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Abstract

Human cytomegalovirus (CMV) and mouse cytomegalovirus (MCMV) infection share many

characteristics. Therefore infection of mice with MCMV is an important tool to understand

immune responses and to design vaccines and therapies for patients at the risk of severe

CMV disease. In this study, we investigated the immune response in the lungs following

acute infection with MCMV. We used multi-color fluorescence microscopy to visualize single

infected and immune cells in nodular inflammatory foci (NIFs) that formed around infected

cells in the lungs. These NIFs consisted mainly of myeloid cells, T cells, and some NK cells.

We found that the formation of NIFs was essential to reduce the number of infected cells

in the lung tissue, showing that NIFs were sites of infection as well as sites of immune

response. Comparing mice deficient for several leukocyte subsets, we identified T cells to

be of prime importance for restricting MCMV infection in the lung. Moreover, T cells had to

be present in NIFs in high numbers, and CD4 as well as CD8 T cells supported each other to

efficiently control virus spread. Additionally, we investigated the effects of perforin and inter-

feron-gamma (IFNγ) on the virus infection and found important roles for both mechanisms.

NK cells and T cells were the major source for IFNγ in the lung and in in vitro assays we

found that IFNγ had the potential to reduce plaque growth on primary lung stromal cells.

Notably, the T cell-mediated control was shown to be perforin-independent but IFNγ-depen-

dent. In total, this study systematically identifies crucial antiviral factors present in lung NIFs

for early containment of a local MCMV infection at the single cell level.
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Author summary

Cytomegalovirus (CMV) is worldwide a highly prevalent β-herpesvirus. While the pri-

mary infection in healthy individuals does not cause disease, infection of immunocom-

promised patients can lead to multiple organ disease and can sometimes be lethal. CMV

becomes latent and uses a series of mechanisms to circumvent its elimination by the

immune system. Therefore, the establishment of therapies or vaccination strategies is a

difficult endeavor. Murine CMV (MCMV) is a well-established model to study CMV

infection in mice, since it targets many immune defense mechanisms in a similar manner

as human CMV. Thus, studying immune responses of mice to MCMV can help to develop

new therapeutic strategies for patients. In this study we focused on MCMV infection in

adult mouse lungs and found that, in the immunocompetent host, immune cells infiltrate

the lung tissue as nodular inflammatory foci that help to control the acute infection in one

week. We identified specific lymphocyte subsets that are pivotal for efficient containment

of the infection and showed that this process requires cooperation between CD4 and CD8

T cells. Furthermore, these cells need to secrete the multipotent cytokine IFNγ to success-

fully clear the lungs from infectious viruses.

Introduction

The immune response against CMV infection in humans and murine cytomegalovirus

(MCMV) in mice has been studied for decades [1]. Understanding immune-cell mediated

control of CMV infection is of essential interest since immunocompromised patients are par-

ticularly susceptible to CMV-disease [2]. From earlier human and mouse studies, it is known

that virus-specific T cell responses contribute to virus control in both species [3,4]. It is

thought that both CD8 T cell-mediated killing of virus-infected cells and secretion of cytokines

by CD8 and CD4 T cells contribute to protective immunity [4,5]. Since different lines of evi-

dence indicate that T cells can control CMV infection, the adoptive transfer of HCMV-specific

T cells has been used in clinical trials [6]. In patients that suffer from CMV reactivation or pri-

mary infection during periods of severe immunosuppression, the infusion of donor HCMV-

specific T cells was found to improve the control of infection [7,8]. However, it remains

unclear how CD8 T cells are able to control CMV infection, given that both HCMV and

MCMV encode for proteins that efficiently down-modulate surface major histocompatibility

complex class I (MHCI) on infected cells [9]. This immune evasion mechanism can prevent

virus-specific T cells from recognizing their target cells and thus interferes with CD8 T cell-

mediated killing [10]. Other immunoevasins interfere with the presentation of antigen via

major histocompatibility complex class II (MHCII) molecules to avoid recognition by CD4 T

cells [11,12] but they also downregulate ligands of natural killer (NK) cell receptors to avoid

cytotoxic killing [13].

The immune response against CMV infection seems to be affected by the site of infection,

since various cell populations and effector mechanisms differentially contribute to virus con-

trol in different organs [14–16]: While IFNγ secreting NK cells have a more pronounced role

than CD8 T cells in controlling the infection in the liver [14,15], an early, perforin-dependent

NK cell mediated, and a late CD8 T cell based mechanism control virus load in the spleen [14].

In salivary glands, IFNγ-secreting CD4 T cells are the major cell population crucial for viral

reduction [16,17]. Although CMV pneumonitis is a common clinical problem, it is not entirely

understood how the infection is controlled in lungs [18,19]. Moreover, it is still unclear which
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immune cells are locally present at the site of infection and how many cells of each type are

needed to successfully control the infection in the affected tissue.

To simultaneously quantify the amount of infected cells and the ensuing cellular immune

response at the primary site of infection, we have previously generated MCMV reporter

mutants expressing the red fluorescent protein mCherry to directly observe single virus-

infected cells by microscopy [20,21]. Following infection with these reporter viruses, histologi-

cal sections of the infected organ reveal the number of virus-infected cells and simultaneously

allow tracking of the immune response at the site of infection. Further, the MCMV reporter

virus used in this study is deficient for m157. In C57BL/6 mice–but not in other mice, includ-

ing wild mice–specific binding of the m157 protein to the NK-cell expressed Ly49H receptor

leads to NK cell activation and fast elimination of infected cells [22]. Besides Ly49H, other spe-

cific NK cell receptors have been identified to be involved in the immune response during

MCMV infection [23]. However, mice that do not express the activating NK cell receptor

Ly49H are more susceptible to MCMV infection [24,25]. To investigate immunity against

MCMV infection in C57BL/6 mice without an excessive NK cell response we here applied a

m157-deficient reporter virus. Following infection of lungs in neonatal mice, we previously

showed that MCMV infection can be precisely characterized, revealing the formation of

dynamic nodular inflammatory foci (NIF) with accumulation of virus-infected and immune

cells [26,27]. This inflammatory response is also found in humans after CMV infection and

has been termed nodular inflammation due to the abundancy of myeloid cells and correspond-

ing granuloma-like appearance [28]. Moreover, we observed how MCMV-specific CD8 T cells

interact with infected cells to mediate antiviral immunity in vivo [10].

In the current study, we identified the types of immune cells that control acute MCMV

infection in lung NIFs of adult mice. To systematically address the impact of different immune

cells, we used several knock-out mice, as well as adoptive cell transfers, and cell depletion

approaches. To clarify how leukocytes mediate antiviral immunity, we studied the main lym-

phocyte populations important for virus control in the lungs and the underlying mechanisms.

For the lungs, we found that local inflammation with recruitment of immune cells was neces-

sary to control infection. The formation of NIFs occurred independently of the presence of

lymphoid cells. We confirmed an important role of T cell-secreted IFNγ, while perforin secre-

tion by T cells was not essential for controlling MCMV infection in lung NIFs. However, in

the absence of T cells we observed a NK cell-mediated antiviral effect that was independent

from m157 recognition and conveyed by IFNγ and perforin. Furthermore, in adoptive cell

transfer experiments we found that only the combination of CD8 with CD4 T cells was suffi-

cient to control MCMV infection whereas either cell population on its own had only minor

antiviral effects.

Results

Dynamics of MCMV infection in the lungs and local antiviral immunity

To define the composition of immune cells in lung NIFs of adult immunocompetent mice, we

intranasally infected 6–14 weeks old C57BL/6 mice with 106 PFU of recombinant MCMV-3D

[20]. At 5 days post infection (dpi), we found accumulations of CD45+ immune cells at multi-

ple sites of the lungs (Fig 1A). In contrast, no inflammation could be observed in uninfected

control animals (Fig 1A). The cellular infiltrates in lungs of MCMV-infected adult mice at 5

dpi localized in close proximity to MCMV-infected cells and consisted mainly of myeloid cells

positive for CD11b and/or CD11c, as well as CD3+ T cells and NK1.1+ NK cells (Fig 1B).

These findings demonstrate that adult mice develop NIFs around MCMV-infected cells in the

lungs in a similar manner as previously described for infected neonatal mice [26]. Next, we
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analyzed the number of infected cells and NIF dynamics in the first two weeks following infec-

tion. We found an increasing number of MCMV-infected cells in NIFs within the first 3 dpi,

whereas at 8 dpi only few mCherry+ cells remained (Fig 1C and 1D). In parallel, the average

Fig 1. Infection of MCMV in the lungs is controlled around day 8 post infection in NIFs of wild-type mice.

Animals were i.n. infected with 106 PFU MCMV-3D. PFA-fixed lung cryosections were prepared from mice and

analyzed 1, 3, 5, 8, and 14 dpi. (A) Overview of a lung lobe stained with an antibody against CD45 (white). Nuclear

staining with DAPI (blue) revealing NIFs at different sites of the lung lobe at 5 dpi (right; non-infected mouse shown at

the left). White squares indicate NIFs. Scale bars 500 μm. (B) NIFs at 5 dpi stained with antibodies as indicated (white),

infected cells (red), and nuclear staining with DAPI (blue); scale bar 50 μm. Quantification of (C) number of infected

cells per NIF section area. (D) Number of intact infected cells per NIF and (E) NIF size at different dpi as indicated.

(C-E) 15–30 NIFs from 2–4 mice analyzed per time point, data pooled from 2 independent experiments per time

point, dots represent NIFs, median + interquartile range (red).

https://doi.org/10.1371/journal.ppat.1007252.g001
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size of NIFs increased within the first 5 days and contracted until 8 dpi (Fig 1E). At day 8, NIFs

were dissolving and only some mCherry+ remnants of infected cells were detected. Thus, in

immunocompetent mice acute MCMV infection in the lungs was controlled during the first

week of infection, most likely by cells that infiltrated the lung tissue and resided within NIFs at

the site of infection.

Gamma-irradiated mice do not form NIFs and fail to control local viral

infection

To investigate whether hematopoietic cells present within NIFs mediate antiviral activity, we

compared MCMV infection in gamma-irradiated versus non-irradiated mice. Following

gamma-irradiation, mice showed reduced numbers of CD45+ cells in the peripheral blood,

confirming interference with hematopoiesis. Five and eight days after MCMV infection of

irradiated mice, we found no structures in the lungs that could be classified as NIFs (Fig 2A).

Instead, we observed numerous clusters of morphologically intact MCMV-infected cells at

both time points (Fig 2A). Only few apparently irradiation-resistant hematopoietic cells were

scattered through the lung tissue. Because of the absence of NIFs in irradiated mice, we quanti-

fied by histology the number of infected cells per lung slice and measured in a separate experi-

ment virus titers and Gaussia luciferase activities (Fig 2B–2E). At 5 dpi, we found the number

of intact infected cells, Gaussia luciferase activity, and virus titers to be comparable in irradi-

ated and control animals. In contrast, at 8 dpi, control mice showed a reduction in infected

cell numbers, luciferase activities, and virus titers, whereas in irradiated mice virus loads in the

lungs had slightly increased compared to 5 dpi (Fig 2B–2D). In general, we found a correlation

between viral titers and luciferase activity in lungs as well as salivary glands (Fig 2E, S1C Fig).

Analysis of salivary glands showed a comparable infection level in irradiated and control mice

at 5 dpi (S1A and S1B Fig). However, virus loads were increased in both conditions at 8 dpi

indicating that the virus spreads slowly towards salivary glands (S1A and S1B Fig), confirming

previous reports on infection dynamics in salivary glands [26,29]. Furthermore, virus loads in

irradiated mice were even higher at 8 dpi than control mice, suggesting a role for immune cells

to reduce virus dissemination from the lungs into salivary glands.

Taken together, the disappearance of MCMV-infected cells in lungs of immunocompetent

mice was most likely due to antiviral effects executed by NIF-resident immune cells.

Control of virus spread in NIFs depends primarily on local T cells, while

NIF formation is lymphocyte independent

Next, we asked whether NIF formation occurs in the absence of defined subpopulations of

immune cells and whether virus spread can be controlled under such conditions. To screen for

the contribution of different types of lymphoid cells to NIF formation and antiviral control, we

used mice deficient for B cells (Ighm-/-), T cells (Cd3e-/-), B and T cells (Rag2-/-), and mice lack-

ing the entire lymphoid compartment (Rag2-/-Il2rg-/-). Following intranasal infection, we

found typical NIFs in all these immunodeficient mouse strains (Fig 3A). At 8 dpi, NIFs in

Ighm-/- mice were already dissolving and negative for intact mCherry+ cells, thus being compa-

rable to observations made in immunocompetent mice (Fig 3A and 3B). In contrast, in T cell-

deficient Cd3e-/- mice as well as T and B cell-deficient Rag2-/- mice NIFs were still present and

contained intact mCherry+ cells (Fig 3A and 3B and S2 Fig). These animals showed a small but

consistently higher number of infected cells per NIF than observed in wild-type mice (Fig 3B),

while a robust elevation of the total number of infected cells could be observed (Fig 3C). Mice

deficient for T, B, and NK cells (Rag2-/-Il2rg-/- mice) or Rag2-/- mice depleted for NK cells

showed the highest average number of virus-infected cells per NIF, suggesting that the
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Fig 2. Absence of NIFs and increased infected cell counts in gamma-irradiated mice. Animals were either

irradiated with 6 Gy or not (control) and infected one day post irradiation with 106 PFU MCMV-3D i.n. (A)

Immunofluorescence of NIFs or clusters of infected cells in irradiated (right panel) or control mice (left panel) 5 and 8

dpi stained with anti CD45 mAb (white), infected cells expressing mCherry (red) and nuclear staining with DAPI

(blue); scale bar 50 μm. (B) Quantitative analysis of infected cells on histological sections of whole lungs, (C) analysis of

virus titers in lungs, and (D) luciferase activity in lungs 5 and 8 dpi of irradiated and control mice. (B) Dots represent

means of 3–4 lung slices analyzed per animal, (C) dots represent means of triplicates analyzed per organ, (D) dots

represent mean of duplicates per organ; (B-D) median + interquartile range (red); data pooled from 2 independent

experiments; Mann-Whitney test; (E) Correlation of virus titers and luciferase activity in lungs; pooled data of 5 and 8

dpi. Dots represent means per organ; r: Spearman coefficient. PFU, plaque forming units; RLU, relative light units;

data pooled from 2 individual experiments.

https://doi.org/10.1371/journal.ppat.1007252.g002
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different types of lymphocytes cooperate to limit virus replication inside NIFs (Fig 3B). Nota-

bly, we found no difference in the average number of infected cells per lung slice between

Rag2-/-Il2rg-/- and Rag2-/- mice, while NK cell-depleted Rag2-/- mice showed elevated numbers

of infected cells (Fig 3C). To further address the role of NK cells in the presence of T and B

cells we next depleted NK cells in WT mice. For these experiments we chose to analyze the

lungs at 5 dpi, since the NK cell-mediated response is faster than T cells and at 8 dpi the infec-

tion is already controlled in WT mice. In NK cell-depleted mice we could detect slightly

increased numbers of infected cells per NIF but not per lung slice (S3 Fig). Together, these

data suggest that NIF formation occurs independently of the presence of lymphocytes and

control of viral infection in NIFs primarily relied on T cells. Further, independent of m157,

NK cells can reduce the infection in the absence of T cells and may have the potential to coun-

teract the infection in the presence of T cells.

The MCMV-encoded chemokine 2 (MCK2) was reported to increase virulence of the virus

[27,30–32] and may interfere with T cell responses [33,34]. To address whether the presence of

MCK2 affects T cell-mediated control of lung MCMV infection we infected WT and Rag2-/-

Fig 3. Role of different lymphocyte subsets in the formation of NIFs and in the control of viral replication in the

lung. Various mouse strains deficient for different cell populations were infected with 106 PFU MCMV-3D, i.e.

Ighm-/-, Cd3e-/-, Rag2-/-, and Rag2-/-Il2rg-/- mice and analyzed at 8dpi. (A) Immunofluorescence of NIFs in different

mouse strains stained as indicated with an antibody against CD45 (white) and a nuclear staining with DAPI (blue);

infected cells expressing mCherry (red); Scale bar 50 μm. (B+C) Quantification of the number of infected cells counted

(B) per NIF or (C) per whole lung slice. (B) Dots represent NIFs; Mann-Whitney test compared to WT data

performed with mean values of individual animals. (C) Dots represent means of 4 lung slices analyzed per animal. (B

+C) open circles (WT) are identical to that shown in Fig 1C and 1D and Fig 2B; median + interquartile range (red);

Mann-Whitney test compared to WT data performed with mean values of individual animals; pooled data from 2–3

independent experiments.

https://doi.org/10.1371/journal.ppat.1007252.g003
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mice with MCMV-3DR. In contrast to the MCMV-3D recombinant the insertion of a missing

base pair in theMck2 ORF of the MCMV-3DR recombinant allows for accurate translation of

the whole MCK2 protein [30]. Similarly to the MCMV-3D virus, the number of infected cells

per NIF in Rag2-/- mice was increased compared to WT mice infected with MCMV-3DR at 8

dpi (S4A Fig). However, MCMV-3DR infected alveolar macrophages leading to a higher total

number of infected cells per lung as compared to animals infected with MCMV-3D –which

shows no tropism to alveolar macrophages (S4B Fig) [27]. Thus, the T cell-mediated control of

MCMV infection in NIFs seems to be independent of the presence of the full MCK2 protein.

Control of local MCMV infection depends on the number of T cells present

in NIFs

We next studied the dynamics of the number of lymphocytes present in NIFs of MCMV-

infected wild-type mice. Histological analysis at 1 dpi revealed hardly any lymphocytes resid-

ing in close proximity to infected cells, whereas at 3 dpi and 5 dpi a substantial number of T

cells is present in NIFs. The number of T cells per NIF is even further increased at 8 dpi, when

most of the infected cells already disappeared. In contrast, the number of NK cells present in

NIFs peaked at 3 dpi and declined until 5 dpi (Fig 4A and 4B and S5 Fig). These data indicate

that NK cells populate NIFs early after infection, while T cells might mediate their antiviral

effects between 3 and 8 dpi.

To determine whether the T cell-mediated antiviral response is dose-dependent, we varied

the number of T cells available in the lungs of infected mice. To this end, we adoptively trans-

ferred increasing numbers of purified polyclonal T cells isolated from untreated wild-type

mice into MCMV-infected Rag2-/- recipients (Fig 4C). At day 8 post infection and transfer of

106 or less T cells, many NIFs still contained virus-infected cells (Fig 4D). In contrast, the

transfer of 107 T cells resulted in a reduced number of infected cells per NIF (Fig 4D). We

observed a similar effect when analyzing the whole lung slice for the average number of

infected cells (Fig 4E). Simultaneously, we analyzed the number of T cells present in NIFs.

Only few T cells were detected in mice receiving 104 or 105 T cells and a robust increase in the

number of T cells was observed after transfer of 106 T cells (Fig 4F). However, following the

adoptive transfer of 107 T cells into Rag2-/- recipients, we found T cell densities comparable to

those in NIFs of wild-type mice (approximately 100 T cells per NIF; Fig 4G). Interestingly,

FACS analysis of infected lungs revealed that a substantial amount of CD8 T cells is specific for

MCMV (S6 Fig). These data indicate that a certain T cell density is needed to sufficiently con-

tain the MCMV infection. In summary, we found that the number of T cells per NIF increased

over time in wild-type mice and that adoptive transfer of 107 naïve T cells into Rag2-/- mice

was necessary to accumulate enough T cells in NIFs to control the infection.

Molecular mechanisms of T cell- and NK cell-mediated antiviral immunity

in NIFs

To screen whether perforin and/or IFNγ might be essential for antiviral immunity in MCMV-

infected lungs, we analyzed mice deficient for perforin (Prf1-/-), IFNγ(Ifng-/-), or IFNγ-recep-

tor-1 (Ifngr1-/-). At 8 dpi, we quantified the number of infected cells per NIF but did not find

any significant differences between WT and the three knock-out strains tested (Fig 5A). Addi-

tionally, we analyzed the number of intact infected cells per whole lung slice and found an

increase of intact infected cells in Prf1-/-, Ifng-/-, and Ifngr1-/- mice (Fig 5B) as well as an

increase in the number of NIFs per lung section (Fig 5C). Compared to mice lacking T and B

cells (Fig 3C), the differences of infected cell numbers observed here were less pronounced.
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Fig 4. Number of T cells present in NIFs increases over time and can control infection if present in high numbers.

(A+B) Animals were i.n. infected with 106 PFU MCMV-3D. (A) Histology of representative NIFs stained for CD3

(white) and DAPI (blue) and (B) quantification of the number of T cells present in NIFs per area of individual NIFs at

1, 3, 5, and 8 dpi as indicated. Infected mCherry+ cells shown in red; scale bar 50 μm; dots represent NIFs. (C) Various

numbers of wild-type T cells were adoptively transferred into Rag2-/- mice infected with 106 PFU of MCMV-3D. Lung

histology was analyzed 8 dpi. (D+E) Analysis of intact infected cells per (D) NIF or (E) lung slice. For comparison data

from infected Rag2-/- mice without T cell transfer are shown; (F) Quantification of T cells present in NIFs. (G) Analysis

of T cell densities per NIF. (D+F+G) dots represent NIF from 3–4 animals of 2 independent experiments, (E) dots

represent animals (mean of 4 lung slices per animal). (D-F) median + interquartile range (red). (D+E) Mann-

Whitney-test compared to Rag2-/- without T cell transfer performed with mean values of individual animals. (F)

Wilcoxon Signed Rank Test compared to 0 (number of T cells in Rag2-/- mice without T cells). (D-G) Pooled data from

2 independent experiments.

https://doi.org/10.1371/journal.ppat.1007252.g004
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Thus, these data indicate that antiviral effector mechanisms in NIFs of perforin- or IFNγ defi-

cient mice may substitute for each other.

Fig 5. Perforin and IFNγ are potent factors controlling MCMV infection in the lung. (A-C) Mice deficient for

either perforin, IFNγ or IFNγR1 or wild-type mice were infected i.n. with 106 MCMV-3D. Quantification of the

number of (A) infected cells per NIF, (B) infected cells per lung slice, or (C) NIFs per lung slice at 8 dpi. (D+E)

Quantification of the number of infected cells per (D) NIF and (E) lung slice 8 dpi of genetically modified mice as

indicated. Dots represent (A+D) NIFs, (B, C, E) means of 4 lung slices per animal. Mann-Whitney test performed with

mean values of individual animals in comparison to (A-C) WT mice or (D+E) Rag2-/- mice. (A) Open circles (WT) are

identical to that shown in Fig 1C and 1D and Fig 3B, (A-E) Data pooled from 2–4 independent experiments; median

+ interquartile range, (grey). (F-H) Flow cytometric analysis of lung cells isolated from MCMV-infected or untreated

wild-type mice 5 dpi after re-stimulation with PMA and ionomycin. (F) Representative histogram for IFNγ staining of

NK1.1+ cells acquired. Gates were set based on isotype control (grey). (G) Percentages and absolute cell counts of all

lung cells acquired positive (filled columns) or negative (open columns) for IFNγ of infected mice or PBS treated mice.

(H) Absolute cell numbers of different cell populations positive (filled columns) or negative (open columns) for IFNγ
in dependence on MCMV infection. (G+H) Mean + SD; data pooled from 4 animals per condition from 2

independent experiments.

https://doi.org/10.1371/journal.ppat.1007252.g005
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Next, we investigated the impact of IFNγ and perforin in the absence of T and B cells. To

this end, we analyzed Rag2-/-Prf1-/- and Rag2-/-Ifng-/- mice 8 dpi. We found a slightly increased

number of infected cells per NIF in Rag2-/-Prf1-/- mice when compared to Prf1-/- or Rag2-/-

mice (Fig 5A and 5D), while the number of infected cells per lung slice significantly increased

in these mice (Fig 5B–5E). Furthermore, in Rag2-/-Ifng-/- mice, an even higher number of intact

infected cells was observed per lung slice, when compared to Rag2-/- or Ifng-/- single knock-out

mice (Fig 5B and 5E). These findings support the idea that perforin as well as IFNγ can both

play a role in controlling acute MCMV infection in the lungs. In absence of T cells, the secre-

tion of these two molecules, most probably by NK cells, gains more importance in controlling

the virus. However, it is likely that in Rag2-/- and Rag2-/-Il2rg-/- mice IFNγ is also produced by

cells that do not express classical NK cell biomarkers [35].

To further characterize the cells producing IFNγ, we compared cytokine production of leu-

kocytes isolated from MCMV- or mock-infected lungs following in vitro re-stimulation (Fig

5F). In total we observed more IFNγ-producing cells in infected animals than in control mice

(Fig 5G). At 5 dpi, NK cells were found to be the dominant cell population to produce IFNγ
followed by CD8 and CD4 T cells (Fig 5H). Interestingly, by histology less NK cells were found

to be present in NIFs at 5 dpi, while flow cytometric analysis showed NK cells to be present in

higher numbers in the lung (Fig 5H and S5 Fig). This indicates that most of the NK cells are

present in the lung tissue but do not remain or proliferate in NIFs as efficiently as T cells.

Taken together, NK and T cells were the major IFNγ-expressing cell types in the lungs during

the peak of anti-MCMV immune response in an immunocompetent host leading to control of

infection.

IFNγ reduces viral cell-to-cell spread in vitro
To test how IFNγ could change the dynamics of MCMV spread in NIFs, we next modeled the

situation in the lungs applying an in vitro plaque reduction assay using primary lung stromal

cells. First, we purified adherent cells from the lungs and found approximately 40% of these

cells to be gp38+PDGFRA+PDGFRB+CD31- stromal cells (Fig 6A). The remaining cells were

CD45+ hematopoietic cells, mainly of the myeloid lineage (CD11b+, partly CD11c+ and F4/

80+; Fig 6A). Next, we infected this cell mixture in vitro with MCMV and followed the forma-

tion of plaques after addition of a single dose of recombinant IFNγ. At 4 and 8 dpi, we found

that administration of IFNγ reduced plaque size in a dose-dependent manner (Fig 6B). Since

about 60% of the cells in the culture were myeloid cells, the slower plaque growth might also

be due to the activating effect of IFNγ on these myeloid cells. To investigate a direct effect of

IFNγ on virus replication, we purified stromal cells by depletion of CD45+ cells. The resulting

cell suspension lacked hematopoietic cells (Fig 6C). In this setup, we found IFNγ to have

minor effects on plaque size at 4 dpi (Fig 6D). However, after 8 days, smaller plaques were

observed in IFNγ-treated cell cultures in comparison to control cultures suggesting a direct

interference of IFNγ with virus replication (Fig 6D). As control, we used stromal cells isolated

from Ifngr1-/- mice and found no effect for any of the IFNγ concentrations tested (S7 Fig).

Together, these data indicate that IFNγ can slow down cell-to-cell spread in lung stromal cells.

The difference observed in stromal cell cultures in the presence or absence of hematopoietic

cells might be caused by indirect mechanisms mediated by IFNγ treated myeloid cells [36].

T cells need IFNγ but not perforin to control acute MCMV infection in the

lungs

It is generally believed that IFNγ and perforin can inhibit local viral spread in the lungs. We

also showed that NK and T cells were the major sources of IFNγ in MCMV-infected lungs.
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Therefore, we next asked whether T cells deficient for IFNγ or perforin could still control

MCMV infection. Following adoptive transfer of naïve T cells isolated from wild-type, Ifng-/-,

Ifngr1-/-, or Pfr1-/- donor mice into Rag2-/- recipients, we quantified the number of infected

cells per lung (Fig 7A). At 8 dpi, the transfer of wild-type T cells reduced the number of

infected cells per lung slice (Fig 7B) as observed before (Fig 4E). Importantly, following the

transfer of 2x107 IFNγ-deficient T cells, the control of MCMV infection was limited with

many intact infected cells still detectable at 8 dpi (Fig 7B). In contrast, T cells deficient for the

Fig 6. IFNγ reduces virus plaque growth on primary lung stromal cell cultures in the presence and absence of macrophages. Primary lung stromal cells were

cultured in the (A+B) presence or (C+D) absence of lung-derived CD45+ cells. Cells were cultured for 13 days until reaching a confluent layer and subsequently

infected with 20 PFU per well MCMV-3D. After infection cells were cultured in carboxymethylcellulose and the presence of different concentrations of mouse IFNγ.

(A+C) Phenotyping of stroma cells cultured for 13 days. Characterization of the CD45 negative (upper row) and positive (lower row) population. (B+D) Measurement

of plaque sizes. 4 and 8 dpi in the presence of different doses of IFNγ. Representative pictures of plaques in the absence or the presence of the highest dose of IFNγ used

in these experiments (upper row) are shown; mCherry expressed by infected cells (white). Scale bar: 200 μm. Lower row: Mean of plaque sizes measured per well over

different IFNγ doses (black curve, curve = single experiment; normalized on control wells without IFNγ of pooled experiments). See also S7 Fig.

https://doi.org/10.1371/journal.ppat.1007252.g006
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IFNγ-receptor showed a comparable antiviral effect to wild-type T cells, indicating that IFNγ
signaling on T cells is not essential for T cells to suppress virus replication. Surprisingly, per-

forin-deficient T cells also reduced the number of infected cells (Fig 7B). Thus T cells need to

secrete IFNγ to efficiently control MCMV infection in the lungs.

Finally, we asked whether helper or cytotoxic T cells are responsible for the T cell-mediated

control of MCMV infection in the lungs. To address this question, we transferred CD4 and

CD8 T cells isolated from naïve wild-type donors, separately or together, into MCMV-infected

Rag2-/- recipients (Fig 7A). We found that CD4 T cells in the absence of CD8 T cells were

unable to suppress virus replication (Fig 7B). In contrast, CD8 T cells in absence of CD4 T

cells had a detectable antiviral effect (Fig 7B). However, only the combination of CD4 and

CD8 T cells lead to effective control of the infection indicating a cooperative effect of these two

cell populations (Fig 7B). Taken together, these data suggest that i) for T cells secretion of

IFNγ is essential to interfere with local MCMV replication in NIFs, ii) IFNγ-receptor signaling

on T cells is not necessary to mediate their antiviral effect and iii) CD4 and CD8 T cells work

together to fight virus infections in MCMV-infected lungs.

Fig 7. T cells need IFNγ to efficiently control infection in the lungs and CD8 T cells alone can only clear infection

to some degree. (A) 2x107 T cells, isolated from wild-type, Ifng-/-, Ifngr1-/- or Prf1-/- donors, or 1x107 CD4 T cells and/

or 0.8x107 CD8 T cells of wild-type donors were adoptively transferred into Rag2-/- recipients that were simultaneously

infected with 106 PFU MCMV-3D. Organs were analyzed at 8 dpi. (B) Quantification of the number of infected cells

per lung slice. For comparison data from infected Rag2-/- mice without T cell transfer are depicted in open circles

(same data set as shown in Fig 3). Dots represent animal (mean of 4 lung slices per animal); median + interquartile

range (grey); Mann-Whitney test compared to Rag2-/- T cells without T cell transfer; Data from 2–4 independent

experiments.

https://doi.org/10.1371/journal.ppat.1007252.g007
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Discussion

The immune response initiated by CMV infection can protect the host from severe disease.

However, several immunosuppressive conditions can lead to recurrence of an unnoticed pri-

mary infection and during pregnancy primary infection or reactivation can lead to vertical

transmission of the virus to the neonate [18]. Therefore, it is important to understand why the

immune system can control, but not eradicate CMV infection in different organs. There are

still many uncertainties regarding the antiviral factors needed to control CMV infection. In

the mouse model, a classical read-out to assess the viral load of an organ is to determine viral

titers via plaque assays or quantification of reporter virus-expressed luciferase activity within

an organ of interest. Although these approaches can give a general overview of the viral load in

individual organs, the localization of infected cells, the infected cell type, and the micro-ana-

tomical context remain enigmatic.

In the present study, we combined a MCMV reporter mutant with various genetically mod-

ified mice to study the immune response to lung infection in vivo. The use of a reporter virus

encoding the red fluorescent protein mCherry allows for simultaneous quantification of the

infection as well as visualization of the immune cell-mediated antiviral response. Previously,

we applied this method to assess the killing capacity of specific effector CD8 T cells [10] and to

study differences between MCK2-proficient and -deficient virus mutants [27] as well as the

immune responses in lungs of neonatal mice [26].

For the lungs, it has been reported that CMV infection causes pneumonia in immunocom-

promised humans [18] as well as in mice [29]. Focal infiltrations of immune cells following

CMV infection have been observed in mice [29,37] and humans [28] and characterized as NIFs

[26]. NIFs have been described as sites of infection but also as the site of antiviral immune

response and we proposed recently that NIFs act as sites for T cell priming, at least in neonatal

mice [26]. Thus, it is still unclear how NIFs are formed and how these structures contribute in

detail to MCMV control in the lungs. Here, we showed that NIF formation is independent of

the presence of lymphocytes and identified T cells as essential contributors to the antiviral

effects observed within NIFs. Presumably, the recruitment of myeloid cells is triggered by the

infected cells directly or by resident cells in close proximity to infected cells. In parallel to this

first wave of cellular influx lymphocytes locate in forming NIFs to mediate their antiviral effect

directly at the site of infection. Once the infection is kept under control within NIFs the pro-

inflammatory signals vanish and the structures dissolve to allow tissue healing. In the liver,

CCL3 was reported to be essential for the infiltration of immune cells after MCMV infection

[38], while CCL5 was proposed as a possible recruitment factor for T cells into the lung intersti-

tium [39,40]. However, the factors inducing and sustaining NIFs in the lungs and chemokines

involved in recruiting immune cells to these structures need further investigation.

Primary MCMV infection of the adult lungs can be controlled within approximately one

week in immunocompetent mice [26]. In contrast to wild-type mice, we find that various

strains of immunocompromised mice are impaired in reducing the number of infected cells in

the lungs. NIFs with intact infected cells are still detectable 8 dpi in immunocompromised but

not in wild-type mice. Although we used MCMV reporter viruses deficient for m157 that

encodes a ligand for the NK activating receptor Ly49H [22], our results indicate that NK cells

contribute to virus control in NIFs even in the absence of this strongly activating ligand espe-

cially in a T cell deficient host. Therefore, the NK cell-mediated contribution to virus control

must be induced by other mechanisms that have not been addressed here. In fact, we found

NK cells to be the major population of lymphocytes able to secrete IFNγ at 5 dpi. Notably, an

IFNγ-producing cell population lacking T and NK cell surface markers has been identified in

Rag1-/- and Rag2-/-Il2rg-/- mice [35]. Furthermore, the secretion of perforin might be crucial
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for the NK cell mediated control, since we found increased virus loads in perforin-deficient

mice while this effect was apparently not T cell-mediated.

Using various experimental approaches, we show in lungs that T cells have a major effect

on NIF dynamics and virus control in NIFs. Effector CD8 T cells are known to essentially con-

tribute to the control of MCMV infection in mice [41–44] and humans [4] and adoptive trans-

fers of specific T cells are applied as clinical therapy for several years now [7]. However, so far

the efficacy of T cells controlling the primary infection in the lungs of immunocompetent

mice has not been addressed in detail. We found that T cells migrate into NIFs as early as these

structures can be detected (3 dpi); with an increasing number of T cells being present until 8

dpi. The observed increase of T cell counts in NIFs can be either due to enhanced recruitment

to the site of infection or to local proliferation following priming in NIFs—as shown before in

neonatal mice [26]–or both. Earlier studies revealed that the adoptive transfer of 105−107 T

cells (either activated lymphocytes from lymphoid organs, or pulmonary T cells, or pulmonary

CD8 T cells from previously infected donors) were sufficient to reduce the viral titer or the

amount of infected cells in several organs of infected immunocompromised recipients [42–

44]. In contrast, our data indicate that only the adoptive transfer of higher numbers of naïve T

cells (107) led to T cell densities in NIFs that contributed to sufficient local virus control to a

similar degree as observed in WT mice 8 dpi. This high number of polyclonal naïve T cells is

essential to provide sufficient numbers of precursors for MCMV-specific T cells that can be

expanded and subsequently control the infection.

The role of CD4 T cells in controlling cytomegalovirus infection has been discussed contro-

versially. Several adoptive transfer experiments showed that CD4 T cells on their own cannot

control MCMV infection [42,45,46]. Nevertheless, CD4 T cells have been shown to be neces-

sary to control MCMV in the salivary glands [16,17] and other organs [47] in mice and clinical

case reports revealed that the presence of CD4 T cells might be crucial for efficient viral control

in patients [7,48–53].

Applying adoptive transfers into Rag2-/- mice, we showed that CD4 T cells support CD8 T

cells in controlling virus infection in the lungs. This effect might be mediated by a type of T

helper-1 function supporting CD8 T cell differentiation as suggested elsewhere [54] but it

seems also likely that CD4 T cells possess cytotoxic effector functions directly contributing to

the control of infection [7,55]. Intracellular staining for IFNγ revealed that around 20% of the

CD4 T cells secrete IFNγ indicating that a considerable proportion of the CD4 T cells show a T

helper-1 phenotype.

Furthermore, we showed that the secretion of IFNγ by T cells was essential to reduce the

number of infected cells while the absence of perforin did not affect the T cell mediated con-

trol. IFNγ has been reported to have multiple effects on different cell types [56–58]. For exam-

ple, IFNγ drives differentiation of monocytes into macrophages that mediate anti-microbial

effects [59]. Likewise the function of the myeloid cells abundantly present within NIFs might

also be affected by the locally secreted IFNγ. In an in vitro assay we found that IFNγ affected

plaque size of lung stromal cells after MCMV infection, indicating that IFNγ stimulates intrin-

sic cell mechanisms to interfere with virus replication [60,61]. Interestingly, not only pretreat-

ment but also treatment of cells with IFNγ after an initial MCMV infection can result in an

inhibiting effect on the viral spread [36]. It is known that IFNγ can counteract to some degree

MCMV-mediated down-modulation of MHC I that in turn might directly facilitate CD8 T

cell-mediated killing [62]. Previously, we reported that the presentation of viral antigen via

MHC I by MCMV-infected target cells and the following direct recognition of the infected cell

by antigen-specific effector CD8 T cells is essential for the cytotoxic killing [10]. In addition to

IFNγ and perforin other factors, such as TNFα and Fas/FasL, play an important role in the T

cell effector function and must be addressed in similar models in the future.
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Based on the data presented in this manuscript we envisage the following model how T

cells contribute to the local control of MCMV in lung NIFs: T cells are primed in lymphoid

organs and within NIFs to secrete IFNγ directly at the site of infection. This secretion of IFNγ
not only slows down the viral cell-to-cell spread but might also interfere with MHC I molecule

downregulation on the surface of infected cells allowing for better recognition of viral antigen

by MCMV-specific CD8 T cells. Furthermore, the IFNγ secretion by NK, as well as both CD4

and CD8 T cells, can stimulate macrophages to efficiently phagocytose infected cell remnants

and clear the tissue from infectious virus particles. In parallel, NK cells contribute to MCMV

control in a perforin-dependent manner. Thus, a combination of virus-specific CD8 and CD4

T cells, with the addition of NK cells, might be an optimal recipe for anti-CMV adoptive

immunotherapy.

Materials and methods

Ethics statement

All animal experiments were performed according to the recommendations and guidelines of

the Federation of European Laboratory Animal Science Associations and Society of Laboratory

Animals and approved by the institutional review board and the Niedersächsische Landesamt

für Verbraucherschutz und Lebensmittelsicherheit (33.12-42502-04-10/0225, 33.12-42502-04-

12/0921, 33.12-42502-04-13/1255, and 13.12-42502-04-17/2737). All experiments were per-

formed according to the Tierschutzgesetz and the Tierschutz-Versuchstier-Verordnung.

Anesthesia of mice was performed with Ketamin and Xylazin injection. Mice were sacrificed

following CO2 anesthesia by cervical dislocation.

Animals

Mice were bred at the central animal facility of Hannover Medical School under specific patho-

gen free conditions. The different mouse strains (Ighmtm1Cgn [63], Cd3etm1Mal [64], Rag2tm1

[65], Rag2tm1Il2rgtm1[66,67], Ifngtm1Ts [68], Ifngr1tm1Agt [69], Prf1tm1Sdz [70], Ncr1gfp/wt [71])

were maintained on a C57BL/6 (B6) background. Rag2-/-Prf1-/- and Rag2-/-Ifng-/- mice were

generated by intercrossing Rag2-/- and Prf1-/- or Rag2-/- and Ifng-/- mice, respectively. 6–14

weeks old mice were used for the experiments. All mouse experiments were performed in

accordance with local animal welfare regulations.

Virus, infection and total body gamma-irradiation

The MCMV strain named MCMV-3D has been described previously [20]. Virus stocks were

produced and titrated on mouse embryonic fibroblasts. MCMV-3D encodes Gaussia luciferase

and mCherry and carries an additional sequence within the m164 ORF encoding the SIIN-

FEKL peptide. It lacks the m157 ORF that encodes a ligand for the activating receptor Ly49H

present on a subset of NK cells in C57BL/6 mice and expresses a truncated version of the viral

MCK2 protein [27,30]. In some experiments, the reporter virus MCMV-3DR with a repaired

m129ORF resulting in an intact MCK2 protein was used for intranasal infection [27]. All ani-

mals were infected intranasally with 106 PFU MCMV-3D or MCMV-3DR. In some experi-

ments C57BL/6 mice were irradiated with a total dose of 6 Gray in one irradiation procedure

the day before intranasal infection.

Adoptive cell transfer and antibody depletion

In experiments Rag2-/- mice were used as recipients of adoptive T cell transfers. T cells were

isolated from lymph nodes and spleens of untreated wild-type B6, Ifng-/-, Ifngr1-/-, or Prf1-/-
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mice using MACS pan T cell, CD4 T cell, or CD8 T cell negative selection kits (Miltenyi Bio-

tech) and adoptively transferred intravenously in parallel to MCMV infection. For in vivo
depletion of NK cells in B6 and Rag2-/- mice 300 μg anti-NK1.1 (antibody clone PK136) was

applied intraperitoneally four hours before and every second day after MCMV infection.

Virus titers and luciferase assay

Organs were perfused in situ with cold PBS, explanted and stored in 500μL DMEM containing

10% FCS and 1% P/S. Next, the organs were mechanically disrupted by metal beads and shak-

ing at 25/s over 4 min (TissueLyser II, Quiagen). Then, 350 μL of the homogenate were sepa-

rated and stored at -80˚C for viral plaque titration, while the rest was centrifuged at maximum

speed for 15 min. 20 μL of the substrate (1 μg Coelenterazine / ml in PBS) were added freshly

to 180μL of a 1:10 dilution of the organ homogenate and measured for 10s directly with Lumat

LB 9507 (Berthold Technologies) in duplicates. The viral plaque titration was performed on

MEF monolayers in triplicates.

Histology

Mice were sacrificed and lungs were perfused with cold PBS via the right heart ventricle and

then filled in situ with PBS solution containing 2% paraformaldehyde and 30% sucrose. Fixed

lungs were embedded in OCT compound (TissueTek, Sakura) before freezing at -20˚C.

7 μm thick cryosections were blocked with rat serum in TBST and stained with antibodies

and nuclei were stained with DAPI. The following antibodies (clones) were used after additional

blocking of Fc receptors with rat anti-CD16 and anti-CD32 (2.4G2): CD11b-bio (MAC1),

CD3-Cy5 (CD317A2), CD11c-APC (N418), CD45.2-FITC (104), CD45-APC (30-F11), and

CD8a-PE (53–6.7). For staining with anti-mouse NK1.1-APC (PK136) and GFP-binding pro-

tein (GFP-boost, Chromotek), rehydration was performed in 0.5% Triton-X following blocking

with mouse serum and Fc receptor blocking, while slides were stained in 1%Triton-X. Images

were taken with an AxioCam MRm camera (Carl Zeiss) attached to an Axiovert 200M fluores-

cence microscope (Carl Zeiss) with PlanApochromat objectives 10x/0,45 and 20x/0,75 (magnifi-

cation/numerical aperture) and with AxioScan.Z1 (Carl Zeiss) and processed with AxioVision

4.8.2 software and with ZEN blue 2.3 software.

Quantification of cells from lung histology

Lung sections were analyzed at defined anatomical positions (through the center; slices

included right and left lobes as well as main bronchi). Sections were stained with DAPI. For

each animal, 4 lung sections were analyzed by an observer blinded for mouse identity. Manual

counting of virus-infected cells and NIFs was performed directly at the microscope. Intact cells

were distinguished from remnants of infected cells based on their mCherry expression, mor-

phology, and DAPI staining while NIFs were quantified based on localized accumulation of

nuclei as well as presence of mCherry signals. The number of independent experiments per-

formed is indicated in each figure. In general, we only show data from at least 4 mice and at

least 2 independent experiments. For the analysis of infected cells per NIFs, microscopy pic-

tures were taken with the 20x/0.75 objective. T cells were quantified based on CD3 staining,

CD8 T cells were quantified based on CD8a staining, and NK cells were quantified based on

GFP expression in Ncr1gfp/wt mice and additional staining with a GFP-binding protein in the

area of infiltration that was semi-automatically measured based on CD45 staining using Ima-

geJ. Between 10 and 15 NIFs were analyzed per animal.
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Flow cytometry and intracellular staining

Leukocytes from lungs were isolated as described before [26]. Briefly, right heart ventricle was

perfused with PBS until blood cells were removed from the lungs. Fragmented tissue was

digested with Collagenase D (Roche, 0.5 mg/ml) and DNAse I (Roche, 0.025 mg/ml) for 45

min at 37˚C, meshed through 40 mm Falcon Cell Strainer and leukocytes isolated with Lym-

pholyte-M (Cedarlane) gradient centrifugation technique. For tetramer staining, lung leuko-

cytes were stained with a mix of APC-tetramers specific for MHCI complexes presenting M45,

M38, or m139 for 15 min at 4˚C, following a surface staining for 15 min on ice. Tetramers

were provided by Ramon Arens (LUMC, Netherlands). For intracellular staining, lung leuko-

cytes were cultured in vitro in 200 μL RPMI/FCS/HEPES. For re-stimulation 50 ng/mL PMA

and 500 ng/mL Ionomycin were added and cells were incubated for 2 hours at 37˚C with 5%

CO2. To allow detection of intracellular proteins 10 μg/mL Brefeldin A were added and incu-

bated for another 2 hours at 37˚C and 5% CO2. Fc-receptors were blocked in PBS with 3% FCS

(PBS/FCS), 5% serum, and rat antibodies to mouse CD16 and CD32 (2.4G2). Surface staining

was performed for 15 min on ice following the fixation and intracellular staining procedure

with the Intracellular Fixation & Permeabilization Buffer Set (eBiosciences) according to the

manufacturer protocol. Cells were re-suspended in PBS/FCS for flow cytometry analysis using

a LSRII (BD Biosciences). Flow cytometry data was analyzed using FlowJo 7.5 and 10. Gates

for IFNγ+ cells were set based on the border of 99% of the isotype control. Cells from in vitro
culture experiments were trypsinized at room temperature (for 3 min using PBS containing

0.5 mg/mL Trypsin and 3 mM EDTA), blocked for Fc-receptors and stained with antibodies

before FACS analysis. Following antibodies (clones) were used for flow cytometry staining:

CD8a-PE (53–6.7), CD8-APC (RmCD8-2), Thy1-Alexa488 (RMT1), CD103-FITC (M290),

CD31-FITC (MEC13.3), Ly6G-PE (1A8), CD11b-eF450 (M1/70), CD45.2-APC (104),

EpCAM-eF450 (G8.8), F4/80-APC-eF780 (BM8), gp38-bio (eBio8.1.1), Ly6C-PerCP-Cy5.5

(HK1.4), CD11c-PeCy7 (N418), CD19-BV510 (6D5), CD4-PerCP (RM4-5), CD45.2-PerCP-

Cy5.5 (104), IFNγ-PE (XMG1.2), NK1.1-PeCy7 (PK136), Pdgfra-PE (APA5), and Pdgfrb-APC

(APB5).

In vitro plaque reduction assay

Animals were sacrificed and the right heart ventricle was perfused with cold PBS to remove

blood cells from the lungs. Lungs were explanted, chopped into pieces and digested in RPMI

with 0.125 mg DNAse I and 0.269 mg collagenase D at 37˚C for 2h. Cell suspensions were

treated with erythrocyte lysis buffer and stromal cells either purified by depletion of CD45+

cells with the use of a MACS CD45 positive selection kit (Miltenyi) or cultured as a mixed

population. Cells were cultured in RPMI with FCS, P/S and L-Glutamine, and medium was

exchanged every day to remove dead and non-adherent cells. After 6 days of culture, cells were

trypsinized, seeded on 48 well plates and cultured for additional 7 days to reach a confluent

layer. Cells were then infected with 20 PFU/well for 30 mins. Afterwards, virus solution was

discarded and cells were covered with carboxy-methyl-cellulose in addition to different con-

centrations of mouse IFNγ protein (0, 0.1, 1, 10, 100 and 1000 ng per well). After 4 and 8 days,

mosaic images were taken with Zeiss Axiovert M microscope, and plaque sizes were measured

with ImageJ.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 4. A non-parametric two-tailed t-test

(Mann-Whitney test) was applied to compare data from experimental groups to that of wild-

type mice (Fig 2, Fig 3, Fig 5A–5C, S1 Fig, S2 Fig, S3 Fig, and S4 Fig) or of Rag2-/- mice (Figs
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4D, 4E, 5D, 5E and 7). In Fig 4F, the Wilcoxon signed-rank test was applied comparing experi-

mental groups to a fixed value of 0, since Rag2-/- do not harbor any T cells. Significant differ-

ences are marked as follows: P>0.05 (ns), P<0.05 (�), P<0.01 (��), P<0.001 (���).

Supporting information

S1 Fig. Viral titers and luciferase activities increase in salivary glands after i.n. infection

and are restricted by hematopoietic cells. Animals were either irradiated with 6 Gy or not

(control) and infected one day post irradiation with 106 PFU MCMV-3D i.n. At 5 and 8 dpi

salivary glands were homogenized and viral titers (A) or luciferase activities (B) were deter-

mined. Dots represent means of (A) triplicates or (B) duplicates per organ. (A+B) Median

plus interquartile range are shown in grey; Mann-Whitney test. (C) Correlation of viral titers

and luciferase activity in salivary glands. r: Spearman coefficient. (A-C) DL: detection limit;

data from 2 independent experiments per time point are shown. PFU: plaque forming units;

RLU: relative light units.

(TIF)

S2 Fig. NIFs do not contract in T cell-deficient mice 8 dpi. Wild type mice and various

mouse strains deficient for different immune cell populations were infected i.n. with 106 PFU

MCMV-3D. Quantification of NIF size at (A) 5 and (B) 8 dpi. Dots represent NIFs in 1–2

independent experiments; median + interquartile range (red); Kruskal-Wallis test with Dunn’s

Multiple Comparison to WT-mice.

(TIF)

S3 Fig. NK cells do not play a crucial role in containing MCMV infection in the presence of

T cells. Animals were depleted or not for NK cells before i.n. infection with 106 PFU MCMV-

3D. PFA-fixed lung cryosections were prepared from mice and analyzed at 5 dpi. Infected cells

were quantified per (A) NIFs and (B) lung section. Dots represent (A) NIFs or (B) means of 4

lung slices analyzed per animal. Median plus interquartile range shown in red; Mann-Whitney

test performed with mean values of individual animals.

(TIF)

S4 Fig. Control of MCK2-proficient MCMV in the lungs also relies on T cells. WT or

Rag2-/- mice were infected i.n. with 106 MCMV-3DR (MCK2 proficient; red) or MCMV-

3D (MCK2 deficient; black) and lungs were analyzed at 8 dpi. Infected cells were quanti-

fied per (A) NIF and (B) lung section. Dots represent (A) NIFs and (B) mean of 4 lung

sections analyzed per animal; median + interquartile range (grey); Mann-Whitney test

performed with mean values of individual animals.; data shown from 2 independent

experiments.

(TIF)

S5 Fig. Presence of NK and CD8 T cells within NIFs. Ncr1gfp/wt mice were i.n. infected with

106 PFU MCMV-3D. (A) Histology of representative NIFs GFP, blue; anti-CD8a, orange;

anti-CD45, green; infected cells, red; scale bar 50 μm. (B+C) Quantification of the number of

(B) NK cells and (C) CD8 T cells per NIF at 3 and 5 dpi. Dots represent NIFs; median + inter-

quartile range; Mann-Whitney test. (D+E) Quantification of number of (D) NK cells or (E) T

cells per NIF area; Dots represent NIFs.

(TIF)

S6 Fig. MCMV-specific CD8 T cells are present in infected lungs. Animals were infected

with 106 PFU MCMV-3D i.n. and lungs were analyzed at 5 and 8 dpi. For FACS analysis cells

were stained with a mixture of three different tetramers (M45, m139, and M38). (A) Number
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of tetramer+ cells per lung and (B) frequency of tetramer+ cells of CD8+ T cells. Data points

represent animals; median + interquartile range (grey); data from 2 experiments shown.

(TIF)

S7 Fig. IFNγ treatment does not affect plaque size of infected stromal cells of Ifngr1-/-

mice. Primary lung stromal cells of Ifngr1-/- mice were cultured in the (A+B) presence or

(C+D) absence of lung-resident CD45+ hematopoietic cells. Confluent cells were infected with

20 PFU MCMV-3D per well. After infection, carboxy-methyl-cellulose and various concentra-

tion of recombinant mouse IFNγ was added. Quantification of plaque sizes (A+C) 4 dpi and

(B+D) 8 dpi after treatment with IFNγ as indicated. Mean of plaque sizes per well in depen-

dence on the amount of IFNγ added (curves depict single experiments normalized to wells not

treated with IFNγ). Data from 3–4 independent experiments are shown.

(TIF)
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70. Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ, et al. Cytotoxicity mediated by T cells

and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994; 369: 31–37. https://

doi.org/10.1038/369031a0 PMID: 8164737

71. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, et al. Lethal influenza infection in the

absence of the natural killer cell receptor gene Ncr1. Nat Immunol. 2006; 7: 517–523. https://doi.org/10.

1038/ni1322 PMID: 16565719

Control of primary MCMV infection in lungs

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007252 August 28, 2018 24 / 24

https://doi.org/10.1038/350423a0
https://doi.org/10.1038/350423a0
http://www.ncbi.nlm.nih.gov/pubmed/1901381
http://www.ncbi.nlm.nih.gov/pubmed/11602643
https://doi.org/10.1101/gad.956902.in
https://doi.org/10.1101/gad.956902.in
http://www.ncbi.nlm.nih.gov/pubmed/1547487
https://doi.org/10.1016/1074-7613(95)90047-0
http://www.ncbi.nlm.nih.gov/pubmed/7697543
http://www.ncbi.nlm.nih.gov/pubmed/8456300
https://doi.org/10.1126/science.8456301
https://doi.org/10.1126/science.8456301
https://doi.org/10.1038/369031a0
https://doi.org/10.1038/369031a0
http://www.ncbi.nlm.nih.gov/pubmed/8164737
https://doi.org/10.1038/ni1322
https://doi.org/10.1038/ni1322
http://www.ncbi.nlm.nih.gov/pubmed/16565719
https://doi.org/10.1371/journal.ppat.1007252

