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Abstract

Background: Substitution matrices are key parameters for the alignment of two protein sequences, and
consequently for most comparative genomics studies. The composition of biological sequences can vary
importantly between species and groups of species, and classical matrices such as those in the BLOSUM series fail
to accurately estimate alignment scores and statistical significance with sequences sharing marked compositional
biases.

Results: We present a general and simple methodology to build matrices that are especially fitted to the
compositional bias of proteins. Our approach is inspired from the one used to build the BLOSUM matrices and is
based on learning substitution and amino acid frequencies on real sequences with the corresponding
compositional bias. We applied it to the large scale comparison of Mollicute AT-rich genomes. The new matrix,
MOLLI60, was used to predict pairwise orthology relationships, as well as homolog families among 24 Mollicute
genomes. We show that this new matrix enables to better discriminate between true and false orthologs and
improves the clustering of homologous proteins, with respect to the use of the classical matrix BLOSUM62.

Conclusions: We show in this paper that well-fitted matrices can improve the predictions of orthologous and
homologous relationships among proteins with a similar compositional bias. With the ever-increasing number of
sequenced genomes, our approach could prove valuable in numerous comparative studies focusing on atypical
genomes.

Background
A fundamental task in evolutionary biology and com-
parative genomics is to quantify the similarity between
biological sequences and then assess their evolutionary
relationships. The challenge is in particular to distin-
guish between homologous (and even orthologous and
paralogous) and unrelated sequences. DNA and protein
sequences similarities are usually assessed through an
alignment of sequences. The scoring function is crucial
in the alignment process: not only it enables to choose
the best pairing between the sequences among all possi-
ble, but also it is often at the heart of the evaluation of
the alignment significance. Indeed, a p-value or e-value

is usually derived from the score of the alignment to
assess if it is statistically different from one that can
arise by chance (in a random alignment). Substitution
matrices are therefore key parameters in the alignment
process since they assign an elementary score to each
match and mismatch between any two letters of the
alphabet. This is particularly relevant in the case of pro-
tein alignment. As the protein alphabet contains 20
amino acids with different frequencies in biological
sequences and different biochemical properties that may
impact the protein structure, matches and mismatches
between amino acids are not equipropable. It is thus
crucial to take into account these differences in order to
estimate accurately the similarity between sequences.
The most widely used matrices are the BLOSUM [1]

and PAM [2] series. They were both derived from real
sequences where the substitution frequencies between
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amino acids were observed. The two approaches differ
in the way they derive several matrices, each of them
reflecting a given level of sequence divergence. Whereas
the PAM approach uses a model of evolution to derive
new matrices at a given amount of evolutionary time
starting from an inferred matrix scaled for a unit of
time, the BLOSUM one is purely empirical and infer
substitution frequencies for each matrix from observa-
tions on sequences with the given level of divergence.
These matrices are typically expressed in log-odds

scores: the score of the pairing of two amino acids is
the logarithm of the ratio of the likelihoods of this pair-
ing under two hypotheses: homology versus chance. It
reflects thus how likely two aligned residues are descen-
dants of a common ancestral residue with respect to
random pairing: if the pairing of two residues is more
likely to arise by chance than by homology the score
will be negative, in the opposite situation it will be posi-
tive. Consequently, two probabilities need to be com-
puted: the one of observing the two residues aligned in
an alignment of homologous sequences and the prob-
ability of observing the two residues aligned in unrelated
sequences. The latter can be easily computed when
assuming independence between the sequences, that is
the probability of drawing at random these two residues
among all residues present in the sequences, it is thus
the product of their frequencies in the sequences, also
called the background frequencies. The first probability,
also called the target frequency, is inferred by counting
the amount of each kind of substitutions in homologous
sequence alignments.
For both approaches, the reference set of homologous

sequences used to estimate the substitution frequencies
is therefore essential and the resulting matrices will
reflect both the composition and the evolutionary char-
acteristics of these sequences. For both matrix series,
this reference set was composed of “classical” sequences
and together with the large size of the datasets, this
gave matrices with an “average” amino acid composition.
However, sequence compositions can vary drastically,
and one can find groups of sequences with atypical
compositions: certain types of proteins have a composi-
tion directly correlated to their function, such as trans-
membrane proteins which include tracts of hydrophobic
residues. Additionally, at the scale of the whole genome,
some species show extreme nucleotide compositions
that affect their amino acid composition, one of the
most extreme example being the malaria agent, Plasmo-
dium falciparum, with a 80%- A+T genome [3].
Keeping the rationale of log-odds scores in mind, we

can easily figure out that the classical matrices will not
perfectly fit sequences with biased amino acid composi-
tion. Basically, the likelihood of each match and mis-
match under the null hypothesis of unrelated sequences

will vary according to the differences in the background
frequencies. For instance, for amino acids which are rare
in classical sequences but much more abundant in the
sequences of interest, the probability of observing their
pairing just by chance would be greatly underestimated
in the classical matrices and therefore their log-odds
score will not reflect a “true” likelyhood ratio. As a con-
sequence of these discrepancies the resulting alignment
can be wrong (not pairing together homologous resi-
dues) and also mis-evaluated, both leading possibly to
mis-interpretation of the similarity. This issue has
already been pointed out from a theoretical point of
view by Yu et al. [4] and several studies have highlighted
the negative impacts of using classical matrices in
homology and database searches in atypical composi-
tional contexts [5-7]. These papers proposed several
methods to modify the matrices and derive new ones
fitted to some compositional biases. Two different
approaches can be noticed. The first one is called matrix
adjustment and consists in transforming the classical
matrices by applying some mathematical formulas on its
elements, taking into account the old and new amino
acids background frequencies. The first adjustment was
proposed by Yu et al. and further implemented in the
well-known (and used) program BLAST [4,8]. Later,
Coronado et al. deviced a similar method for low com-
plexity sequences and showed an improvement over
classical masking strategies [5]. The main advantage of
these methods is their speed and usability on any
sequence. However, their main drawback is that they
only take into account the differences in the background
frequencies, assuming the target frequencies are the
same. Therefore they do not reflect specifities of muta-
tion or selection biases in the substitutions, still leading
to inaccurate likelihood ratio. Moreover the composition
is estimated independently for each aligned sequence
and consequently may not reflect the overall composi-
tion of the genome or group of proteins of interest.
Since each protein is aligned with a different scoring
function, comparisons of scores are not straightforward
and may not be pertinent in the case of genome-scale
comparative analyses. The second approach addresses
these issues, and consists in building new matrices from
scratch in a similar way to the BLOSUM or PAM
approaches but using an initial dataset of sequences
with the desired compositional bias. In this manner, two
groups proposed simultaneously two similar methods
based on the BLOSUM approach in order to compare
the proteins of the Plasmodium genus [6,7]. Bastien et
al. also used this approach to build asymetric matrices
enabling to compare proteins with an atypical amino
acid composition (again Plasmodium proteins) against
“classical” proteins (Arabidopsis thaliana) [9]. These
previous works have shown the feasibility and the
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benefits of such approaches, at least in the extreme case
of Plasmodium. However these have not been shown for
less extreme cases of compositional bias, nor for the
comparison of a large number of genomes at diverse
levels of divergence.
In this paper, we address the problem of designing

new substitution matrices fitted to the compositional
bias of Mollicute proteins. Mollicutes are a particular
class of bacteria derived from Gram-positive bacteria,
including for instance the well-known Mycoplasma geni-
talium species. Mollicutes share several atypical features
such as a small cell size, the absence of a cell wall, a
dramatically reduced genome with simplified metabolic
pathways, and of particular interest here, a nucleotide
composition biased toward A and T (median value of
27.1% G+C). They exhibit a wide variety of phenotypes
with diverse host environments ranging from plants,
arthropods to vertebrates, and also with various patho-
genic or non-pathogenic impacts [10]. With the advent
of new sequencing technologies, the number of Molli-
cute genomes fully sequenced has greatly increased in
the last couple of years, making the comparative geno-
mics analyses more challenging. Currently 38 whole
genomes from 30 distinct species are publicly available
in the reference database Molligen (http://cbib1.cbib.u-
bordeaux2.fr/molligen3b/), some of which diverged up
to 470 million years ago [11]. This constitutes therefore
a large set of genomes with a similar compositional bias,
and with high comparative interests at various evolu-
tionary scales. The objective of this work is to increase
the sensibility and specificity of homologous and ortho-
logous predictions among this large number of genomes.
We present in this paper the methodology developped
to build a new matrix, MOLLI60, specially fitted to Mol-
licute proteins, and we show that it enables better per-
formance in predicting orthologs and homologs with
respect to the use of the classical matrix BLOSUM62.

Finally, we argue that the methodology could be easily
generalized to other cases of compositional bias and
could be useful in numerous comparative studies, given
the recent and massive increase in genomic resources.

Results
Compositional bias of Mollicute proteins
The nucleotide composition of Mollicute genomes is
strongly biased towards A and T, with a G+C content
that varies from 21.4 to 40.0% with a median value of
27.1%. Mycoplasma pneumoniae appears as an exception
among the Mollicutes, with a G+C content almost “nor-
mal” of 40%, wheras all the other sequenced Mollicutes
have their G+C content less than 32%. As a conse-
quence, the composition of their protein sequences is
also biased towards certain amino acids. Strong differ-
ences between frequencies can be observed in Figure 1,
where the average amino acid frequencies of the coding
sequences of 24 Mollicute genomes are plotted against
the ones derived from the usual BLOSUM62 matrix. For
instance Isoleucine, Asparagine and Lysine are more
numerous in Mollicute proteins, whereas Alanine, Argi-
nine and Glycine are depleted. As expected the former
are encoded by AT-rich codons, and the latter by GC-
rich codons, suggesting that these frequency differences
stem from the genomic nucleotide compositional bias.
We confirmed this relationship by performing the so-
called GARP-vs-FYMINK analysis [12] where we can
observe, in mollicute coding sequences, a strong positive
correlation between the proportion of GARP amino
acids (encoded by GC-rich codons) and the GC content,
and conversely a negative correlation with FYMINK
amino acids (encoded by AT-rich codons) (data not
shown). Given such differences in amino acid frequen-
cies, we hypothesized that BLOSUM62 may not be well
fitted for the purpose of aligning Mollicute protein
sequences.

Figure 1 Amino acid frequencies. Amino acid frequencies averaged over all cds of 24 whole genomes of Mollicutes versus BLOSUM62’s. A
complete list of genomes taken into account is provided in Additional file 4.
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MOLLI60: the new substitution matrix
The main result of this paper is the generation of a new
substitution matrix, called MOLLI60, which is better
fitted to the compositional bias of Mollicute protein
sequences. We generated this matrix with an approach
similar to the one used to generate the well-known
BLOSUM matrices [1]. This consists in learning the
amino acid substitution frequencies from the alignments
of real sequences. Whereas the BLOSUM matrices were
built from sequences originated from a variety of organ-
isms, we selected here sequences only from Mollicutes
to get frequencies representative of the compositional
bias of these genomes. A curated set of 247 protein
families from 14 mycoplasma genomes was used as
learning set (see Methods). Sequences in each family
were aligned with T-Coffee [13] and from these multiple
alignments conserved gap-free blocks were extracted.
This gave a set of 1510 blocks containing overall 64143
columns and 880058 total amino acids. This is the same
order of magnitude of the the amount of data used to
build the BLOSUM matrices, which was constituted of
2106 blocks and a total of 927076 amino acids. To esti-
mate the substitution frequencies, highly similar
sequences were clustered to obtain a matrix reflecting
to a certain amount of divergence between the
sequences to align. Thus, to compare with BLOSUM62
we used a similar clustering coefficient of 60 and scaled
the matrix similarly as BLOSUM62 to obtain half-bit
scores (see Methods). The matrix, MOLLI60, and the
scripts to compute it are provided as supplementary
material (Additional files 1 and 2).
Global features of the matrix were then investigated,

such as the entropy and expected values. These are
commonly computed for substitution matrices and
reflect the level of stringency of the matrix. Typically, a
matrix with a lower entropy and a greater expected
value will reflect more diverged sequences. We reported
also, in table 1, the average scores for mismatches and
matches. Overall, we obtained very similar values
between MOLLI60 and BLOSUM62, as compared with
BLOSUM45 (see table 1), suggesting that both matrices
have the same global properties.
However, when looking more closely at each indivi-

dual element, we can see in Figure 2 that the two
matrices are quite different with almost half the posi-
tions with different values (105 over 210 elements in the

half matrix). Some substitutions show high score differ-
ences and logically the greatest differences are observed
for amino acids with the greatest overall frequency dif-
ferences (Figure 1), such as Arginine and Glycine. We
can notice that for these two residues, which are under-
represented in Mollicute proteins, their match score is
increased (since it is less likely to observe them in an
alignment of random sequences) whereas their mis-
match scores are globally decreased, indicating their
depletion also in substitutions in Mollicute proteins. An
interesting difference is observed for the Tryptophan
(W): whereas its frequencies are very close between
Mollicutes and Blosum (Figure 1), this amino acid
shows strong differences in the new matrix. This can be
explained by a specificity of the genetic code of Molli-
cutes: they can encode Tryptophan with the additional
codon UGA, which is usually a stop codon. Therefore
MOLLI60 can take into account differences not only in
the background frequencies, but also in the evolutionary
dynamics of the substitutions.
The robustness of MOLLI60 with respect to the learn-

ing set composition was evaluated, using a re-sampling
approach (see Methods). If we removed randomly 10%
of the initial mutliple alignments, the resulting matrix
was slightly modified with 3 to 8% of the positions with
different values and when removing half of the data

Table 1 Comparison of entropy and expected values for
several matrices

matrix entropy expected mean mismatch mean match

MOLLI60 0.7126 -0.5820 -1.56 6.10

BLOSUM62 0.6979 -0.5209 -1.42 5.80

BLOSUM45 0.3795 -0.2789 -1.34 7.05

Figure 2 matrix substraction: MOLLI60 - BLOSUM62. Term by
term substraction of the two matrices MOLLI60 minus BLOSUM62
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only 15% of the matrix positions were changed. Note-
worthy, these changes are minor compared to the differ-
ences with BLOSUM62.
Since the initial alignments used to infer the substitu-

tions were obtained using BLOSUM62 (not fitted to the
bias), the impact of this first step was evaluated by iter-
ating the matrix construction with MOLLI60. Actually,
this recursive step appeared not necessary since the
resulting matrix was very similar to the first one, show-
ing only 10 elements over 210 with a -1 or +1 difference
(less than 5% of the elements). The amount of differ-
ences is thus similar to the one obtained when removing
10% of the data.

Application of MOLLI60 in homology predictions
We used the matrix MOLLI60 to align Mollicute pro-
tein sequences and to predict homology and orthology
relationships based on these alignments.
Orthology predictions
The standard method of bi-directional best hit (BDBH)
was used to predict orthologous genes between two gen-
omes and proteic sequence alignments were obtained
using the program SSEARCH, using either MOLLI60 or
the standard BLOSUM62 as substitution matrix (see
Methods).
We focused on 3 mycoplasma genomes for which we

dispose of a reference set of orthologous relationships:
Mycoplasma genitalium, Mycoplasma hominis and
Ureaplasma parvum. This reference set contains 871
pairwise relationships which were manually curated by
biologists (see Methods). It enables to evaluate orthology
predictions and to compare the influences of different
substitution matrices, by classifying the predictions as
true positive, false positive or false negative.
When comparing orthologous predictions obtained

using the standard BLOSUM62 matrix versus our
matrix MOLLI60, we first noticed that alignments
obtained with MOLLI60 have overall smaller e-values
than the ones obtained with BLOSUM62: the median e-
value of BDBH proteins obtained with BLOSUM62 is
5.9e-22 against 1.1e-31 for MOLLI60. If we consider
only common pairwise relationships between the two
sets, the median pairwise ratio of e-values is of 1011 in
favor of the alignments obtained with MOLLI60: half of
the common alignments have e-values obtained with
BLOSUM62 more than 1011 larger than the ones
obtained with MOLLI60. However, having better e-
values does not necessarily mean that the alignments
are better and enable to infer better biological informa-
tion. What is important is to get scores or e-values that
improve the discrimination between biologically mean-
ingfull similarity and random similarity. If we consider
now all the alignments obtained between all proteins
(with still an e-value cut-off of 10), meaning that this set

contains surely a large portion of non-homologous rela-
tionships (or poor similarity), we still get better e-values
with the MOLLI60 alignments than the ones with BLO-
SUM62. However, the difference is significantly smaller
than previously with a median ratio of only 5 (instead of
1011). Thus this suggests that the observed differences
in e-values between the two matrices are not systematic
and depends on the significance of the alignments.
To evaluate the discriminative power of the e-values,

we plotted in Figure 3 the distributions of e-values
between true positive and false positive predictions
obtained by BDBH. We can clearly see that the align-
ments obtained with MOLLI60 show a distribution with
more disciminated e-values between these two cate-
gories compared to BLOSUM62. Indeed, the median e-
value of MOLLI60 true positive alignments is smaller
than the BLOSUM62’s one (10-38 against 10-25) and it is
the contrary for false positive alignments (0.026 against
0.00125). Overall the mean ratio of e-values between
false and true positives is of 1045 for MOLLI60 against
1025 for BLOSUM62, thus the discrimination between
true and false positive e-values is significantly improved
when using MOLLI60 (p-value of 4.96e - 05, test of
Analysis of Variance, see the Methods section).
For both matrices, we computed also their sensitivity

and specificity (see Methods). As the two matrices give
different e-values even for the same alignment, it is not
pertinent to compare their sensitivity and specificity
when using a fixed e-value cut-off to predict orthologs.
Therefore we represented them using the Receiver
Operating Characteristic (ROC) curves [14]. This type of
curve enables to visualise how sensitivity and specificity
simultaneously vary over the whole range of cut-off
values. When plotting the sensitivity as a function of the
false positive rate, the best method is assessed as the
one whose curve is closest to the top-left corner (high
sensitivity and low false positive rate). We plotted ROC
curves in Figure 4 for the BDBH obtained with the two
matrices. We can see that MOLLI60 and BLOSUM62
have very similar curves with the MOLLI60 one slighlty
“over” the BLOSUM62. If the difference between ROC
curves is not statistically significant when using evalues
to call the best-hits (comparing the area under the
curves, p-value of 0.9632), the difference is greater and
significant when using raw scores (p-value of 0.001).
This indicates that BLOSUM62 scores are less meaning-
full than MOLLI60 ones. Additionally, we can also
notice that, regardless of the matrix, the raw score is
less meaningfull than the e-value for the purpose of pre-
dicting orthologous relationships. Finally, the same ana-
lysis was performed using the program BLAST and
showed that using the same substitution matrix, BLO-
SUM62, the strategy with SSEARCH performs better
than BLAST to predict BDBH orthologs, even when
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Figure 3 Evalue discrimination. Comparison of the distribitution of BDBH e-values between True Positive (TP in red) and False Positive (FP in
green). On the left alignments were obtained with BLAST and the BLOSUM62 matrix, on the middle with SSEARCH and the BLOSUM62 matrix,
and on the right with SSEARCH and the MOLLI60 matrix.

Figure 4 ROC curves. ROC curves of one-to-one orthologous relationship predictions using the Bi-directional Best Hit method with several best-
hit criteria and substitution matrices. Either the score (bdb-score) or the e-value (bdb-evalue) was used to determine the best hit, and the
alignments were obtained with SSEARCH using either the BLOSUM62 matrix or the MOLLI60 matrix. As inset, is a zoom-in on the most
interesting part of the curve: where the trade-off between sensitivity and specifity is usually determined for orthology predictions. Note that
sensitivity (or true positive rate) is plotted against the absolute number of false positives instead of the false positive rate as in a classical ROC
curve, for lisibility reasons. FP rate can be obtained simply by dividing the amount of FP by the amount of non-orthologous relationships which
is constant (884833).
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correcting for the compositional bias with BLAST -C3
option (Additional File 3, Figure S1). In particular, we
observed that the adjustment process improves the spe-
cifity of the predictions but with the cost of an impor-
tant loss in sensitivity: without any filtering of the
BDBH pairs (that is when relying only on the reciprocal
best hit criterion), 22 and 12 relationships are definitely
lost with BLAST using repectively -C3 and default para-
meter compared to at most 8 with SSEARCH. This may
be due to the gap penalties no longer adapted to the
adjusted matrix since we observed that alignments were
on average 10% smaller with the adjustment option.
Importantly, we verified that these results were not

due to the fact that the training dataset used to build
the matrix had common sequences with the test dataset.
To do so, we built a second matrix without using any
sequence of the genomes of the test dataset (Myco-
plasma genitalium, Mycoplasma hominis and Urea-
plasma parvum) and re-did these analyses. We obtained
a very similar matrix and same results of comparison
with BLOSUM62 on BDBH relationships (data not
shown).
Homologous family predictions
We applied our matrix also to predict homologous pro-
tein families among 24 Mollicute genomes. The predic-
tion of homologous relationships is more challenging
that predicting orthologous ones (and especially one-to-
one relationships), since we can not rely anymore on
the best hit criterion. Instead, we have to use a cut-off
to decide if two proteins are homologous and a cluster-
ing approach to build groups where each member is
assumed to be homologous to any other member of the
group. The construction of homologous clusters was
performed using a naive approach based on an e-value
cut-off: any two proteins with their alignment e-value
lower than the cut-off are grouped in the same cluster
(this corresponds to single-linkage clustering, see the
Methods section). This implies that two proteins can
belong to the same cluster even if they do not share
enough similarity, for instance they only need to be
both related to a third protein. This transitivity property
is justified by the definition of homology of a common
ancestor, which implies that if a and b are homologous
and so are a and c, then b and c are also homologous.
Considering such process, and as the best hit criterion

is no more usefull, we guess that the impact of the sub-
stitution matrix on these predictions may be more sig-
nificant than for BDBH predictions. However in the
absence of a reference dataset, the estimation of sensi-
tivity and specificity scores is not applicable. Instead, we
can compare the number of clusters, their size and their
phylogenetic profile (presence/absence of species). We
call the pan genome the number of distinct clusters
(including also the single proteins) among the set of

genomes, and the core genome the number of distinct
clusters containing at least one member of each species.
Assuming that each cluster represents a distinct funtion,
the pan genome may be seen as the set of functions one
can find in the community of genomes and the core
genome the set of functions shared by all genomes. The
number and size of clusters depend naturally on the e-
value threshold: the more stringent is the threshold the
more numerous and the smaller the clusters are, in
other words the larger both the pan and the core gen-
omes are. We can expect that a good clustering would
give the fewest singletons (that is single proteins without
any homolog), and consequently the smallest pan gen-
ome. On the other hand, a clustering with too many
large clusters may group together several distinct
families and thus reduce the core genome. Therefore
when comparing several clustering we should prefer the
one with the largest core genome and the smallest pan
genome.
Since the core and pan genomes depend on the e-

value threshold, and we have seen previously that e-
values are not directly comparable between the two
matrices, we built several clustering for each matrix by
varying the e-value cut-off and computed for each their
core and pan genomes. The results are presented in Fig-
ure 5 where the sizes of the core and pan genomes are
plotted as a function of the threshold, or alternatively of
the number of pairwise alignments retained with a given
cut-off. We can clearly see that for the same number of
pairwise alignments, the clustering obtained with
MOLLI60 gives at the same time a larger core genome
and a smaller pan one than the clustering obtained with
BLOSUM62. Thus the clustering with MOLLI60 is bet-
ter on both fronts and seems to give more pertinent
clusters from a parsimonious evolutionary standpoint
(see Discussion).
As a complementary view, we evaluated the homoge-

neity of the families in terms of domain compositions of
their protein members. Assuming domain architecture is
conserved inside families, we expect that a good cluster-
ing will have a common domain architecture inside each
family and different ones between families. For 14% of
the proteins we could predict a domain architecture
based on the Pfam-A database (see the Methods sec-
tion). For a given clustering, we computed two metrics
of domain homogeneity: intra - discrepancy as the num-
ber of families with more than one domain architecture
weighted by the number of different architectures, and
inter - discrepancy as the number of pairs of families
sharing at least one domain architecture. We compared
these metrics for the clusterings obtained with
MOLLI60 versus BLOSUM62 giving the largest core
genomes (thresholds of evalue of 1e-6 and 1e-5 respec-
tively). For both metrics the clustering obtained with
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MOLLI60 showed a better agreement with domain pre-
dictions: its intra - discrepancy value being of 129 versus
139 for BLOSUM62, and 1302 for inter - discrepancy
versus 1465. This result holds also for other evalue
thresholds (Additional File 3, Figure S2).
Based on these results, the matrix MOLLI60 was

applied for the generation of comparative data in the
reference database Molligen (predictions of orthologous
and homologous relationships) and it is proposed as an
optional parameter for the alignment tools provided to
query the database.

Discussion
We want to emphasize that, although our results are
focused on a specific group of species, the Mollicutes,
the method for building the matrix and the analyses of

its impacts can be easily generalized to any group of
species with an atypical composition.

Methodology to build the matrix
To build this new matrix, we followed the approach
initially proposed by Henikoff and Henikoff to build the
BLOSUM series [1]. The main difference lies in the
building of the block database. Henikoff and Henikoff
used the motif finder PROTOMAT [15] to avoid relying
on an initial substitution matrix. Instead we used a mul-
tiple alignment program and, as dicussed below, we
showed that the initial matrix used for the alignments of
the block database had little impact on the resulting
matrix. Concerning the more recent methods devel-
opped especially for Plasmodium falciparum, our
method differs mainly with respect to the learning sets

Figure 5 Core and pan genomes. Comparison of core (top) and pan (bottom) genome sizes for clustering obtained with the two matrices, as
a function of the e-value threshold (left) or the number of retained alignments (right). The dash lines represent the number of unclustered
proteins, ie. single proteins.
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of proteins. The sets of Bastien et al and Paila et al,
included few sequences from genomes with the bias and
more sequences with no bias, in particular to build non-
symetrical matrices [7,9], and in Brick et al the learning
set was not composed of sequences from the genomes
of interest but by selecting blocks from the BLOSUM
database showing a similar compositional bias. Having
at our disposal a large set of genomes sharing the same
compositional bias, we could stick to the BLOSUM
strategy and take full advantage of it.
As for the global approach, we chose to follow the

BLOSUM strategy rather than the PAM one mainly
because it has been shown to perform better in homol-
ogy search context [16]. Furthermore the substitution
frequencies are learned directly from the data and are
not extrapolated with an evolutionary model which may
not reflect the evolution of our proteins. Additionally,
the method has few parameters to adjust, with an intui-
tive biological meaning (e.g minimal size of a conserved
block, clustering coefficient as an identity percentage).
More importantly, the major drawback of the PAM
strategy is the restriction on the input sequences: it
requires highly similar sequences (typically with more
than 85% of identity) which would have considerably
reduced the size of our learning set. This is clearly a
limiting factor when dealing with a small number of
genomes or non model organisms with a limited refer-
ence data set.
Actually, the major hurdle of our strategy is its reli-

ance on a reference set of orthologous proteins, as
opposed to methods that only adjust the standard
matrices to the bias with theoritical formulas [4,5]. One
needs thus to have already a certain expertise on the
genomes of interest. Moreover, this set has to be repre-
sentative of all the genomes and proteins one wants to
apply the matrix on. In our case, we used orthologous
proteins conserved among 14 Mollicute genomes, for
which there was no ambiguity in their orthologous rela-
tionships. We assumed that the wide distribution of
these species in the phylogenetic tree of Mollicutes,
along with the protein set covering diverse biological
functions (as a large part of the core genome), prevented
our model to be over-fitted to a specific genome or pro-
tein family. Note that since these proteins are probably
shared among all or most Mollicutes, they may evolve
more slowly than the remaining proteins. However, even
if the substitutions are expected to be less frequent, we
assumed that the relative rates between the different
amino acids are representative of Mollicute protein evo-
lution, and thus this sampling bias would have little
impact on the matrix.
As concerns this learning dataset, we also verified that

the final matrix was not too dependant on some indivi-
dual parts of this set, by a re-sampling approach. This

suggested that our learning set was homogeneous
enough to estimate correct substitution rates. We also
noticed that a recursive step where multiple alignments
would be obtained with the new matrix instead of the
standard BLOSUM62 had few impacts on the resulting
matrix. This suggests that substitution matrices may be
less important in multiple alignment than pairwise
alignment and especially for well conserved proteins.
Indeed, the signal of conservation, if it exists, is easier to
detect when we deal not only with two sequences but
with a large set of sequences. Moreover, we used a mul-
tiple aligner, T-Coffee, which is based on consistency
scores rather than substitution scores and may thus be
less sensitive to differences in substitution matrices.
Additionally, in multiple alignments, we align sequences
already known as homologous and we do not need nor
use the scoring of the alignment. In the context of pair-
wise alignment for homology search, substitution
matrices may have more impact on the evaluation of the
alignment rather than on the alignment itself (ie. which
position is aligned against which one).
Finally, the last but non negligible step of the method

is the optimisation of the gap parameters to the new
matrix. In gapped alignments, gap penalties have a
strong impact on the alignments and especially their
length. Indeed, the score of a gap has to be fixed rela-
tively to the scores of matches and mismatches. The
task of adjusting the gap penalties to the matrix is not
trivial and there exists no theoretical formula to relate
them to some features of the matrix [17]. We thus fol-
lowed an empirical approach, testing numerous combi-
nations of gap penalties and choosing the one
maximizing the performances of BDBH predictions.
Notably, we observed that small changes in the para-
meters of the matrix construction, such as the clustering
coefficient and the normalisation parameter l, could
change dramatically the optimal gap penalties. This
approach turned out to give the same penalties for both
matrices, and this may be related to the similar entropy
and expected values of both matrices. Nevertheless we
want to stress out here on the importance of parameter-
isation of the gap penalties in pairwise alignments and
database searches.

Evaluation of the matrix
Pairwise alignments and similarity searches in databases
are the basis of numerous comparative genomics ana-
lyses. What is important in this step is to be able to dis-
criminate between biologically meaningfull similarities
and random ones. We showed in this paper that this
can be improved by using well fitted substitution
matrices. We demonstrated that MOLLI60 enabled to
better evaluate pairwise alignments with raw-score, as
well as e-values. The difference with BLOSUM62 was
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particularly significant for the raw score (Figure 4),
enhancing the matrix influence since it is directly
derived from it. The difference was smaller for e-values
and this suggests that the mis-evaluation of the scores
can be compensated by the statistical analysis of their
distribution which is performed by SSEARCH when esti-
mating e-values. Nevertheless, we could still see an
effect with e-values especially in homology clustering.
In this paper, we also compared two alignment pro-

grams: SSEARCH [18] and BLAST [19]. We showed
that SSEARCH performs better to predict one-to-one
orthologs than BLAST with the same parameters, at
least in this context of compositional bias. Noteworthy,
SSEARCH still outperforms BLAST with its composi-
tional adjustment option. This result is to relate to two
major differences between the programs. First,
SSEARCH performs exact local alignments (Smith and
Waterman algorithm) and thus garantees to find the
best scoring alignment between two sequences, contrary
to BLAST which is a heuristic. Note that, even if Smith
and Waterman algorithm has worse theoretical time and
spatial complexities (O (n2)), its implementation in
SSEARCH as multi-threaded and vectorized greatly
improves the runtime, which is no longer a limiting fac-
tor. Secondly, they differ in the way they evaluate align-
ments. BLAST computes e-values using a formula with
pre-computed statistical parameters [20], whereas
SSEARCH estimates the e-value of a given alignment
using the distribution of scores obtained from aligning
the same query sequence against all the sequences in
the database. Therefore, SSEARCH’s approach does not
rely on simulations with artificial sequences to estimate
parameters, as in BLAST, and it takes fully into account
the compositional bias of the database and the query
sequences. These two differences also guided us to favor
SSEARCH for the comparison of the matrices, since
they ensure that the observed performance differences
are only due to the matrices and not partly linked to the
heuristic approach or the simulations performed to esti-
mate the statistical parameters which could also depend
on the matrix. This is also the reason why we chose
simple methods with few parameters to predict ortholo-
gous and homologous relationships, such as BDBH and
single linkage clustering, even if we are aware of numer-
ous other methods which are more sophisticated and
surely more efficient for the only purpose of homolo-
gous relationship predictions (see for instance the
reviews [21-24]).
The evaluation of the performances and impacts of

the substitution matrices in homology search is a diffi-
cult task especially due to the lack of benchmarks or
reference datasets, that is the knowledge of the true
homologous relationships. Whereas such datasets may
exist for model organisms, they lack crucially for many

specific groups of species, such as Mollicutes. We first
used a personal manually curated dataset of one-to-one
orthologs. As the human expertise can not infer with
certainty all evolutionary relationships between proteins
of distant species, this set may contain errors and miss-
ing orthologs. These errors could bias our estimators of
performance such as sensitivities and specificities. How-
ever, we can assume that these errors are independent
of the compositional bias and will impact the results of
both matrices the same way. Moreover, the initial set of
orthologs which was further curated was obtained with
classical predictions using BLOSUM62. Therefore,
potential errors in the reference dataset will tend to
favor the BLOSUM62 matrix rather than MOLLI60, and
we may only underestimate the benefits of our new
matrix. Indeed, if MOLLI60 did improve the ortholog
predictions, the benefits were slight. This is due in part
to the small size of the benchmark and also to the nat-
ure of the predictions: one-to-one orthologs are the
easiest homology relationships to predict and the criter-
ion of best hit reciprocity is very strong. The addition-
able value of MOLLI60 can only be shown for a small
subset of the results and its impact is consequently
minimized with respect to the large number of obvious
one-to-one orthologs.
Concerning the homologous families analysis, to cope

with the lack of “true” relationships, we used the phylo-
genetic profiles of the clusters as an evaluation criterion.
We thus took full advantage of the large number of gen-
omes at our disposal and their wide distribution in the
evolutionary tree of Mollicutes. The computation of the
core and pan genomes enables to have a first glance at
the clustering properties in terms of biological consid-
erations. The evaluation of the clustering is however
based on two assumptions: that the orphan genes (genes
without homolog) are rare and must be minimized and
that the number of distinct clusters shared by all gen-
omes must be maximized. These assumptions are
guided by the parsimony principle. Indeed, in the last
common ancestor of the considered species the core
and pan genomes were equal and they diverged by gene
gains and losses: the pan genome increased by gene gain
and the core genome decreased by gene loss. Therefore
a clustering resulting in a smaller pan genome and a lar-
ger core genome may invoke less gain and loss and be
more parsimonious. It is however important to note
that this hypothesis is strong and may not reflect the
reality of Mollicute gene set evolution, that is the real
evolutionary scenario may not be the most parsimo-
nious. This is the reason why we performed a second
evaluation based on the domain composition in and
between families. This relies also on an hypothesis, that
domain architectures are conserved inside the families
and are specific to families.
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Moreover, it concerns only a small portion of the
genes, those for which the function is the best known
and represented in studied organisms and this may bias
the results towards more conserved genes. As the two
evaluation methods relied on different assumptions and
may have different biases, we argue that they comple-
ment each other and the fact that they gave the same
trends strengthen our conclusion.

Conclusions
In conclusion, we showed in this paper that we can
improve orthology and homology predictions of Molli-
cute proteins by using a well-fitted substitution matrix,
rather than the standard BLOSUM62. We argue that
this result can be generalized to other groups of species
with a marked compositional bias. The methodology we
propose to construct such well-fitted matrices is very
simple to carry out and could be useful in an increasing
number of studies especially in the current context of
massive growth of genomic data: the new sequencing
technologies enable from now on to study specific
groups of genomes with their specific and atypical
nucleotide or amino acid compositions, notably for
sequences coming from metagenomic studies.

Methods
Building of the matrix
To generate new matrices, we followed an approach
similar to the one used for the well-known BLOSUM
matrices [1]. This consists in learning amino acid fre-
quencies and subsitutions from a reference set of
aligned protein sequences. We used a set of 247 ortho-
logous protein families among 14 public mycoplasma
genomes (see the list in Additional file 4) for which the
orthologous relationships were clearly ascertained.
These families were obtained by combining pairwise

orthologous predictions (by BDBH) with high signifi-
cance alignments, then selecting protein sets having at
most one member per species. These families were
further manually curated according to the protein anno-
tations [25].
For each family, a multiple alignment was obtained

using the program T-Coffee [13]. Then, using a custom
perl script, we extracted from the alignments the contig-
uous blocks without gaps in any sequence and with
length greater than a threshold (the minimum length
was set to 15). And finally we applied the program BLO-
SUM [1] (retrieved from the following site ftp://ftp.ncbi.
nih.gov/repository/blocks/unix/blosum/) on the whole
set of blocks. This program clusters very similar
sequences inside the blocks and counts all pairwise sub-
stitutions. The score of aligning the amino acid ai with
aj is obtained with the following formula:

Sc(ai, aj) =
1
λ

log
f (ai, aj)

f (ai) × f (aj)

where f(ai, aj) is the observed frequency of pairwise
alignment of the two amino acids ai and aj, and f(ai)
(resp. f(aj)) is the observed frequency of the amino acid
ai. The level of clustering is determined with the para-
meter c which was set to 60. This means that sequences
in a block with at least 60% identity are clustered
together and will be considered as one sequence in the
counting process. Then the matrix elements were nor-
malized with the factor l = 2 and rounded to the closest
integer to obtain half-bit scores such as in the BLO-
SUM62 matrix.
For each matrix, relative entropy and expected values

were obtained from the following formula:

Entropy =
20∑

i=1

20∑

j=1

f (ai, aj) × Sc(ai, aj)

Expected =
20∑

i=1

20∑

j=1

f (ai) × f (aj) × Sc(ai, aj)

The whole pipeline to build new matrices was imple-
mented in perl scripts, which are provided in Additional
file 2. It starts from a set of multi-fasta files (one for
each protein family of the learning set) and outputs the
final matrix in proper format to be used with alignment
programs.

Application of the matrix
Sequence data
All sequences and annotations of Mollicute proteins were
retrieved from the Molligen database [11] (http://cbib1.
cbib.u-bordeaux2.fr/molligen3b/). A complete list of gen-
omes used in this paper is provided in Additional file 4.
Alignments and BDBH
Protein alignments were obtained with the program
SSEARCH of the Fasta program package [18,26]. This
program implements a fast version of the Smith and
Waterman algorithm [27] and has the advantage of
computing e-values without pre-computed statistical
parameters. We also used the program BLAST [19] to
compare the two strategies.
BDBH between pairs of genomes were obtained by

aligning each protein sequence of one genome against
all the protein sequences of the other genome and vice
versa. A pair of proteins, p1 and p2, belonging respec-
tively to genomes G1 and G2, was called a BDBH if p1 is
the best hit of p2 among all proteins of G1 and recipro-
cally p2 is the best hit of p1 among all proteins of G2.
The best hit was determined by the e-value (if not men-
tionned in the text) or the raw score of the pairwise
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alignment. BDBH relationships can be further filtered
according to their alignment features (e.g. e-value) to
discard less significant pairs.
Gap penalties
The substitution matrix is not the only parameter used to
score gapped alignments. For each new matrix, it is thus
important to optimise gap penalties. Indeed, the score of a
gap has to be fixed relatively to the scores of matches and
mismatches. Our approach to determine well-adapted gap
penalties was empirical: we tried several combinations of
gap open and gap extend penalties, and we evaluated them
with respect to the performances in predicting orthologous
relationships with the BDBH approach. We chose the gap
penalties that gave the best compromise between sensitivity
and specificity of ortholog predictions, using the ROC
curves. We performed the same analysis for the BLO-
SUM62 matrix. For both matrices, we chose the following
penalties: 10 for the opening of a gap and 1 for each exten-
sion of a gap. We verified that both matrices along with
their gap penalties gave alignments of similar length.
Robustness evaluation
To evaluate if the obtained matrix is robust with respect
to the set of protein families given as input, we used a
Jacknife sampling approach. We generated 10 other
matrices with the same procedure but with a smaller set
of protein families sampled randomly from the original
one. We generated two sets of samples: keeping either
90% or 50% of the initial protein families.
Reference set of orthologous relationships
The reference set of one-to-one orthologous relation-
ships was obtained with standard BDBH predictions
between 3 well annotated mycoplasma genomes: Myco-
plasma genitalium, Mycoplasma hominis and Urea-
plasma parvum. Each prediction was manually curated
by biologists according to alignment features, functional
annotations of the proteins and synteny analyses [25]. It
contains 871 pairwise relationships among the 1634 pro-
tein coding genes of these three genomes.
This set enables to evaluate several methods of orthol-

ogy predictions, by classifying the predictions as true
positive, false positive (predictions absent from the
reference set) and false negative (relationships of the
reference set not predicted as orthologous); we denote
by TP, FP and FN the amount of predictions in each
category respectively. Then we can compute sensitivity
and specificity values for each method, such as

sensitivity = TP
TP+FN (also called the true positive rate)

and specificity = 1 − FP
TN+FN or 1 - false positive rate

(TN being the number of true negatives, e.g. relation-
ships absent from the reference set and from the predic-
tions). ROC curves were built by plotting the sensitivity
versus the specificity for each cut-off of the evaluation
criterion (alignment score or evalue). Differences

between ROC curves were tested by comparing their
area under the curve using the R package pROC [28].
The variability of alignment evalues was analyzed with

respect to the matrix and the status of the prediction
(either TP or FP), using an Analysis of Variance. To test
the effect of each factor and in particular if the discrim-
mination between TP and FP evalues is different accord-
ing to the matrix used (interaction factor), we used the
following model:

log10(evaluei) = μ + a ∗ MOLLI60i + b ∗ TPi + c ∗ MOLLI60i ∗ TPi + ei

with MOLLI60 and TP being boolean variables indi-
cating respectively whether the prediction has been
obtained with MOLLI60 and whether it is a true posi-
tive. e is the error and is assumed to be normally dis-
tributed. The estimation of the parameters of the fitted
model were the following:

μ = −8.4, a = −0.7, b = −25.9, c = −19.5.

Clustering of protein families
We built homologous protein families between 24 Molli-
cute genomes with a simple clustering method: first we
runned all-vs-all protein alignments with SSEARCH
using one of the two matrices. Then, we grouped
together in a same cluster any two proteins with a signifi-
cant alignment, that is with an e-value less than a given
threshold and covering at least 50 percent of the longest
protein. In other words, we built a similarity graph with
each node being a protein and each edge connecting two
proteins with a significant alignment. The clusters were
then the connected components of this graph, that is any
two custers are completely disjoint in this graph (also
known as single-linkage clustering).
Domain architectures were attributed to clusters con-

taining at least one sequence with at least one predicted
domain. We considered the domains predicted by running
InterProScan on each proteic sequence against the Pfam-
A database of domains [29]. The domain architecture of a
protein was defined as the set of domain families predicted
on the protein, as identified by their clan_id.

Additional material

Additional file 1: The MOLLI60 matrix.

Additional file 2: perl scripts for building new matrices.

Additional file 3: Supplementary figures.

Additional file 4: List of genomes used in these analyses.
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