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Multistaining of a tissue section targeting multiple markers allows to reveal complex interplays in
atumor environment. However, the resource-intensive and impractically long nature of iterative
multiplexed immunostainings prohibits its practical implementation in daily routine, even when using
work-flow automation systems. Here, we report a fully automated and ultra-fast multistaining using

a microfluidic tissue processor (MTP) in as short as 20 minutes per marker, by immunofluorescent
staining employing commercially available tyramide signal amplification polymer precipitation by
horse-radish peroxidase (HRP) activation. The reported duration includes (i) 15 minutes for the entire
fluidic exchange and reagent incubation necessary for the immunostaining and (ii) 5 minutes for the
heat-induced removal of the applied antibodies. Using the automated MTP, we demonstrated a 4-plex
automated multistaining with clinically relevant biomarkers within 84 minutes, showing perfect
agreement with the state-of-the-art microwave treatment antibody removal. The presented HRP-based
method is in principle extendable to multistaining by both tyramides accommodating higher number
of fluorescent channels and multi-color chromogenic staining. We anticipate that our automated multi-
staining with a turn-around time shorter than existing monoplex immunohistochemistry methods has
the potential to enable multistaining in routine without disturbing the current laboratory workflow,
opening perspectives for implementation of -omics approaches in tissue diagnostics.

Nowadays the state-of-the art of immunohistochemistry (IHC) is being challenged more and more with the
increasing need for precision in molecular subtyping of cancers. Recent trends in personalized medicine suggest
that a higher number of biomarker tests allows a more precise diagnosis, and eventually higher treatment suc-
cess'. Already, the detection of multiple markers for a single patient is often required for clinical purposes* and
it is common practice to use several adjacent tissue sections for each staining to complete a diagnosis. However,
often the spatial morphology of the tissue evolves over the cuts thus not providing the same information across
the whole set of adjacent tissue sections, while missing co-expression of markers in the same cells. Recently,
multi-staining kits using the precipitation of 3-color chromogens are being increasingly used for research pur-
poses, such as the DISCOVERY kit from Roche Ventana®. Similarly, in addition to the current diagnostic practice,
immunophenotyping, which comprises monitoring the expression of several biomarkers related with tumor infil-
trating lymphocytes (TILs) and their interaction with the tumor, is an emerging technique because of its potential
impact in cancer immunotherapy research and potential diagnostic application”?. Consequently, the availability
of a tissue staining technique that would enable widespread and routine utilization of multiplexed immunohisto-
staining is becoming increasingly crucial for diagnostic and clinical research purposes.

To date, two major methods for multiplexed immunostaining have been introduced: spatial and iterative
multiplexing. Spatial multiplexing, in principle, allows staining of spatially different locations of the tissue sec-
tion to increase the number of biomarkers on a single section. Kim et al. presented a multiplexed approach
called multiplexed microfluidic IHC platform® that consists of 10 small (300 zm) adjacent channels for searching
different markers in spatially different locations. Similarly, IBM research presented a device called microfluidic
probe, where vertical microfluidic holes are arranged inside a very small spot of about 100 ym in diameter to
stain regions of interest in a tissue or cell monolayer. Using the microfluidic probe top, spatial multiplexing for 4
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different antibodies was demonstrated by moving the probe head'. Nevertheless, with the use of spatial multi-
plexing, staining a clinically relevant area of the tissue might be impractically long, and a partial staining area for
each marker would not be clinically relevant. Hence, this technique is potentially not suitable for integration in a
routine laboratory workflow.

Iterative multiplexing, on the other hand, can stain the entire tissue section and preserve the morphological
context to produce clinically relevant results. Image-based iterative multiplexing has been shown to simultane-
ously detect up to 50 biomarkers, where each immunostaining cycle includes (i) a first immunostaining, (ii) an
intermittent imaging of the tissue, (iii) removal or inactivation of the stainings''~'°. Yet, the intermittent imag-
ing requires either manual intervention for image acquisition in-between staining cycles, which results in long
turnaround times (TAT), or integrated staining-imaging platforms that are expensive and not widespread. In
order to overcome this, tyramide signal amplification (TSA) was introduced in multiplexing assays, where each
immunostaining results in a precipitated fluorescent polymer over the tissue. Such TSA-precipitate remains on
the slide during the removal of the antibodies, and multiple staining and antibody removal cycles result in the
accumulation of different color TSA-precipitates. Using TSA-based multiplexing, up to 7 different colors are
shown, leveraging advanced multispectral analysis'®, automated or semi-automated protocols on state-of-the-art
staining equipment!” (and final microscope check by the pathologist on the stained slides).

In this context, TSA-based multiplexing could be the most suitable method to replace standard IHC in the
laboratory workflow when co-localized staining of multiple markers is required for diagnosis. Yet, the introduc-
tion of multiplexed stainings comprising a high number of markers per case requires high-duty utilization of
laboratory resources and automated staining equipment. For example, compared to a monoplex IHC, a 7-plex
staining would imply an order of magnitude higher TAT (the shortest reported to be 2.5hours per marker'’) and
staining equipment occupation in an anatomical pathology laboratory, potentially impeding its widespread use
and implementation'”!®. What is more, such multiplexed stained tissue requires digital scanning of the slides
before the observation by a pathologist. Therefore, if a multiplexed TSA-based staining could be rendered faster
than the current monoplex IHC TAT of between 2.5 to 4 hours, it could seemingly be integrated to the current
anatomical pathology workflow and may enable the routine use of multiplexed immunostaining.

Here, we report fully automated and ultra-fast TSA-based multi-staining in as short as 20 minutes average
per marker (Fig. 1) using a microfluidic tissue processor (MTP) that we have recently introduced!*?. The tech-
nique requires only commercially available primary antibodies and TSA kits, and the reported duration includes
(i) 15 minutes average for the entire fluidic exchange and reagent incubations necessary for TSA-based immu-
nostaining and (ii) heat-induced antibody removal in 5 minutes, including heating and cooling cycles. We first
introduce an ultra-fast antibody removal that takes the advantage of the fast heat exchange in the microfluidic
reaction chamber, which reveals comparable results to the widely used microwave treatment (MWT) antibody
removal'®172 Later, in a proof-of-concept experiment, we demonstrated a 4-plex automated multi-staining on
a breast cancer TMA within 84 minutes including counterstaining. The presented method is in principle extend-
able up to 7-plex by using commercial spectral demultiplexing solutions* with a TAT of around 2 hours. To
our knowledge, this is the first time that a multistaining assay can be fully run in automated fashion in less than
20 minutes per marker, also leaving sufficient time for digital slide scanning after the staining. We anticipate that
the reported technique opens perspectives for general use of multistaining in traditional IHC biomarker panels,
the practical and widespread implementation of immunophenotyping, and other -omics like approaches in tissue
immunostaining in the longer term.

Results

Fast heat exchange allows ultra-fast antibody heat-induced removal in 5minutes. The fast
fluid exchange technology is employed as a key element to ensure fast and uniform coloration of the tissue. As
depicted in Fig. 1A,B, with the addition of a temperature control and a cooling system, a fast heat exchange is
achieved inside the reaction chamber. Making use of these features, we established a multiplexed staining work-
flow (Fig. 1C). Initially, the slides are manually pre-processed for dewaxing and epitope retrieval (see details in
Materials and Methods). Subsequently, the samples are sequentially stained and treated for antibody removal for
4 markers of interest from the breast cancer panel: estrogen receptor (ER), progesterone receptor (PR), epidermal
growth factor receptor 2 (Her2) and cytokeratin (CK). Successful staining and antibody removal cycles take from
17 to 23 minutes per marker, reaching a total time of 1h 24 min for a 4-plex staining (see below). Finally, the slides
are removed from the stainer, coverslipped and scanned with a multi-spectral epifluorescence microscope.

The antibody removal characterization was designed as a 2 step protocol in which the detection is based on
horseradish peroxidase (HRP)-labeled secondary antibodies that are tagged by a TSA-Alexa Fluor (AF) system.
The characterization is performed using ER, PR, Her2 and CK markers that are stained on adjacent breast tissue
micro array (TMA) sections. During the first staining cycle of the characterization, the markers of interests were
specifically stained using TSA-AF647. Next, the antibody removal step was performed using the temperature
control module that enables rapid heat transfer to the chamber. This step, carried out at 60 °C, removes the pri-
mary and secondary antibodies, leaving the deposited tyramide compounds covalently bound to the tissue'” (see
temperature cycles in Fig. S1 Supplementary Information). Following the removal of the antibodies from the first
cycle, we applied a second staining cycle, during which no primary antibody was applied to the tissue but only a
detection system with TSA-AF488 (PBS/Ab-II/TSA AF488). This way, if any primary or secondary antibody is
left after the antibody removal step, it could be observed on the AF488 channel. Equivalently, absence of signal
in AF488 would imply that the primary and secondary antibody are indeed removed to an extent that it is not
recognizable by subsequent staining cycles of a multiplexing assay.

After the 2-step protocol is applied to the 4 markers in question on adjacent tissue sections, we conducted a qual-
itative evaluation of the antibody removal efficiency determined by following two parameters: (i) preservation and
integrity of the signal in the AF647 channel and its comparison with a monostaining and (ii) absence of the signal
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Figure 1. Microfluidic multiplexing working principle. (A) Sketch of the open stainer showing the position of
the MTP inside it. Two mechanical toggles allow for easy opening and closing of the platform. Inset: picture of
the MTP. The inset shows the details of the microfluidic inlet and outlet channels. (B) Schematics of the closed
stainer and loading of the microscope slide. The slide is inserted laterally such that the tissue is positioned
above the reaction chamber. Underneath, a pressurized piston exerts the necessary force to seal the chamber
for fast fluid exchange. The inset shows a cut view of the reaction chamber, where the microscope slide hosting
the tissue section is clamped together with the MTP chip. The MTP is supported by the heating element,
electronically controlled to provide or remove heat from its surface. Cooling grooves facilitate heat dissipation.
(C) Work flow of the staining protocol based on the TSA detection system. (i) Tissue pre-processing: slides are
manually dehydrated, deparaffinized, re-hydrated and processed for heat-induced epitope retrieval (HIER);
(ii) On-chip staining and antibody removal cycles take from 17 to 23 minutes per marker, reaching a total

time of 1 h 24 min for a 4-plex staining. The steps performed on-chip are detailed in Table 1; (iii) Slides are
finally removed from the stainer, coverslipped and scanned using a multi-spectral epifluorescence microscope.
Mechanical stainer designed by Marco Ammann, Lunaphore Technologies SA.

in the AF488 channel. In addition, these two parameters obtained by on-chip removal are compared with antibody
removal using a standard MW protocol (see the details of the MWT protocol in Materials and Methods).

Figure 2II shows the results of the 2 step characterization experiments. The antibody removal step performed
on-chip resulted in a correct visualization of the markers revealed using TSA-AF647, while it was impossible to
detect a signal on the TSA-AF488 channel, as expected. Figure 2III shows a comparison between our on-chip
antibody removal method to the standard MWT protocol found in literature. Given the absence of signal in the
AF488 channel, also in this case, the results indicates that both primary and secondary antibodies were removed
by the MWT, while the AF647 tyramide compounds deposited on tissue were preserved. Additionally, as shown
in Fig. 21, a reference sample is stained by omitting the antibody removal steps (i.e. neither on-chip nor MWT)
as an experiment control, in which the marker of interest is visible in the two acquisition channels: AF647 and
AF488.
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Total staining time 48 min

Total staining time with washing steps 1h24 min

Table 1. 4-plex protocol applied to the MTP stainer. TSA-AF indicates a fluorescent-labeled TSA among
AF350, AF488, AF546, AF594 and AF647.

The results demonstrate that the on-chip and MWT antibody removal methods are comparably efficient under
the above evaluation criteria. Consequently, the combination of the here proposed fast heat exchange in the
small-volume reaction chamber and the on-chip protocol can perform an antibody removal within 5 minutes on
the average, with respect to the 35 minutes required for MW'T.

Additional control experiments, depicted in Table S1 and Fig. S2 of the Supplementary Information, were
run with the scope of assessing the efficacy of the 2-step elution method. Three controls were run: (i) Ab-I/
Ab-II/2-step elution/Ab-1I/TSA-AF488/DAPI: Positive staining for PR, followed by elution, Ab-II and TSA-488.
Negative results show that our elution method is efficient, here observed in the same channel as the positive
staining of Fig. 2; (ii) Ab-I/PBS/2-step elution/Ab-II/TSA- AF488/DAPI: Positive staining for PR with no Ab-II,
followed by elution, Ab-II and TSA-488. Results show no signal, indicating that our elution method is efficient in
removing the primary antibody; (iii) Ab-I/Ab-II/single step at 60 °C /PBS/TSA-AF488/DAPI: Positive staining
for PR, followed by a 60 °C step and TSA-488. Results show that PR can be detected and, therefore, a single step at
60°C is neither enough to elute the antibodies nor to deactivate the HRP molecule.

Moreover, image analysis was performed on the data from Fig. 2 using the AF647 channel in order to quantify
the signal levels for ER, CK, PR and Her2 before (AF647) and after (AF488) elution. Results demonstrate that the
pixel grey values after elution measured on the signal masks are comparable to the grey values measured on the
background masks (see details in Fig. S3 of the Supplementary Information). In terms of elution efficiency, the
best case is observed for CK, with an elution efficiency of 99.36%, while the less performing marker turned out to
be ER with 84.90%. The details of the calculations can be found on Table S2 of the Supplementary Information.

On-chip 3-plex staining with antibodies originating from the same species.  Asa proof of concept,
a colocalized 3-plex staining using antibodies from the same species (mouse) was successfully tested for ER, CK
and PR. The markers were detected with the same secondary anti-mouse HRP-labeled antibody and TSA labeled
with the fluorophores AF647, AF546 and AF488, respectively. Antibody removal is attained on-chip thanks to
fast heat exchange described in the previous paragraph. Successful detection is observed without any crosstalk,
indicating that the antibody removal method was efficient in a multiplexed staining and that the epitopes are not
harmed in the process. The fast fluid exchange enabled the uniform delivery of reagents and coloration of the
tissue, as shown in Fig. 31 for (A) the positive staining, and (B) its negative control. In the negative control, each
primary antibody was replaced by washing buffer, while the incubation time and concentration of the secondary
antibody and TSA are unaltered. Overall, the complete 3-plex staining protocol took 56 minutes and was run
on-chip in a fully automated manner. Additional control experiments were ran to exclude that the presence of
non-specific IgGs from mouse would lead to binding in our workflow. Results show equivalence between using
PBS and non-specific IgGs diluted to the same mass concentration to the specific primary antibodies used for
staining (see Tables S3, S4 and Fig. $4 of the Supplementary Information).

Fully automated 4-plex staining of the breast cancer panel is achieved in 84 minutes. Image
acquisition represents a limiting factor in the number of markers that can be multiplexed on a tissue sample
using multi-spectral settings. In fact, the emission of each fluorophore must not overlap with the neighboring
one. Typically, the number of filter sets that a standard fluorescence microscope can accommodate without spec-
tral crosstalk in the visible range is 4'°. In our case, the limitation is to 4 different channels corresponding to
the fluorophores AF350, AF488, AF546/AF594 and AF647. Starting from the 3-plex proof of concept described
above, we further pushed the multiplexing level to 4 markers by adding the detection of Her2. The antibodies
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Figure 2. Characterization of the antibody removal efficiency in a 2-staining-cycle protocol. On-chip antibody
removal efficiency is demonstrated for ER (A), CK (B), PR (C) and Her2 (D) and compared to the standard
MWT. The characterization includes (i) a first detection using TSA-AF647 (Ab-1/Ab-II/TSA-AF647), (ii) heat-
induced antibody removal, and (iii) staining with TSA-AF488 to detect the remaining primary and secondary
antibodies (PBS/Ab-II/TSA-AF488). The figure shows the image acquisition in the AF647, AF488 and AF350
fluorescent channels, corresponding to a first staining cycle, a second staining cycle and the DAPI counterstain,
respectively. (I. Ref) Experiment reference slide with no antibody removal step. All the markers are detected in
both AF647 and AF488 channels. (II. Chip) On-chip antibody removal method: the markers are detected only
in the AF647channel, while no fluorescent signal is detected in the AF488 channel. (III. MWT) Manual MWT:
similarly, the markers are detected only on the AF647 channel. On-chip and MWT methods show equivalent
outcome with respect to the evaluation criteria (see main text), however, fully automated on-chip antibody
removal in 5 minutes eliminates the need of manual MW'T treatment requiring 35 minutes. All the samples have
been imaged with the same exposure settings and are visualized with the same parameters. Scale bar: 25 ym.
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Figure 3. 3-plex staining with primary antibodies originating from the same species obtained with the on-chip
antibody removal method. (A) Multiplexed colocalized staining of ER, CK and PR. (B) Negative staining where
the primary antibodies were replaced by washing buffer. All the markers were specifically stained and detected
in their corresponding detection channel: AF647 for ER, AF546 for CK, AF488 for PR and AF350 for DAPIL
No crosstalk between channels of subsequent stainings indicates the efficient removal of antibodies originating
from the same species and no damage to the epitopes. For every panel: row I is the overview image, scale bar
500 p4m; row IT is a zoom-in where the 3 markers are co-expressed, scale bar 25 ym.

employed for Her2 recognition originate from rabbit and are detected by a TSA labeled with AF350 fluorophore,
imaged with the same filter set used for DAPI. To discriminate between the Her2 signal and the nuclei counter-
stain, we performed a control via a double-image approach, explained in details in the Materials and Methods.

Overall, the 4-plex protocol time took 1h 24 min. Unlike the multiplexing protocols that use MWT for anti-
body removal, the on-chip protocol was fully automated with no need to handle the tissue sample in between
staining cycles. The results shown in Fig. 4 indicate that the fluorescent signal is clearly distinguishable from the
background. Additionally, the detection is specific for every marker and every core, with the sole exception of
Her2 in Core B, where a weak non-specific signal can be observed. The insets of Fig. 4 focus on a tissue area where
marker expression is expected.

The negative controls are performed by replacing the primary antibodies of the 4-plex protocol with washing
buffer. As each negative control has to be imaged both prior and after the application of DAPI, negative controls
prior to DAPI lacked a focus plane reference for the fluorescent microscope. To overcome this, we designed a set
of 3 tissue sections as negative control, where in each control one marker was stained to serve as a focal reference,
and the remaining 3 markers were negative controlled.

Figure 4B-D show the negative controls on adjacent sections for the markers ER, CK and PR, respectively,
without DAPI (row I for every marker) and with DAPI counterstain (row II). The same acquisition and visuali-
zation settings of the 4-plex positive staining are maintained in the negative controls. The results show that every
marker is specifically detected only in one channel, with no fluorescent signal in the others.

In order to assess the specificity of the 4-plex protocol with respect to single staining, the above-introduced
method and imaging approach were used to run the colocalized 4-plex protocol on a breast TMA, and the expres-
sion results are compared with monoplex stainings. Figure 5 shows the results of the double image acquisition.
For every marker of the TMA, the intensity of the microscope acquisition filters and the exposure time have been
tailored on the brightest core and applied to the entire TMA. For each core, we observed that the expression of
every marker stained in the 4-plex protocol (Fig. 5) matches its expression in the single staining control (Fig. 2).
Consequently, for all the 4 markers, we have found no specificity difference between the 4-plex protocol and
the single staining controls. Note that only 4 out of 10 TMA-cores corresponding to the same cores employed
for the antibody removal characterization are shown in the Fig. 5, for the entire TMA visualization, see Fig. S5
of the Supplementary Information). Additionally, Table S5 of the Supplementary Information shows the TMA
core description given by the supplier. IHC staining using Ventana’s Benchmark Ultra was also performed at the
University Hospital of Lausanne. The overview IHC images of the TMA are reported in Fig. S6, where the general
expression and tissue morphology can be appreciated and compared to the fluorescence assays shown in this
work.
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Figure 4. Multiplexed colocalized staining on-chip of ER (AF594), CK (AF647), PR (AF488) and Her2
(AF350) in 84 minutes. Full-tissue staining on a breast carcinoma sample for ER, CK, PR and Her2 is achieved
in 84 minutes, excluding slide pre-processing. All the markers are specifically detected. Her2 and DAPI are
visualized in the same channel (AF350) by imaging before and after counterstaining. (A) Overview image of the
whole tissue section. (B-E) Zoom-in area where the 4 markers are co-expressed, visualized in the 4 acquisition
channels. (B) 4-plex protocol. (C) Negative control where only ER is stained to be used as a focus reference. (D)
Negative control where only CK is stained to be used as a focus reference. (E) Negative control where only PR is
stained to be used as a focus reference. For every sequence panel: (I) is the first image acquisition without nuclei
counterstain, (II) is the second acquisition after the nuclei were counterstained with DAPI. Scale bar 25 ym.

Discussion
We show an on-chip multiplexed immunostaining method that enables the colocalized staining of ER, CK, PR
and Her2 on human tissue sections with antibodies originating from the same species in a record time of 1 h
24 min. Two major advantages over other works are presented here: i) the rapidity of the staining and the anti-
body removal method and ii) the full automation of the protocol. The presented microfluidic technology allows
to precisely control multiple parameters needed for the staining, mainly the uniform delivery of reagents and the
temperature inside the reaction chamber. Plus, its high surface-to-volume ratio allows a rapid heat transfer to
the thin fluid layer thus reducing the heating and cooling stabilization time for the sample. Overall, the sample
processing time is reduced from several hours to few minutes. The incubation time of the primary antibodies for
cytoplasmic and membrane markers is only 2 minutes, while for the nuclear markers 4 minutes are required. In
comparison, fully automated state-of-the art workflow automation systems operate in the range of 60 minutes'®-!8,
The multiplexed protocol is accompanied by single reference stainings as well as negative controls, to assess (i)
efficiency of antibody removal, (ii) the specificity of the detection, and (iii) to determine the markers’ expression
profile. Despite the divergent opinions regarding the most efficient antibody stripping method”!*!°, microwave
treatment is often employed to enable multiple stainings with antibodies originating from the same species and
TSA detection!'®721:23, We employed MW as a reference antibody removal method to compare to our fast, auto-
mated on-chip antibody removal within 5 minutes. For every marker, our protocol involves a high temperature step
at 60 °C for 2 minutes, necessitating only a stabilization time of few seconds due to the fast heat exchange inside the
reaction chamber. In contrast, in similar studies demonstrating antibody removal based on thermal cycles, only
reaching the desired temperature needs around 8 minutes'”. To further ensure that also the antibodies are removed
in such short duration, following the removal step, we incubated the sections again with HRP secondary antibody
and detected by a TSA labeled with a different fluorophore. The preservation of the signal in the staining channel
and absence of the signal in the after-removal channel proved the efficiency of our removal method.
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Figure 5. Colocalized 4-plex staining of ER (AF647), CK (AF546), PR (AF488) and Her2 (AF350) applied to
the breast TMA. 4-plex staining performed on the same cores used for the antibody removal characterization
in Fig. 2. Specific staining is observed for each marker. The left column shows the overview of the TMA cores,
scale bar 500 ym. Columns 2-6: (A) Core employed for the antibody removal characterization of ER (Fig. 2A),
expressing also PR and CK staining and negative to Her2. (B) Core employed for the antibody removal
characterization of CK (Fig. 2B), expressing also ER and PR, and negative to Her2. (C) Core employed for the
antibody removal characterization of PR (Fig. 2C), expressing also CK and negative to ER and Her2. (D) Core

employed for the antibody removal characterization of Her2 (Fig. 2D), expressing also CK and negative to ER
and PR. Scale bar 25 yum.

The microfluidic design ensured the uniform distribution of the reagents over the entire section and enabled
a colocalized staining throughout the tissue. Recently, an AC electric field enhancement device to stain frozen
tissue sections demonstrated comparably fast staining, however it was only tested for a single antibody (CK)***.
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Spatial multiplexing devices with staining times in the order of 1 hour could not provide colocalization®!**. Qur
fully automated system and multiplexing protocol, on the other hand, is currently capable of staining a tissue
sections and TMAs as large as 17 x 17 mm (Fig. 4). Additionally, the microfluidic technology is scalable to any
chamber size. The signal for nuclear, cytoplasmic and membrane markers on the 4-plex assay, is comparable to
the single positive controls. While the whole tissue sample was chosen to highly express all the markers of interest,
specificity was addressed relying on the multiple tissues composing the TMA.

The here presented technology requires an average processing time of 20 minutes per marker, including all
washing cycles. To our knowledge, this is the first time that a colocalized 4-plex staining is run fully automated in
only 84 minutes, a shorter time than typically required for a full IHC staining with standard automated processes.
Overall, our platform offers the possibility to explore multiple parameters in record time, which is essential in the
frame of application development and impossible to accomplish with other devices in comparable time. It dra-
matically reduces the assay development time, for example, when (a) optimizing the clone and the concentration
of the antibody, (b) identifying sequence of primary antibodies in the multiplexing protocol, and (c) for coupling
low expressing markers with brighter fluorophores. Therefore, while we demonstrated our method on breast
cancer markers here, it is transferable to research domains, such as immunophenotyping, where multiplexing is
extremely beneficial to understand the tumor microenvironment. Furthermore, our characterization showing
equivalence of microfluidic on-chip antibody removal to MWT antibody removal implies that the presented
4-plex method shall easily be extendable to multiplexing of higher number of tissue biomarkers!'®#%’, In addi-
tion, since potential tissue-antigen degrading effects of the heat-induced antibody removal period is reduced to
2 minutes, one would expect that fast heat exchange will possibly allow higher-plexing compared to MWT or
other methods.

Finally, at present, the presented method constitutes a very powerful device for research and assay develop-
ment, offering unrivaled time-to-result, which would drastically reduce assay development times. In addition,
the full automation of the device eliminates the variability caused by the user intervention. It is clear that further
work, including but not limited to image analysis, quantification of the antibody removal and demonstration
of higher level of multiplexing, should be carried out before transferring this ultra-fast technology as a routine
tool. Nevertheless, the reported duration with full automation opens up avenues for the integration of the multi-
plexed immunostainings in the routine practice in highly needed applications like small tissue samples or immu-
nophenotyping. We are confident that in the future our technology can contribute widespreading of -omics like
approaches in tissue diagnostics.

Methods

Microfluidic technology for fast fluidic exchange and rapid heat transfer. Based on the MTP
device previously described'*?’, the system was further engineered to make the staining procedure fully auto-
mated and reproducible independently from the user. The MTP chip is clamped with a microscope glass slide, on
which the tissue section is fixed, in order to create a reaction chamber with a thickness of 100 yzm (Fig. 1). A poly-
dimethylsiloxane (PDMS) gasket defines the height of the chamber and ensures its proper sealing. The height of
the chamber is one of the most critical parameters and guarantees a fast and uniform distribution of the reagents
over the staining area (17 x 17 mm). Two toggle clamps linked to a cover lid and a pressure-controlled piston
close the reaction chamber. An inlet branch of microfluidic channels connects the reaction chamber to a reagent
delivery system, while three outlet branches address the reagents into a waste container. The reagent delivery sys-
tem, depicted in Fig. S7 of the Supplementary Infromation, allows to select the reagent to dispense from a pool of
8 vials and 4 falcons through a pressurized valve system that automatically controls the valve opening and closing.
Below the MTP chip, a Peltier element (Laird Technologies SH10, 125, 05, L1, W4.5), supported by a forced-air
cooling system, allows to control the temperature and the heat transfer inside the chamber. The feedback signal
coming from a resistance thermometer (Heraeus PT100 FK222) in contact with the MTP surface is used to moni-
tor the temperature inside the chamber and to regulate the current supplying the Peltier. This configuration allows
a uniform and fast heat transfer to the thin layer of liquid inside the chamber.

Tissue preparation and reagents. Breast tissue samples were purchased from EastWestBiopharma (Kyiv,
Ukraine) upon Service Agreement for Collection of Human Biological Material and Associated Data. The TMA
samples were purchased from US Biomax, Inc. (MD, USA) upon statement consent form and feature 10 breast
cores with different combinations of markers’ expression. The full tissue sections were selected in order to have
the 4 markers of interest, i.e. ER, CK, PR and Her2, co-expressed on the same tissue case. Both were provided as
4 pym FFPE sections mounted on Superfrost Plus slides (Thermo Scientific). Sample preparation was performed
manually off-machine. Tissue samples and TMAs were at first dehydrated 10 minutes at 65 °C, dewaxed using
Histoclear (National Diagnostics, GA, USA) for 10 min and then rehydrated using ethanol solutions in decreasing
concentrations (100%, 95%, 70% and 40% vol/vol) (Fisher Chemical) for 2 minutes. Afterwards, heat-induced
antigen retrieval (AR) using Tris/EDTA buffer pH9 (Dako S2367, Denmark) was run for 40 minutes at 95°C in a
hot bath, followed by 20 min cooling at room temperature. Then, the samples were immersed in phosphate buft-
ered saline pH 7.4 (PBS) (Sigma Aldrich, MO, USA) before being loaded on the stainer device.

As primary antibodies the following reagents were employed: mouse anti-human cytokeratin, clone AE1/
AE3 (code M3515, Dako, Denmark) at the concentration of 1.72 pug/ml, mouse anti-human progesterone
receptor (Novocastra NCL-L-PGR-312) at the concentration of 42 ug/ml, mouse anti-human estrogen recep-
tor (Novocastra NCL-L-ER-6F11) at the concentration of 0.7 yug/ml, rabbit anti-human c-erbB-2 oncoprotein
(A0485, Dako, Denmark) at the concentration of 2.4 1g/ml. The detection was performed using ready-to-use
secondary anti-mouse or anti-rabbit HRP-labeled antibodies (ImmPRESS, Vector Laboratories MP-7402 and
MP-7401, respectively) together with one of the following AF-coupled TSA (Life Technologies, CA, USA): AF350
(B40952), AF488 (T20948), AF546 (T20913), AF594 (T20950), AF647 (T20951). All the reagents were dissolved
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Light intensity | Exposure time
Fluorophore Filter (%) (ms)
AF350 02 2 200
AF488 10 2 180
AF546 43HE 2 100
AF594 64HE 20 50
AF647 50 100 300

Table 2. Settings applied for the microscope image acquisition.

in a 0.05% (vol/vol) solution of Tween 20 (BP337-100, Fisher Scientific, MA, USA) in PBS, except TSA-AF350
that was dissolved in a 0.05% (vol/vol) solution of Tween 20 in Tris Buffered Saline (TBST) (BP2471-1 Fisher
Scientific, MA, USA). The TSA reagents were activated by adding 0.0015% H,0, (216763, Sigma Aldrich, MO,
USA). In the case of 4-plex staining, a water-based mounting solution SlowFade Gold Antifade (36936, Thermo
Fisher Scientific, MA, USA) was used to mount the slides without nuclear counterstain. For all the others,
SlowFade Gold Antifade with DAPI (S36938, Thermo Fisher Scientific, MA, USA) was employed to mount the
coverslips and counterstain the nuclei. Coverslips no. 1 from Knittel Glass are employed.

Automated staining protocol. Once the glass slide is loaded on the stainer, the reaction chamber is closed
by applying 2.5 bar pressure to the piston supporting the MTP chip. The staining protocol for CK and Her2
is 10 minutes in total, as reported in details in Table 1 (steps 5-7 and steps 13-15, respectively). The staining
protocol of the nuclear markers ER and PR requires overall 14 minutes (steps 1-3 and steps 9-11, respectively).
PBS buffer was used as washing buffer in between the staining steps and delivered at 25 pl/s for 10s. Primary
and secondary antibodies have been incubated for 2 minutes for CK and Her2, and for 4 minutes for ER and PR.
TSA was incubated for 2 minutes in all the experiments. The rationale behind the choice of the concentration of
the reagents and their incubation times have been already discussed in previous works'*?. All the reagents were
delivered at 25 pul/s for 8s. Upon completion of the staining protocol on-chip, the sample slide is unloaded from
the device and manually rinsed with deionized water for few seconds before being mounted with a coverslip using
the mounting solution.

Characterization of antibody removal. A double staining on the same tissue sample is used to characterize the
efficiency of the antibody removal method. The first staining cycle consists in the positive staining of one marker
(ER, PR, CK or Her2) detected by TSA-AF647. The second one consists in a negative step where the primary anti-
bodies are replaced by a PBS incubation of equivalent time and the detection relies on TSA-AF488. In between
the first and the second cycles, antibody removal is performed. Based on qualitative visual inspection, the anti-
body removal is considered efficient when the marker of interest is detected only with TSA-AF647 and not with
TSA-AF488. The antibody removal on-chip consists in a first exposure to buffer I at room temperature for 2 min-
utes, in the case of CK and Her2, and for 4 minutes, in the case of ER and PR. Afterwards, a sequent incubation
with buffer IT at 60 °C for 2 minutes is applied for all the markers. This step is immediately followed by the second
staining cycle at room temperature. Overall, the protocol takes 17 minutes for CK and Her2, and 23 minutes for
ER and PR. Buffer I contains sodium dodecyl sulfate and buffer II contains tris(hydroxymethyl)aminometh-
ane and ethylenediaminetetraacetic acid. The antibody removal off-chip is performed with MWT. The slides are
immersed in a jar containing AR pH9 and placed inside the microwave. The microwave is run 50's at full power
(100%), followed by 15 minutes at 20% power. Afterwards, the slides are left 20 minutes immersed in the AR for
natural cooling and are loaded again on the MTP stainer for the second staining cycle. The reference control slide
does not undergo any antibody removal process, it is incubated 2 minutes on-chip with PBS washing buffer. No
removal of antibodies is applied leaving the primary and secondary antibodies on the tissue surface, that can
therefore be detected also by TSA-AF488 during the second staining cycle.

Multiplexing staining protocol with antibodies from the same species. A full 3-plex protocol for the staining of
ER, CK and PR, in this order, is run on the MTP stainer with the antibodies removal method on-chip (Table 1,
steps 1-11).

The protocol takes 54 minutes, at the end of which the slide is manually rinsed with DIW and mounted with a
coverslip using the mounting solution with DAPI for nuclear counterstain. The image is acquired only at the end
of the experiment for all the channels. The negative control is performed by replacing the primary antibodies with
PBS washing buffer of equivalent incubation times.

4-plex automated staining protocol. A 4-plex protocol for the staining of ER, CK, PR and Her2 in this order, is
run on the MTP stainer with the antibody removal method on-chip (Table 1). Her2 is detected with TSA-AF350,
which is excited and emits at the same wavelengths of DAPI, employed to counterstain the nuclei. Therefore, a
double-image approach is introduced to discriminate the signal coming from Her2 and the one coming from
DAPI. At the completion of the 4-plex protocol, a cover-slip is mounted using a water-based mounting solu-
tion that does not contain DAPI. After the image is acquired, the coverslip is unmounted: the sample slide in
immersed 10s in deionized water and the coverslip is removed with the help of tweezers. Then, the slide is man-
ually rinsed with deionized water and mounted with a new coverslip using the mounting solution containing
DAPI. Thus, there are two images of the same slide, one without nuclei counterstained and one with the nuclei
counterstained with DAPI. Because it is not possible to focus during the image acquisition in absence of DAPI,
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the negative controls are performed as a single staining of one marker in a 4-plex negative protocol for ER, CK
and PR. The order of incubation is conserved (ER-PBS-PBS-PBS, PBS-CK-PBS-PBS, PBS-PBS-PR-PBS) and the
same concentration and incubation time are applied.

Fluorescence image acquisition. 'The slides were loaded into an automated epifluorescent microscope (Axio
Imager M2, Zeiss, Germany) and a CCD camera was employed to acquire mosaic images. Zeiss filter sets 02, 10,
43HE, 64HE, 50 were employed for the AF350, AF488, AF546, AF594 and AF647 fluorophores, respectively. The
filter intensity and the exposure time adopted are reported in Table 2. Acquisition, scanning and stitching were
done automatically. The autofocus was set in the AF350 channel and run automatically for every tile of the image,
a correction of —2.3 um was applied when acquiring in the AF647 channel upon focus offset characterization. The
overall acquisition time varies between 10 to 50 minutes, depending on the size of the sample and on the number
of channels employed.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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