veenstra (24) and
the peptide structures were predicted based on the established
propeptide processing schemes (25–27). GPCRs identification
was performed as our previous study (28). Deorphanized
peptide GPCRs from insects and reported peptide GPCRs
from crustaceans were used as reference sequences (28–37).
A phylogenetic tree was built with related sequences of these
GPCRs and L. vittata GPCRs transmembrane domains. Multiple
sequence alignment was performed with ClustalX and the
conserved sequence motifs were highlighted by LaTEX TexShade
(38). The phylogenetic analysis was calculated using PhyML
(SeaView software) (39) and the resultant phylogenetic tree was
visualized with Figtree v1.4.3 and Photoshop CS 6.

RESULTS

The mRNA-sequencing and de novo assembly data are shown in
Table S1. The assembled transcripts (N = 71,009) had a total size
of 65,718,743 bp, an average size of 925.5 bp and N50 assembled
transcripts with 1687 bp long. Using transcriptome mining, a
total of 61 peptide and 40 peptide GPCR (34 belonging to A-
family GPCRs (Lv-GPCR-A) and 6 belonging to B-family GPCRs
[Lv-GPCR-B)] transcripts were predicted in L. vittata. These
peptides included: adipokinetic hormone-corazonin-like peptide
(ACP), agatoxin-like peptide, allatostatin-A (AST-A), AST-B,
AST-C, AST-CC, AST-CCC, bursicon hormone, calcitonin,
calcitonin-like diuretic hormone (DH31), CCHamide, CRF-like
DH44, crustacean cardioactive peptide (CCAP), crustacean
female sex hormone (CFSH), crustacean hyperglycemic
hormone (CHH), molt-inhibiting hormone/gonad-inhibiting
hormone (MIH/GIH), CHH-MIH-like peptide, ecdysis
triggering hormone (ETH), eclosion hormone (EH), EFLamide,
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FLRFamide, glycoprotein-A2 (GPA2), glycoprotein-B5 (GPB5),
Hyrg, insulin-like androgenic gland hormone (IAG), kinin,
myosuppressin, natalisin, neuroparsin, neuropeptide F (NPF),
orcokinin, pigment-dispersing hormone (PDH), proctolin,
pyrokinin, red pigment-concentrating hormone (RPCH),
RYamide, short neuropeptide F (sNPF), SIFamide, sulfakinin,
tachykinin, terminal ampullae peptide (TAP), trissin and
vasopressin. The peptide and GPCR transcripts source and
their expression levels (TPM values) are summarized in
Supplementary files (Supplementary File 1 and Table S1). Most
of the peptide transcripts TPM values (51 out of 61 transcripts)
in MP are higher than those in EP (Table S1). Although the
expression levels of GPCRs are generally lower than peptides,
their expression patterns are similar, i.e., GPCR transcripts TPM
values (33 out of 40 transcripts) in MP are higher than those in
EP (Table S1).

Adipokinetic Hormone-Corazonin-Like
Peptide (ACP)
Two transcripts putatively encoded complete ACP
precursors of 104 and 99 amino acids (aa), respectively
(Supplementary File 1). These precursors have the same mature

peptide, pQITFSRSWVPQamide, a highly conserved decapod
ACP peptide [e.g., (40–42)].

Agatoxin-Like Peptide
One transcript was identified to encode agatoxin-like peptide
precursor of 111aa (Supplementary File 1). From this precursor,
a 21aa signal peptide and three distinct peptides were
predicted, one of which, WRSCIPRGGSCTHRPKSCCNSSSCR-
CNLWGTNCRCQRMGLFQQLamide, shows 8 cysteine residues
and amidated C-terminus associated with insect and decapod
agatoxin-like peptides (43). Similarly, apart from toxic purposes,
agatoxin-like peptide were identified in the neuroendocrine
system of honey bee Apis mellifera and other insects (44).

Allatostatin (AST)
Three transcripts, a complete (AST-A2), a C-terminus (AST-
A2) and a middle region (AST-A3) transcript with 334, 332 and
77aa, respectively that encode AST-A precursors were identified
(Supplementary File 1). A total of 38 predicted peptides
containing FGLamide were highly conserved motif derived from
these precursors (Figure 1). Apart from SKSFSFGLamide, the
rest of these peptides possess a conserved C-terminal motif
YXFGLamide, e.g., SPGYAFGLamide, the signature of AST-A

FIGURE 1 | Identification and characterization of mature peptides in Lysmata vittata. Schematic showing the mature peptides of ASTs, CHHs, EFLamide, FLRFamide,

Kinin, Natalisin, Neuroparsin, Orcokinin, Pyrokinin, sNPF, and Tachykinin identified in Lysmata vittata. Logo is shown above alignments, where the height of each letter

is proportional to the observed frequency of the corresponding amino acid in the alignment column.
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family (45). One transcript putatively encoded the complete
AST-B precursor with 350aa. This precursor has 12 predicted
mature peptides with a XWXXXXGXWamide conserved
motif (Figure 1), e.g., ADWSSMRGTWGamide sequence, the
signature of AST-B family (45). Three transcripts, two C-
terminus partial regions (AST-C, AST-CC) and one full-
length protein (AST-CCC), with 137, 192 and 108 aa,
respectively that encode AST-C precursors were identified
from the transcriptome assembly (Supplementary File 1). Each
precursor possessed a predicted peptide with conserved motif
XCXFNXXSCFX (Figure 1), i.e., pQIRYHQCYFNPISCF from
AST-C, GNNNDGRLYWRCYFNAVSCF from AST-CC, and
SYWKQCAFNAVSCFamide from AST-CCC (a disulfide bridge
between cysteine residues in each peptide), previously reported
decapod AST-C isoforms signature (46–49).

Bursicon Hormone
The heterodimeric peptide bursicon hormone alpha and beta
subunit sequences were identified from the transcriptome
assembly, encoding bursicon hormone alpha and bursicon
hormone beta precursor of 148 and 136aa, respectively
(Supplementary File 1). Both of these precursors start with a
predicted signal peptide, followed by adjacent mature peptide
with 11 cysteine residues.

Calcitonin
A single calcitonin transcript encodinng 164aa precursor
was identified (Supplementary File 1). It comprised of 21aa
signal peptide and three distinct peptides, one of which, T
CYINAGLSHGCDYKDLVGAMAEKNYWDSLNSPamide (a
disulfide bridge between two cysteine residues) is identical in
structure to calcitonin from several decapod species, e.g., M.
rosenbergii, the American lobster Homarus americanus, the
crayfish Procambarus clarkii (43).

Calcitonin-Like Diuretic Hormone (DH31)
The predicted DH31 precursor was composed of 142aa
with 23aa signal peptide and three distinct peptides
(Supplementary File 1), where one of the peptides,
GLDLGLGRGFSGSQAAKHLMGLAAANFAGGPamide,
possesses conserved motif XXDXGLXRGXSGXXXAKXXX
XXXXANXXXGPamide, the signature of DH31 family. Similar
to calcitonin, L. vittata DH31 is identical in structure to DH31
from several decapod species, e.g., H. americanus,M. rosenbergii
(43, 46, 50).

CCHamide
A single transcript encoding CCHamide precursor was
identified (Supplementary File 1), starting with a 23aa
signal peptide, followed by a C-terminal amidated peptide,
i.e., VPKGGCLNYGHSCLGAHamide (a disulfide bridge
between two cysteine residues), exhibiting conserved motif
XCXXW/Y/FGXXCXGXHamide of CCHamide (51).

CRF-Like DH44
A single transcript was identified to encode incomplete CRF-
like DH44 precursor with 230aa (Supplementary File 1). This
precursor has a 45aa mature peptide, i.e., NSGLSLSIDAS

MKVLREALYLEMARKKQRQQMLRARHNQALLTTIamide, is
similar to the previously described M. rosenbergii DH44
isoform, SSGLSLSIDASMKVLREALYLEMARKKQRQQMQRA
RHNQELLTSIamide (43, 50).

Crustacean Cardioactive Peptide (CCAP)
A single transcript was identified to encode CCAP precursor of
141aa (Supplementary File 1). A 30aa signal peptide and five
distinct mature peptides were predicted from CCAP precursor,
one of which, PFCNAFTGCamide (a disulfide bridge between
two cysteine residues), is identical to previously described
authentic CCAP, a conserved arthropod peptide [e.g., (25, 45)].

Crustacean Female Sex Hormone (CFSH)
Two transcripts were identified to encode CFSH precursors
representing the partial N-terminus (CFSH1a) and complete
protein (CFSH1b) of 208 and 229aa, respectively. A 35aa signal
peptide, a CFSH precursor-related peptide and a part of the
136aa mature peptide with 6 cysteines were predicted from
CFSH1a. Similarly, the CFSH1b has a 33aa signal peptide, a CFSH
precursor-related peptide and the 163aa mature peptide with 8
cysteines (Supplementary File 1). Both mature peptides (except
two cysteine residues lacking in CFSH1a) showed similar cysteine
residues with the other decapod CFSHs (43). The phylogenetic
tree revealed that two L. vittata CFSHs clustered with previously
described decapod CFSH1 isoforms (43), and were analogous
to M. rosenbergii CFSH1a and CFSH1b respectively (Figure S1).
Therefore, we arbitrarily named them as L. vittata CFSH1a and
L. vittata CFSH1b in our study.

Crustacean Hyperglycemic Hormone
Superfamily (CHHs)
Nine CHHs transcripts were identified from the transcriptome
assembly. Phylogenetic analysis showed that the CHHs formed
two major clades: type-I CHHs and type-II CHHs. Overall,
type-I CHHs clade contained three subclades: the CHHs
ortholog containing CHH1-4, the CHHs ortholog containing
CHH5 and CHH6, and the CHH-MIH-like peptide ortholog.
In type-II CHHs clade, MIH/GIH2, the oriental river prawn
Macrobrachium nipponense GIH, M. rosenbergii SGP-B and
the Antarctic shrimp Chorismus antarcticus MIH/VIH formed
a subgroup, separate from the M. nipponense MIH ortholog
containing MIH/GIH1 (Figure 2).

Crustacean Hyperglycemic Hormone
(CHH)
Six transcripts were identified to encode four complete (CHH1,
CHH2, CHH5, and CHH6), one N-terminus (CHH4) and
one middle region (CHH3) CHH precursors. Altogether, these
sequences have a CHH precursor-related peptide (CHH-PRP)
between signal peptide and mature peptide. CHH1 precursor
has a 26aa signal peptide, a 37aa CHH-PRP and a 72aa
mature peptide with amidated C-terminus and 6 cysteines.
CHH2 precursor has a 27aa signal peptide, a 43aa CHH-
PRP and a 73aa mature peptide with 6 cysteines. CHH3
precursor has a partial signal peptide, a 44aa CHH-PRP and
a part of mature peptide with 1 cysteine. CHH4 precursor
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FIGURE 2 | Phylogeny of CHHs. Cladogram of CHHs showing connections in the clustermap of CHHs.

has a 21aa signal peptide, a 34aa CHH-PRP and a partial
mature peptide (20aa) with 1 cysteine. CHH1-4 were shown
to be highly conserved sequences at the N-terminus of their
mature peptides (Figure 1). CHH5 precursor has a 29aa signal
peptide, a 32aa CHH-PRP and a 73aa mature peptide with
6 cysteines. CHH6 precursor has a 28aa signal peptide, a
31aa CHH-PRP and a 73aa mature peptide with 6 cysteines
(Supplementary File 1 and Figure 1). Different from CHH1-
4, CHH5, and CHH6 exhibited high sequence similarity
with 3 Caridea CHHs, with a conserved C-terminus: AIAXX
(Figure 3).

Molt-Inhibiting Hormone/Gonad-Inhibiting
Hormone (MIH/GIH)
Two transcripts were identified to encode MIH/GIH precursors
with 110 and 112aa, respectively. They lack CHH-PRP and have
an additional specific glycine in position 12 of the mature peptide
(Gly12). The precursor MIH/GIH1 has a 32aa signal peptide and
a 75aa mature peptide with amidated C-terminus. The precursor

MIH/GIH2 has 34aa signal peptide and 75aa mature peptide with
amidated C-terminus (Supplementary File 1 and Figure 1).

CHH-MIH-Like Peptide
One transcript was identified to encode 133aa CHH-MIH-like
peptide precursor with a 29aa signal peptide and a 104aa mature
peptide with 6 cysteines (Supplementary File 1 and Figure 1).
This peptide defies the rules of CHH superfamily, i.e., lacks the
CHH-PRP and Gly12, and it is closer to the type-I CHHs than to
type-II CHHs cluster (Figure 2). It exhibits similar characteristics
of CHH-MIH-like peptide from several decapod species such
as, P. clarkii, E. sinensis and the white shrimp Litopenaeus
vannamei (43).

Ecdysis Triggering Hormone (ETH)
One transcript was identified from the transcriptome assembly
to encode ETH precursor of 135aa (Supplementary File 1).
A 19aa signal peptide and two distinct mature peptides
were predicted from the ETH precursor, one of which,
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FIGURE 3 | Comparative sequence alignment of CHHs with “AIAXX” in different Caridea. Comparative sequence alignment of CHHs with “AIAXX” in Lysmata vittata

with Pandalopsis japonica, Caridion steveni and Periclimenes brevicarpalis. Sequence logo is shown above alignments.

i.e., DAGHFFAETPKHLPRIamide, is identical in structure to
decapod ETH isoforms [e.g., (43)].

Eclosion Hormone (EH)
One transcript was identified to encode EH precursor of 82aa,
starting with a 26aa signal peptide, followed by a 52aa mature
peptides with 6 cysteines, i.e., ASITSMCIRNCGQCKEMYGDYF
HGQACAESCIMTQGVSIPDCNNPATFNRFL. This is identical
in structure to EH from several decapod species, e.g., M.
rosenbergii, P. clarkii (37, 43, 50).

EFLamide
One transcript was identified to encode the N-terminus
EFLamide precursor of 210aa, starting with a 21aa signal peptide
(Supplementary File 1). Eleven peptides were predicted from
this precursor, five possessing the conserved motif GSEFLamide
(Figure 1), e.g., IGSEFLamide, AMGSEFLamide, the signature of
EFLamide (or called GSEFLamide) family [e.g., (43, 52)]. One
of these predicted peptide with incomplete sequence, AMG, was
predicted as the N-terminus of EFLamide isoform.

FLRFamide (FMRFamide)
One transcript was identified to encode FLRFamide
precursor with 335aa, starting with a 19aa signal peptide
(Supplementary File 1). Seventeen mature peptides were
predicted from FLRFamide precursor, nine of which, are 7-10aa
in length with conserved motif NFL/IRFamide (Figure 1), e.g.,
GYVDRNFLRFamide, and AAHKNFIRFamide, the signature of
FLRFamide family [e.g., (45)].

Glycoprotein-A2 (GPA2)
The predicted GPA2 precursor has 18aa signal peptide and part
of mature peptide with 4 cysteines (Supplementary File 1), i.e.,
FQHAWQTPGCHKVGHTRKISIPECVEFDITTNACRGYCE,
which shows highly conserved sequence like previously
described decapod GPA2 isoforms, e.g., it is 92% identical in
protein sequence to C. quadricarinatus GPA2 isoform (53).

Glycoprotein-B5 (GPB5)
One transcript was identified to encode GPB5 precursor starting
with a signal peptide with no N-terminus, followed by a
125aa C-terminal amidated mature peptide with 10 cysteines
(Supplementary File 1). It shows a major sequence similarity
to previously described decapod GPA5 isoforms, e.g., it is 87%
identical/94% positives to GPA5 of L. vannamei (43).

Hyrg
Two transcripts were identified to encode Hyrg precursors with
60aa and 63aa. Each precursor is composed of a signal peptide
and a mature peptide. The peptides, i.e., YPEPAVIVDGRPNM
IPDGYIQAPRFHYRGFQKPIPKYDWS from Hyrg1, LPEAAVI
VEGRPNRAPDDGYVQAAPPRFHYRGFQKFVPKYDWS from
Hyrg2, possess conserved motif RFHYRGF, the signature of
decapod Hyrg isoforms (43).

Insulin-Like Androgenic Gland Hormone
(IAG)
Two transcripts were identified to encode IAG precursors with
146aa and 153aa (Supplementary File 1). IAG1 precursor has
a 28aa signal peptide, a 30aa B chain, a 42aa C peptide, and
a 45aa A chain. IAG2 precursor has a 27aa signal peptide, a
32aa B chain, a 41aa C peptide, and a 38aa A chain. Both
IAGs have 8 cysteine residues located at B chain and A chain,
and exhibits similar characteristics as previously described IAG
isoforms (4). Different from other crustaceans, they have 9 and
4aa residues between Cys4 and Cys5 in A chain of IAG1 and
IAG2, respectively (Figure 4).

Kinin
Two nucleotide sequences were identified from the
transcriptome data putatively coding for two incomplete
kinin precursors with 142 and 114aa (Supplementary File 1).
Both have no signal peptide. Twelve peptides were predicted
from kinin1 precursor, and the first peptide lacks N-terminus.
Fourteen peptides were predicted from kinin2 precursor, and
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FIGURE 4 | Comparative sequence alignment of IAG in different decapod. Comparative sequence alignment of IAG precursors in Lysmata vittata with Sagmariasus

verreauxi, Jasus edwardsii, Procambarus virginalis, Procambarus fallax, Procambarus clarkii, Portunus pelagicus, Cherax destructor, Cherax quadricarinatus,

Litopenaeus vannamei, Penaeus monodon, Penaeus chinensis, Penaeus japonicus, Lysmata wurdemanni, Macrobrachium vollenhovenii, Macrobrachium rosenbergii,

Macrobrachium lar, Palaemon paucidens, Palaemon pacificus, Pandalus platyceros, Callinectes sapidus, Scylla paramamosain, Portunus trituberculatus, Chaceon

quinquedens, and Eriocheir sinensis. Sequence logo is shown above alignments. Six conserved cysteines are highlighted in the sequence logo shown above

alignments and the putative disulfide bridges are drawn with red line.

the last peptide has no glycine, which is represent C-terminus
amidation. Apart from these incomplete peptides, sequences of
11 mature peptides have conserved motif: XFX-A/P-WAamide

(Figure 1), e.g., QSFSAWAamide, and QAFSPWAamide, the
signature of kinin family (e.g., 45) (Supplementary File 1 and
Figure 1).

Myosuppressin
The predicted 102aa myosuppressin precursor has a 31aa signal
peptide (Supplementary File 1). Three distinct peptides were
predicted from this precursor, one of which is identical in
structure to conserved decapod myosuppressin family, i.e.,
pQDLDHVFLRFamide [e.g., (45)].

Natalisin
The predicted incomplete natalisin precursor has 102aa
(Supplementary File 1). Six predicted mature peptides were
released from this precursor with conserved C-terminal

WXXRamide (Figure 1), e.g., EDSNLYSLVSDKEPSEINPFW
VARamide, EGESNPYWIARamide, the signature of natalisin
family [also called WXXRamide, e.g., (43)].

Neuroparsin
Three transcripts were predicted to encode neuroparsin
precursors with 99-101aa. These precursors are composed of
signal peptide and the mature peptide with 12 aligned cysteines
(Supplementary File 1 and Figure 1). These mature peptides
show highly conserved sequences as previously described
neuroparsin isoforms, e.g., L. vittata neuroparsin1 is 63%
identical/73% positive in protein sequence to L. vannamei
neuroparsin [e.g., (43, 54)].

Neuropeptide F (NPF)
Two NPF transcripts were identified to encode 112 (NPF1)
and 127aa (NPF2) precursors with 31aa and 29aa signal
peptide (Supplementary File 1). Four distinct peptides were
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predicted from NPF precursors, two of which possess the
C-terminal motif RPRFamide, the hallmarks of NPF family
members, i.e., ARTDNTAEVLQAMHEASLAGMLSSAEVPYP-
SRPNVFKSPVELRQYLDALNAYYAIAGRPRFamide,
KPDPTQLAAMADALKYLQELDKYYSQVSRPSPRSAPG-
PASQIQALEKTLKFLQLQELGKLYSLRSRPRFamide (45).

Orcokinin
The predicted orcokinin precursor is composed of 140aa, and
starts with a 22aa signal peptide (Supplementary File 1). Eight
mature peptides were predicted from orcokinin precursor, where
five adjacent mature peptides separated by “KR” cleavage sites
possess N-terminal motif NFDEIDRX (Figure 1), the signature
of orcokinin family members; and one (named orcokinin-
1), i.e., FDSFTTGFGHS, an identified decapod orcomyotropin
isoform (45).

Pigment-Dispersing Hormone (PDH)
Two transcripts were identified to encode PDH precursors
with 83 and 79aa (Supplementary File 1). The precursor
PDH1 has a 22aa signal peptide and mature octadecapeptide:
NSELINSLLGLPKVMNDAamide, similarly, PDH2 has
a 22aa signal peptide and the mature octadecapeptide:
NSGMINSLLGIPKVMTDAamide. The two mature
octadecapeptides exhibit highly conserved sequences as
previously described decapod PDH isoforms (e.g., 43), e.g., L.
vittata PDH1 is identical to the PDH predicted from L. vannamei
PDH1 precursor (55).

Proctolin
The predicted 108aa proctolin precursor has a 22aa signal peptide
(Supplementary File 1). Three distinct peptides were predicted
from proctolin precursor, one of which, i.e., RYLPT, is identical
to the authentic proctolin [i.e., (25, 45)].

Pyrokinin
One transcript was identified to encode 272aa pyrokinin
precursor with a 18aa signal peptide (Supplementary File 1).
Sixteen peptides were predicted from pyrokinin precursor,
thirteen of which are 7-9aa in length with conserved motif
PRLamide, e.g., SPFSPRLamide, GDFAFSPRLamide, the
pyrokinin family signature [i.e., (45)].

Red Pigment-Concentrating Hormone
(RPCH)
One transcript was identified to encode incomplete RPCH
precursor with 91aa, starting with a 21aa signal peptide
(Supplementary File 1). Three distinct peptides were predicted
from RPCH precursor, one of which, i.e., pQLNFSPGWamide, is
identical to the authentic RPCH [i.e., (45)].

RYamide
One transcript was identified to encode RYamide precursor
representing a C-terminus region (Supplementary File 1). Two
distinct peptides were predicted from this precursor, one of
which is an incomplete peptide with conserved “RYamide” motif,
i.e., SSPSQSELPEIKIRSSRFIGGSRYamide, the RYamide family
signature [i.e., (45)].

Short Neuropeptide F (sNPF)
The 173aa sNPF precursor was identified from the transcriptome
data, and starts with a signal peptide (Supplementary File 1).
Nine distinct peptides were predicted from this precursor,
four of which are 8-11aa long with PXXRLRF/Yamide

conserved motif, i.e., GPPSMRLRFamide, SEPSLRLRYamide,
KDRTPALRLRFamide, APALRLRFamide, the sNPF family
signature [i.e., (45)].

SIFamide
One transcript was identified to encode 76aa SIFamide precursor,
starting with a 27aa signal peptide (Supplementary File 1). Two
distinct peptides were predicted from SIFamide precursor, one
of which, GYRKPPFNGSIFamide, identical to Gly1-SIFamide
isoform [i.e., (45)].

Sulfakinin
One transcript was identified to encode 122aa sulfakinin
precursor with a 21aa signal peptide (Supplementary File 1).
Five distinct peptides were predicted from this precursor, where
two adjacent mature peptides, pQFDEY(SO3H)GHMRFamide
and AGGDYDDY(SO3H)GHLRFamide separated by
carboxy-peptidase cleavage sites, possess conserved motif
Y(SO3H)GHM/LRFamide, the signature of sulfakinin family [i.e.,
(45)].

Tachykinin
The putative tachykinin precursor is comprised of 217aa,
starting with a 26aa signal peptide. Twelve predicted peptides
were released by two dibasic cleavage sites (RK, KK, RR)
(Supplementary File 1). Seven peptides have the same sequence:
APSGFLGMRamide (Figure 1), a broadly conserved decapod
tachykinin isoform [i.e., (45)].

Terminal Ampullae Peptide (TAP)
One transcript encoding TAP precursor was found in
transcriptome data. This precursor composed of a 18aa
signal peptide and 70aa mature peptide with 8 cysteine residues
(Supplementary File 1). This peptide has 77% identical/92%
positive amino acid sequence compared to the TAP predicted
fromM. rosenbergii TAP precursor (56).

Trissin
The predicted 200aa trissin precursor has no signal peptide
(Supplementary File 1). Two distinct peptides were predicted
from trissin precursor, one of which is a partial C-terminus
peptide, i.e., +EVSCGSCGLECQKACGTRNFRACCFNFQ.
It has 89% identical/89% positive amino acid sequence
compared to the trissin predicted from C. quadricarinatus trissin
precursor (53).

Vasopressin
One transcript was found from transcriptome data to encode
148aa full-length vasopressin-neurophysin precursor starting
with a 19aa signal peptide (Supplementary File 1). Three
distinct peptides were predicted from vasotocin-neurophysin
precursor, one of which, CFITNCPPGamide (with a disulfide
bridge between two cysteine residues), is structurally identical
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to vasopressin family (i.e., 42,43). One has a 100aa peptide
with fourteen cysteine residues, and exhibits highly conserved
sequence to previously described decapod neurophysin
isoforms (23).

Peptide GPCRs
A total of 40 candidate peptide GPCR transcripts were predicted
from L. vittata. To identify these GPCRs orthologs, hundreds
of known peptide GPCRs from arthropod were collected
for building phylogenetic tree. Phylogenetic analysis showed
that 28 of these were clustered with known peptide receptor
orthologs (Figures 5, 6). Lv-GPCR-A1 and Lv-GPCR-A2 were
clustered with the AST-A receptor ortholog. Lv-GPCR-A3 was

clustered with CCAP receptor ortholog. Lv-GPCR-A4 was
clustered with the FMRFamide receptor ortholog. Lv-GPCR-
A5 and Lv-GPCR-A6 were clustered with the natalisin receptor
ortholog. Lv-GPCR-A7 was clustered with the NPF receptor
ortholog. Lv-GPCR-A8 and Lv-GPCR-A31 were clustered with
the RYamide receptor ortholog. Lv-GPCR-A9, Lv-GPCR-A10,
Lv-GPCR-A14, Lv-GPCR-A15, Lv-GPCR-A18, Lv-GPCR-A19,
Lv-GPCR-A20, Lv-GPCR-A27 were clustered with the Moody
&Tre ortholog. Lv-GPCR-A13 and Lv-GPCR-A30 were clustered
with the ETH receptor ortholog. Lv-GPCR-A16 and Lv-GPCR-
A17 were clustered with the GPA2/GPB5 receptor ortholog. Lv-
GPCR-A23, Lv-GPCR-A25, Lv-GPCR-A29, and several putative
CHH receptors were clustered with Bombyx mori BNGR-A34,

FIGURE 5 | Phylogeny of the A-family peptide GPCRs. Cladogram of peptide GPCRs showing connections in the clustermap of A-family peptide receptors.

Lv-GPCR, Lysmata vittata GPCR; Pc-GPCR, Procambarus clarkii GPCR; Sv-GPCR, Sagmariasus verreauxi GPCR; Sp-GPCR, Scylla paramamosain GPCR;

Zn-GPCR, Zootermopsis nevadensis GPCR.
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FIGURE 6 | Phylogeny of the B-family peptide GPCRs. Cladogram of peptide GPCRs depicting connections in the clustermap of B-family peptide receptors.

Lv-GPCR, Lysmata vittata GPCR; Pc-GPCR, Procambarus clarkii GPCR; Sv-GPCR, Sagmariasus verreauxi GPCR; Sp-GPCR, Scylla paramamosain GPCR;

Zn-GPCR, Zootermopsis nevadensis GPCR.

which has been defined as ITP receptor (57). Lv-GPCR-A33 was
clustered with the CCHamide receptor ortholog. Lv-GPCR-B1
and Lv-GPCR-B4 were clustered with the calcitonin-B receptor
ortholog. Lv-GPCR-B2 was clustered with the parathyroid
hormone receptor (PTH)-like receptor ortholog.

DISCUSSION

The RNA-seq and bioinformatics analysis is highly effective for
identifying peptides and their GPCRs (23, 26, 28, 37, 43, 58, 59).
In this study, 61 transcripts derived from 44 peptide families and
40 transcripts derive from 13 peptide GPCRs were identified.
This is the first study on genus Lysmata to characterize its peptide
repertoire and their GPCRs.

Comparison of Peptide Sequences
Considering that the L. vittata peptide transcripts were
computationally-generated from short reads and the mature
peptide structures were predicted based on a bioinformatics
workflow, the peptide repertoire from one Caridean shrimp, M.
rosenbergii reported before was chosen for sequence comparison
to provide increased confidence of the L. vittata peptide
sequences/structures reported in present study (43, 50). Overall,
sequence alignments of the predicted peptide amino acid
sequences in L. vittata and full-length M. rosenbergii peptide
precursors show that all peptides especially the mature peptides
are conserved in the two species (Supplementary File 2).
For example, the predicted mature peptides of calcitonin
(TCYINAGLSHGCDYKDLVGAMAEKNYWDSLNSPamide),
DH31 (GLDLGLGRGFSGSQAAKHLMGLAAANFAGGPami
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de), EH (ASITSMCIRNCGQCKEMYGDYFHGQACAESCIM
TQGVSIPDCNNPATFNRFL), and a large number of relative
short mature peptides (e.g., PQHYAFGLamide from AST-A,
ADWSSMRGTWamide from AST-B, QIRYHQCYNPISCF
from AST-C, DAGHFFAETPKHLPRIamide from ETH) from
L. vittata are identical in amino acid sequences/structures to
the corresponding mature peptides reported in M. rosenbergii.
This suggests the putative peptide sequences in our study are
mostly accurate.

In addition to the reported peptides data fromM. rosenbergii,
the peptide repertoire from another Lysmata species, a
marine shrimp Lysmata wurdemanni, was chosen for sequence
comparison. The L. wurdemanni peptide sequences from the
only public Lysmata transcriptome data, i.e., the L. wurdemanni
embryo and adult (brain and muscle) Sequence Read Archive
(SRA) (SRR8715485, SRR8715486), was downloaded for peptide
mining based on our bioinformatics workflow. A total of 78
transcripts derived from 45 peptide families were predicted
from L. wurdemanni, mainly significant amino acid similar to
those from L. vittata (Supplementary File 2). A large number of
peptide families were identified from the two Lysmata shrimps,
but a number of established peptide groups were not identified
in each shrimp. No sequences encoding CNMamide, corazonin,
elevenin, HanSolin, HIGSLYRamide, or RFLamide proteins were
found in the L. vittata assembly. Similarly, no sequences encoding
Bursicon, ETH, HanSolin, HIGSLYRamide, Hyrg, IAG, or
RFLamide proteins were found in the L. wurdemanni assembly.
Given the significant peptide sequence resemblance between
the two Lysmata shrimps, we hypothesize that CNMamide,
corazonin, and elevenin are likely to be found in L. vittata.
On the other hand, Bursicon, ETH and IAG are likely to be
found in L. wurdemanni. The hypothesis was verified when
L. wurdemanni IAG was cloned from the testicular part of L.
wurdemanni (60). In contrast, HanSolin, HIGSLYRamide and
RFLamide families are likely to be absent in L. vittata, as
these peptide families have not been identified from the current
Caridean shrimps peptide data (43, 50, 61). Of which, HanSolin
and RFLamide are recently-identified peptides from the stick
insect, Carausius morosus (62), and subsequently were found in
most Coleoptera species (63), and HIGSLYRamide have been
identified only from brachyuran [e.g., (23, 40, 41)]. Therefore,
additional transcriptome, peptidome, and/or a genome data
can be created to clarify the presence/absence of these peptide
families in L. vittata.

Peptides/GPCRs Expression
Given that the experimental design of each development stage
single libraries comprised of pooled RNA samples, we did
not investigate expression changes statistically. However, it is
possible that the expression values presented provides valuable
preliminary data to identify candidates for prospective study on
PSH species peptides. Similar to expression patterns of previously
reported peptides/GPCRs (23, 64–66), stage-specific expression
of peptides/peptide GPCRs existed in L. vittata, i.e., TPM values
of peptides/peptide GPCR transcripts in MP are higher than in
EP. In L. vittata MP, higher expression levels of the peptidergic
signaling promotes the growth of body size and development of

testicular part of the gonad. For instance, NPFs, sNPF and IAGs
have higher expression in MP, where NPF and sNPF were proved
as the feeding behavior controllers in arthropod (67), and NPF
has been shown to increase food intake in penaeid shrimp (68).
Similar functions of NPF and sNPF are proposed in L. vittata.
IAG is regarded as the regulator of male sex differentiation
in crustaceans (2–4), and high IAG expression in MP suggest
that IAG might be involved in promoting masculinization and
developing testicular part of the gonad in L. vittata. In contrast,
a number of peptides show different expression patterns, e.g.,
TPM values of two PDH transcripts in MP are lower than
those in EP. PDH regulates pigment distribution controlling
circadian rhythm (69), and also shows different expression levels
during the mud crab Scylla paramamosain vitellogenesis (6),
but the reproductive function of PDH is yet to be proved in
crustaceans. TAP shows high expression in both MP and EP,
i.e., TPM value of MP and EP is 24.3 and 29.9, respectively. In
M. rosenbergii, TAP was distributed on terminal ampullae and
sperms, as it participates in sperm proteolytic activity and plays
a key role in sperm maturation (56). We hypothesized that TAP
play similar functional roles in L. vittata sperm, in gonad of both
MP and EP (15). Moreover, TPM values of neuroparsins and
RPCH are higher than 15 in MP. They play a role in regulation
in crustacean ovarian development (7, 8). These results imply
that transcriptomes of different L. vittata gonadal stages should
be analyzed to assess reproductive differences in peptidergic
signaling in PSH species.

Key Peptides
Multiple members of the CHH superfamily contain 6 aligned
cysteine residues, and nine transcripts of these peptides were
found in this study. Given that CHH1-4 some regions in this gene
have the same sequences, we speculated they are from different
alternative splicing of one gDNA, and this phenomenon is
common in type-I CHHs (1, 70). The C-terminal motif “AIAXX”
of CHH5 and CHH6,members of type-I CHHs, seems to bemore
common in Caridean shrimps than other crustaceans. In type-II
CHHs, MIH, and GIH show high similarity in sequences, with
MIH participating in molting and GIH regulating reproduction
process. These genes have been subdivided based on primary
structures and motifs (71). However, this rule does not apply for
type-II CHHs in Caridea, making it difficult to subdivide MIH
and GIH based on primary structures in this species. Therefore,
we named two L. vittata type-II CHHs as “MIH/GIH”. These L.
vittata MIH/GIHs were clustered into two subgroups, in which
MIH/GIH2 was grouped withM. nipponense GIH. Type-II CHH
was reported to inhibit ovary development (72). This suggests
that MIH/GIH2 could be GIH. MIH/GIH (MIH/GIH1) was
grouped with the predicted M. nipponense MIH, implying that
may be MIH. CHH-MIH-like peptides were clustered with some
predicted shrimp ITPs, but it is not appropriate to name these
peptides as “ITP,” because they neither have the typical CHH-PRP
of ITP, nor are they similar to L. vannamei ITP, which modulate
osmoregulation in shrimp (73).

Two unique mature peptides of IAGs were found in a
species for the first time in this study. In the Chinese shrimp
Fenneropenaeus chinensis, two IAG isoforms were identified
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from one gene (74). Three C. sapidus IAG genes were identified
from AG, hepatopancreas and ovary. However, mature peptides
of these genes are identical (75–77). Only one IAG was cloned
from L. wurdemanni, and this IAG showed higher sequence
similarity with those of the genus Macrobrachium than with
the two L. vittata IAGs (60). In this study, expression levels
of two IAGs in MP shrimp were higher than in EP shrimp,
of which, the TPM value of IAG1 was 76 in MP shrimp, but
not expressed in EP shrimp. In L. vittata, it was reported that
the male external sexual character had disappeared whereas
testicular part had some degree of degeneration in EP shrimp
(15), of which were ascribed to the down-regulation of IAGs.
In M. rosenbergii, silencing of IAG not only arrested the
degeneration of male secondary sexual characteristics and
testis, but also prevented testicular spermatogenesis (2). M.
rosenbergii IAG dsRNA injections canceled spermatozoa in
the sperm duct and testis (2). In L. vittata EP, both ovarian
and testicular parts were mature, testicular part being filled
with many spermatozoa (15). It seems that spermatogenesis
was unaffected following down-regulation of IAGs
in L. vittata.

In many species, including in L. vittata, CFSH has one to
three paralog genes (43). In this study, two CFSH transcripts were
almost not expressed in EP, which is the ovarian mature stage. In
female crabs with CFSH knock-down, the brooding and mating
systems were abnormal at puberty (5). Analysis of expression
pattern of L. vittata CFSH revealed that it might be involved in
the development of female phenotypes at puberty, rather than the
vitellogenesis and ovarian maturation.

Two sexual systems, two sex differentiation hormones, and
two unigenes of these hormones exist in an individual, implying
that a complicated sexual regulatory network exists in L. vittata.
RNAi should be performed to reveal the discover bisexual
mechanism regulated by sex differentiation hormones in L.
vittata. This species is expected to be an ideal model for RNAi
experiments because it is small, has a transparent body and short
reproductive cycle (22).

SUMMARY

Total RNA was extracted from L. vittata mixed tissues and
used to mine peptides. More than 60 peptide transcripts were
identified. However, this method has the following limitation,
i.e., the expression levels of some tissue specific (e.g., eyestalk)
peptides may be too low to assemble long enough transcript
encoding complete precursor. Here, 15 peptide transcripts
encoded incomplete precursors. Some of them showed low
expression levels, such as CFSH1a, CHH3, GPA2, and RYamide.
Furthermore, the peptides contained several similar peptide
paracopies making it difficult to assemble the complete CDSs
encoding such precursors (43), as in the cases of AST-A,
kinin, and natalisin in our study. Notably, 28 predicted Lv-
GPCRs were grouped with known peptide GPCRs, including:
AST-A receptor, CCAP receptor, FMRFamide receptor, natalisin

receptor, NPF receptor, RYamide receptor, Moody & Tre, ETH
receptor, GPA2/GPB5 receptor, CHH receptors, CCHamide
receptor, calcitonin-B receptor, and PTH-like receptor. Together
with the identified peptides in L. vittata, we speculate that
AST-A, FLRFamide, natalisin, NPF, RYamide, ETH, GPA2/GPB5,
CHHs, CCHamide, and calcitonin ligand-receptor pairs are
expressed in L. vittata. In conclusion, complete peptide/GPCR
genes remain to be cloned and confirmed through PCR
experiments. Moreover, in vitro ligand-receptor binding tests are
required to determine Lv-GPCRs. Nevertheless, identification of
peptides and the associated GPCRs in L. vittata extends our
knowledge on peptidergic signaling in PSH species, and provides
experimental basis for further studies on the of function peptides
in reproduction. This will promote aquaculture development of
this shrimp.
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