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Abstract: The development of generic preparations that are bioequivalent to a reference listed drug
(RLD) is faced with challenges because some critical attributes of RLDs are commonly unknown to
developers. In order to determine these attributes, Raman mapping-based reverse engineering in this
study to analyze a model sustained-release tablet of nifedipine. The Raman mapping results indicate
that the size and size distribution of nifedipine are critical to its release pattern and bioavailability.
The tablets with a particle size of nifedipine comparable to that of a commercial product, Adalat®-L,
showed similar in vitro release profiles to the RLD. Moreover, a pharmacokinetic study in human
volunteers proved the bioequivalence of the two preparations. In conclusion, Raman mapping-based
reverse engineering has the potential to facilitate the development of generic preparations.

Keywords: Raman mapping; reverse engineering; particle size; sustained release; bioequivalence

1. Introduction

Nowadays, generic drugs hold the leading position in clinics due to their therapeu-
tic equivalence and huge economic benefits [1,2]. In the year 2014, USD 254 billion was
saved because of the use of generic drugs in the United States [3]. However, achieving
pharmaceutical equivalence and bioequivalence to reference listed drugs (RLDs) remains
challenging [4,5]. Thus far, dissolution testing is one of the dominant screening methods
during the development of generic drugs. Nevertheless, establishing a workable in vitro
dissolution method that meets the requirements of in vitro–in vivo correlation (IVIVC) is
difficult. The overall qualification rate of IVIVC submitted to the Food and Drug Admin-
istration (FDA) of the U.S. is only 40% [6]. A trial-and-error method thus prevails in the
development of generic drugs, leading to huge financial and time costs. The goal of the
development of a generic drug product is comparative consistency with the RLD to meet
the quality target profile. Identification of the critical quality attributes (CQAs) of RLDs is
crucial for the development of generic drugs [7].

Acquiring the CQAs of RLDs is difficult. The package insert, patent files, and literature
provide useful information to establish the initial formula. CQAs, such as particle size and
size distribution of active pharmaceutical ingredients (APIs), crystal forms, and spatial
distribution of APIs in the matrix of excipient, are unavailable, but are critical for the
development of oral solid-dosage forms, particularly for poorly soluble APIs. For example,
the particle size [8,9] and crystal form [10,11] strongly impact the dissolution [12,13] and,
consequently, the oral bioavailability of APIs [14]. The spatial distribution of APIs in
the excipient matrix is of good reference value for process development [15,16]. In this
instance, reverse engineering of an RLD may facilitate the development of generic drugs
by providing essential critical product attributes.

Raman scattering is the inelastic scattering of the monochromatic light, which is a
shift in the energy of the incident radiation as a result of interaction with vibrations in
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the molecule. Raman mapping works by recording point-by-point spectra from different
areas of a sample mounted upon a moveable stage. The obtained spectra are converted
to images through various mathematical approaches [17]. The point-by-point mapping
approach is the most commonly used technique when employing Raman mapping [18].
Raman spectroscopy and mapping are valuable tools in the pharmaceutical field [19,20],
such as non-destructive analysis of chemical composition and molecular structure [21–26],
quantitative analysis of critical attributes [27–33], identification of polymorphs or in situ
monitoring of crystallization [34–36], real-time release testing [37,38], and real-time process
monitoring and control [39–43]. Therefore, Raman mapping can be used as a powerful
tool in reverse engineering of an RLD to provide valuable information on CQAs and
processing parameters.

Adalat®-L is a sustained-release tablet of nifedipine for the treatment of hyperten-
sion. Being the first generation of nifedipine preparation, the preparation technology of
Adalat®-L is different from that of subsequent preparations, i.e., Adalat®-CC (a coat-core
tablet) and Adalat®-LA (an osmotic pump tablet). No functional excipients are listed in
the package insert of Adalat®-L. Preliminary tests indicated that the tablet rapidly disin-
tegrates in the dissolution medium, which implies that the tablet is not a matrix-based
sustained-release delivery system. Because nifedipine is poorly water-soluble, the sustained
release is attributed to the particle size and size distribution, well-controlled to meet the
sustained-release requirement, of the API nifedipine [44]. Particle size is a critical attribute
in the development of generic preparation of nifedipine. Measuring the size of nifedipine
in Adalat®-L is challenging due to the interference from other excipients. The development
of generic nifedipine preparations is extremely difficult as the inconsistent size and size
distribution of nifedipine inevitably lead to an alteration in drug release pattern and a lack
of bioequivalence. Although a trial-and-error method may be applied in the process, its
time and money costs are huge. Conversely, Raman mapping-based reverse engineering
provides a good solution to the problem by providing valuable information on the size and
size distribution, as well as the distribution pattern, of nifedipine in Adalat®-L.

In this study, we obtained Raman spectra of each component in Adalat®-L for Raman
mapping. We reverse analyzed the CQAs, such as the particle size and distribution of
nifedipine, and the content of each excipient in Adalat®-L, via Raman mapping. Based
on the information, we prepared generic tablets with different particle sizes of nifedipine.
We compared the release profiles of the prepared tablets with that of the RLD. Finally, we
conducted a bioequivalence study to confirm the agreement between the optimal batch and
the RLD.

2. Materials and Methods
2.1. Materials

We purchased Adalat®-L (20 mg) from Bayer AG, Osaka, Japan; nifedipine from
Changzhou Siyao Pharmaceuticals Co., Ltd., Changzhou, China; microcrystalline cellulose
from DuPont Nutrition USA, Inc., Newark, DE, USA; lactose from DMV-Fonterra Excipients
GmbH & Co. KG, Noerten-Hardenberg, Germany; polysorbate 80 from Longyou Juxing
Cereal & Oil Medicine Chemical Co., Ltd., Quzhou, China. We bought corn starch and
magnesium stearate from Haiyan Liuhe Pharmaceutical Co., Ltd., Jiaxing, China; Opadry®

from Shanghai Coloron Coating Technology Co., Ltd., Shanghai, China. We performed all
the preparations and analyses in the dark due to the photosensitivity of nifedipine.

2.2. Raman Mapping of Adalat®-L

We performed Raman mapping using a Laser Microscopic Confocal Raman Spec-
trometer (inVia, Renishaw, Gloucestershire, UK). We excited the Raman scattering with
a 633 nm laser operated at 100% laser power and a 50× objective lens used to collect the
backscattered light. We performed Raman point-by-point mapping with a step size of
4 µm in an area of 1000 × 1000 µm. The acquisition time per point was 0.5 s. We recorded
scans in a spectral window from 603 to 1738 cm−1. We acquired and analyzed the data
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using WiRE 5.2 software, which was affiliated with the Raman spectrometer. We obtained
the reference Raman spectra of nifedipine and the three most abundant excipients, corn
starch, lactose, and microcrystalline cellulose, by measuring each pure sample using similar
measurement conditions. We obtained the Raman image data of Adalat®-L by scanning the
tablet after being cut using a scalpel. We calculated the particle sizes of each component
in the tablet using the statistical tool in the test software. Additionally, we estimated the
content of each component using the software according to the matching degree with the
reference spectra.

2.3. Preparation of Nifedipine Sustained-Release Tablets

We produced four sets of tablets with different particle sizes of nifedipine to investigate
its quality attributes. We pulverized the nifedipine using GF-300A high-efficiency universal
crusher (Shanghai Tianhe Pharmaceutical Machinery Co., Ltd., Shanghai, China), which we
sieved with different meshes (75, 125, 425, and 1000 µm). Then, we measured the particle
size and size distribution of the sieved nifedipine using a Malvern FPIA-3000 (Malvern,
UK). We collected and compared the particle size data (D90, D50, and D10).

We prepared the core tablets by wet granulation. Because the measured weight of
the core tablet of Adalat®-L was 79.4 ± 0.6 mg, we set the weight of the core tablet to
80 mg. The composition determined based on the Raman mapping results is shown in
Table 1. We mixed nifedipine with polysorbate 80, microcrystalline cellulose, lactose,
and corn starch for several minutes. We added starch slurry (15%, w/w) to the mixture
to prepare the soft material, which we sieved through 14 mesh to obtain wet granules.
We dried the wet granules at 65 ◦C until the moisture content was less than 3.5% (w/w).
Following the sieving through 14-mesh sieves, we mixed the dry granules with magnesium
stearate. We compressed the mixture into tablets using a rotary tablet compression machine
(Beijing Gylongli Sci. & Tech. Co., Ltd., Beijing, China). We adjusted the tablet press to
produce tablets with 3.0–6.0 kp hardness. We then coated the core tablets with Opadry®

(Shanghai Coloron Coating Technology Co., Ltd., Shanghai, China) in a high-efficiency
coating machine (Wenzhou Pharmaceutical Machinery Factory, Wenzhou, China). We set
the coating weight gain to 3.0–4.0% (w/w).

Table 1. Composition of core tablets.

Ingredients Amount (mg)

Nifedipine 20.0
Polysorbate 80 0.4

Microcrystalline cellulose 26.0
Lactose 8.0

Corn starch (for blending) 12.4
Corn starch (for starch slurry) 12.4

Magnesium stearate 0.8
SUM 80.0

2.4. Validation of the Prepared Tablets by Raman Mapping

We mapped the tablets using a Raman spectrometer to compare the particle size with
that of Adalat®-L. We also studied the crystallinity of the nifedipine in preparation by
extracting the spectrum of nifedipine from the tablets.

2.5. In Vitro Dissolution Studies

We determined dissolution by adapting the method recommended by the Ministry
of Health and Welfare of Japan. We adopted 900 mL pH 4.0 acetate buffer with 0.05%
polysorbate 80 as the release medium. We set the rotation rate of the paddle to 50 rpm. We
removed 5 mL samples at predetermined intervals, while we supplemented an equal vol-
ume of blank media with the same temperature. We filtered the samples for measurement
of nifedipine concentration by HPLC (Agilent Infinity 1260 series, Agilent Technologies,
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Santa Clara, CA, USA) at 235 nm. We used a reverse-phase C18 column (4.6 × 150 mm,
5 µm) for separation. The mobile phase consisted of a mixture of methanol and water
(60:40, v/v), which was pumped at a flow rate of 1.0 mL/min. The standard curve for
nifedipine was linear over the concentration range of 2.8~28.0 µg/mL, and the correlation
coefficient was higher than 0.999. We obtained the accuracy and precision by measuring
three different concentrations of nifedipine (2.8, 11.2, and 28 µg/mL), which ranged from
100.3% to 100.8% and 1.1% to 1.3%, respectively.

We used the similarity factor (f 2) to test the similarity between two dissolution pro-
files [45].

f2 = 50log

{[
1 +

1
n ∑n

t=1(Rt − Tt)
2
]−0.5

× 100

}
(1)

where Rt and Tt represent the dissolution of reference and test preparation at different time
points, respectively; n is the number of observations. An f 2 value higher than 50 indicates
similarity between two dissolution curves. For the calculation of f 2 values, we requested at
least 12 individual dosage units, and we considered only one data point after 85% of the
drug was released.

2.6. Bioequivalence Studies

We conducted an open-label, randomized, two-period, two-sequence, single-dose,
two-way, crossover comparative bioequivalence study on healthy human volunteers. We
obtained ethical approval for this study from the affiliated hospital of Xuzhou Medical
University (Protocol approval No. XYFY2018-YL077-01 for fasting study and XYFY2018-
YL078-01 for fed study). We compared the pharmacokinetic data of the prepared tablet
with those of Adalat®-L. Twenty-eight volunteers enrolled in the fasting study, and another
twenty-eight in the fed study. We obtained written informed consent from each volunteer
after explaining the objectives of the study. We medically screened all volunteers to establish
their fitness for the study.

We randomly divided the twenty-eight volunteers into two groups. One group re-
ceived Adalat®-L, while the other received the prepared tablet during the first treatment
period under fasting/fed conditions. After a washout period of 7 days, the volunteers
exchanged formulations during the second treatment period. We withdrew blood samples
at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 14, 16, 24, and 36 h after drug administration
into vacutainer tubes containing anticoagulant. We immediately centrifuged the blood
samples at 1900× g for 10 min at 4 ◦C. We froze the plasma at −20 ◦C pending content
analysis via LC-MS/MS.

To extract nifedipine from the biosamples, we added a 100 µL aliquot of human
plasma to a deep well plate containing 5 µL internal standard (0.2 ng/µL of nifedipine-d6).
Then, we added 500 µL acetonitrile to the plasma, which vortexed for about 1 min. We
centrifuged the mixture (20 ◦C) at 3000 rpm for 10 min. We diluted a 100 µL aliquot of the
supernatant with 500 µL acetonitrile/H2O/formic acid (45/55/0.2, v/v), which vortexed
for 1 min. We centrifuged the mixture (20 ◦C) at 3000 rpm for 5 min, and we estimated the
drug concentration in the supernatant by LC-MS/MS method.

We used an Exion LCTM system (AB SCIEX, Framingham, MA, USA), coupled with a
TRIPLE QUADTM 6500 + mass spectrometer (AB SCIEX, Framingham, MA, USA), with
IonDriveTM Turbo VTM ion source, for the LC-MS/MS analysis. We conducted chromato-
graphic separation at 40 ◦C with a gradient mobile phase on an Agilent ZOBAX XDB-C18
column (column size: 2.1 × 50 mm). The mobile phase (A) consisted of H2O/formic acid at
a volume ratio of 100/0.2, whereas (B) consisted of acetonitrile/formic acid at a volume
ratio of 100/0.2. The flow rate was 0.4 mL/min, and we programmed the mobile phase
to linearity changes as follows: 55% (A) at 0–0.9 min, 55–10% (A) at 0.9–1 min, 10% (A) at
1–1.5 min, 10–55% (A) at 1.5–1.6 min, and 55% (A) at 1.6–3.5 min. The injection volume was
10 µL. We used Analyst version 1.6.3 for data acquisition and analysis.
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We subjected the plasma drug concentration–time data to non-compartmental analysis
using pharmacokinetic software WinNonin® version 6.4 to obtain various pharmacoki-
netic parameters.

We conducted statistical analysis using SAS® software version 9.4 (SAS Institute
Inc., Cary, NC, USA). We used the general linear model to analyze the pharmacokinetic
parameters such as AUC0–t, AUC0–∞, and Cmax after natural logarithm transformation. As
for these parameters, we considered results with a 90% confidence interval within the scope
of 80.00~125.00% to be bioequivalent to Adalat®-L.

3. Results and Discussion

3.1. Analysis of Adalat®-L by Laser Raman Spectroscopy

Prior to Raman-mapping experiments, we optimized the instrumental conditions for
pure nifedipine and the main excipients in all spectroscopic analyses. For this purpose,
we performed Raman spectroscopy on nifedipine and excipients in powder form in order
to monitor the components that were present in the tablets. Figure 1 shows the specific
Raman spectrum of pure nifedipine, corn starch, microcrystalline cellulose, and lactose. We
used direct classic least squares method (DCLS) to produce the Raman images from over
63,001 collected spectra. The characteristic bands for nifedipine, corn starch, microcrys-
talline cellulose, and lactose are marked in Figure 1. Because the bands mainly located
between 603 and 1738 cm−1, we adopted this region for Raman mapping. Figure 2 shows
the scanning distribution of each component of Adalat®-L. The corresponding materials
with different colors are shown as follows: red, nifedipine; blue, corn starch; yellow, lactose;
and green, microcrystalline cellulose. We statistically analyzed the particle size by imaging
analysis of the chemometrics data, and estimated the content of each component by Raman
chemical imaging analysis. The particle size and estimated content of nifedipine and the
three main obtained excipients are shown in Tables 2 and 3. According to the Raman
analysis, the particle size (D90) of nifedipine in Adalat®-L was 150 µm, and the estimated
contents of nifedipine, microcrystalline cellulose, lactose, and corn starch were 33.94%,
33.02%, 1.40%, and 31.65%, respectively.
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Figure 1. Raman spectra of nifedipine, corn starch, microcrystalline cellulose, and lactose. The
characteristic bands are marked: nifedipine, 112, 586, 748, 810, 969, 1048, 1224, 1348, 1491, 1647, and
2954 cm−1; corn starch, 122, 477, 863, 939, 1081, 1127, 1260, 1337, 1459, and 2922 cm−1; microcrystalline
cellulose, 1094, 1123, and 2896 cm−1; lactose, 356, 474, 858, 1018, 1066, 1261, 1331, and 2888 cm−1.
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Table 2. Particle size of nifedipine in Adalat®-L.

D90 (µm) D50 (µm) D10 (µm)

Nifedipine 150 118 30.7

Table 3. Estimated content of each component in Adalat®-L.

Components Nifedipine Microcrystalline Cellulose Lactose Corn Starch

Proportion (%) 33.94 33.02 1.40 31.65

3.2. Comminution and Particle Size Control of Nifedipine

According to the measured size in Adalat®-L, we prepared nifedipine with different
particle sizes (Table 4). We set the maximum size to a D (90) close to 150 µm. Tablets with
different sizes of nifedipine helped us to investigate the effect of particle size on the Raman
spectroscopy, and characteristics of in vitro release and in vivo absorption.

Table 4. Particle size of raw nifedipine for preparation of each batch.

Batch
Particle Size

D (90) (µm) D (50) (µm) D (10) (µm)

A 145.2 ± 0.6 69.3 ± 0.6 12.1 ± 0.5
B 96.1 ± 0.7 38.2 ± 0.6 8.4 ± 0.6
C 62.0 ± 0.6 26.3 ± 0.2 5.5 ± 0.3
D 38.9 ± 0.5 18.8 ± 0.4 6.1 ± 0.4

3.3. Validation by Raman Mapping of Prepared Tablets

We prepared four batches of sustained-release tablet with different sizes of nifedipine.
First, we disintegrated and dispersed the tablets in water. We measured the size of the
dispersed nifedipine. We visual observed that the suspension obtained from the batch A
tablet was more turbid than that from other preparations. Thus, we did not map Batch A
by the Raman spectrometer, but was further evaluated in dissolution. Figure 3 shows the
scanning of the tablets and distribution of each component in the prepared tablets. The
obtained particle size of nifedipine is shown in Table 5.
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Table 5. Particle size of nifedipine in prepared tablets and Adalat®-L.

Particle Size

D (90) (µm) D (50) (µm) D (10) (µm)

Adalat®-L 150 118 30.7
Batch B 173 118 52.2
Batch C 147 121 47.5
Batch D 108 103 32.7

We observed the different particle sizes of nifedipine among the prepared tablets from
the D (90) data. The trend was consistent with that of the size of the raw materials measured
by a Malvern FPIA-3000S. The result revealed differences between the particle size obtained
from Raman spectroscopy and that from the Malvern instrument. This could be partly
due to the difference in the detecting principle, and to the change in particle sizes under
physical stress during formulation processes such as mixing, granulation, drying, blending,
and tableting. The results also showed that the particle size of Batch C was closest to that
of Adalat®-L. The particle sizes of Batches B and D were significantly larger or smaller than
that of Adalat®-L. We estimated that the release behavior of Batch C should be similar to
that of Adalat®-L, whereas the release behaviors of Batches B and Batch D should be slower
or faster than that of Adalat®-L, respectively.

The crystalline forms of nifedipine in different tablets are also compared in Figure 4.
We extracted the Raman spectra of nifedipine from each batch of sustained-release nifedip-
ine tablets. The peaks of each spectrum were basically the same, indicating the consistent
solid form. Additionally, the C–C–O stretch at 1224 cm−1 and the C=C stretch at 1648 cm−1

both comply with the characteristics of the α-form of nifedipine crystal [46].
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3.4. In Vitro Dissolution Studies

The release profiles of the prepared tablets are compared with that of Adalat®-L in
Figure 5. The release profile of each preparation (the similarity factor f 2 was 54.9, 78.2, and
52.3 for Batches B, C, and D, respectively) was similar to that of Adalat®-L, but not that
of Batch A (the similarity factor f 2 of Batch A was 44.2). The release behavior of Batch C
was the most consistent. Compared with Adalat®-L, Batches B and D showed significant
differences in the absolute value of cumulative release at each time point, particularly
after 1 h of release. Taking 4 and 8 h as examples, the cumulative release of Batch B was
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about 7.2% and 8.9% lower than that of Adalat®-L, respectively. The cumulative release of
Batch D was about 10.6% and 10.0% higher than that of Adalat®-L, respectively. Because
nifedipine is a BCS Class II drug, there is a certain correlation between the drug release rate
and the absorption rate in vivo. Therefore, although the similarity factor f 2 of each release
profile (Batches B, C, and D) was greater than 50, the difference in the absolute value of
release at each time point might cause a huge difference in oral bioavailability.
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3.5. Bioequivalence Studies

According to the results of the in vitro studies, such as dissolution studies and Raman
spectroscopy, we chose the prepared tablets from Batch C to conduct the bioequivalence
studies with Adalat®-L. The plasma concentration versus time profiles of Batch C and
Adalat®-L were similar and nearly superimposable (Figure 6). The pharmacokinetic pa-
rameters of these formulations are presented in Table 6.
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Under the fasting condition, the peak plasma concentration (Cmax) after oral single-
dose administration of the two formulations (Batch C and Adalat®-L) in 28 healthy human
volunteers was 56.4 ± 15.4 ng/mL and 54.9 ± 16.3 ng/mL, respectively. There was no
significant difference in the Cmax of the two formulations under fasting conditions. The
area under the curve (AUC0–t) was 443.4 ± 150.0 and 478.1 ± 156.2 ng/mL·h, respectively;
the AUC0–∞ was = 501.6 ± 147.8 and 536.6 ± 162.8 ng/mL·h, respectively.

Under the fed condition, the Cmax was 107.5 ± 46.5 and 119.8 ± 44.1 ng/mL for
Batch C and Adalat®-L respectively. There was also no significant difference in the peak
plasma of the two formulations under the fed condition. The AUC0–t was 539.6 ± 303.4
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and 569.3 ± 283.0 ng/mL·h, respectively; the AUC0–∞ was 569.1 ± 314.9 and
597.3 ± 297.3 ng/mL·h, respectively.

Table 6. Pharmacokinetics parameters analysis of prepared Batch C and Adalat®-L tablets under
fasting and fed conditions.

Condition Pharmacokinetic
Parameters

Mean and Ratio 90% Confidence
IntervalBatch C (T) Adalat®-L (R) (T/R)%

Fasting
(N = 28)

Cmax (ng/mL) 56.4 ± 15.4 54.9 ± 16.3 102.75 92.15~114.56
AUC0–t (ng/mL·h) 443.4 ± 150.0 478.1 ± 156.2 92.73 86.67~99.21
AUC0–∞ (ng/mL·h) 501.6 ± 147.8 536.6 ± 162.8 93.48 87.55~99.80

Fed
(N = 28)

Cmax (ng/mL) 107.5 ± 46.5 119.8 ± 44.1 89.67 81.95~98.11
AUC0–t (ng/mL·h) 539.6 ± 303.4 569.3 ± 283.0 94.78 88.39~101.63
AUC0–∞ (ng/mL·h) 569.1 ± 314.9 597.3 ± 297.3 95.28 88.97~102.04

Thus, from the results, we concluded that the Cmax, AUC0–t, and AUC0–∞ of Batch
C were within the 90% confidence interval of bioequivalence criteria compared with
Adalat®-L. The prepared tablet Batch C was bioequivalent with Adalat®-L both under
fasting and fed conditions, which was consistent with the findings of the in vitro study.

4. Conclusions

In this study, we revealed the critical attributes of Adalat®-L, such as the size distribu-
tion of nifedipine and the contents of main excipients, by Raman-mapping-based reverse
engineering. Although the particle size of nifedipine in the optimal batch was not consistent
with that of the RLD obtained by Raman images, the information was advantageous for
determining the initial formula of the generic preparation. We prepared four sets of tablets
with different particle sizes of nifedipine for screening, starting from the obtained RLD
result. The tablet that was closest in nifedipine size to Adalat®-L showed a similar release
pattern to the RLD. We also achieved bioequivalence between the generic preparation and
the RLD in both fasting and fed conditions. In conclusion, Raman mapping may primarily
facilitate the development of generic preparation in two ways: reverse analysis of the
critical attributes of RLDs and confirmation of consistency between generic drugs and
RLDs. This study was an exploration, providing experience for the better use of Raman
mapping in future reverse engineering.
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