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Hepatic gluconeogenesis is the major contributor to the
hyperglycemia observed in both patients and animals with type
2 diabetes. The transcription factor FOXO1 plays a dominant
role in stimulating hepatic gluconeogenesis. FOXO1 is mainly
regulated by insulin under physiological conditions, but liver-
specific disruption of Foxo1 transcription restores normal
gluconeogenesis in mice in which insulin signaling has been
blocked, suggesting that additional regulatory mechanisms
exist. Understanding the transcriptional regulation of Foxo1
may be conducive to the development of insulin-independent
strategies for the control of hepatic gluconeogenesis. Here,
we found that elevated plasma levels of adenine nucleotide in
type 2 diabetes are the major regulators of Foxo1 transcription.
We treated lean mice with 50-AMP and examined their tran-
scriptional profiles using RNA-seq. KEGG analysis revealed
that the 50-AMP treatment led to shifted profiles that were
similar to db/db mice. Many of the upregulated genes were in
pathways associated with the pathology of type 2 diabetes
including Foxo1 signaling. As observed in diabetic db/db mice,
lean mice treated with 50-AMP displayed enhanced Foxo1
transcription, involving an increase in cellular adenosine levels
and a decrease in the S-adenosylmethionine to S-adenosylho-
mocysteine ratio. This reduced methylation potential resulted
in declining histone H3K9 methylation in the promoters of
Foxo1, G6Pc, and Pepck. In mouse livers and cultured cells, 50-
AMP induced expression of more FOXO1 protein, which was
found to be localized in the nucleus, where it could promote
gluconeogenesis. Our results revealed that adenine nucleotide-
driven Foxo1 transcription is crucial for excessive glucose
production in type 2 diabetic mice.

The liver plays a central role in whole-body homeostasis and
metabolic health. Many metabolic functions, including lipid
processing and distribution, amino acid synthesis, and gluco-
neogenesis, are performed or controlled by the liver (1). He-
patic gluconeogenesis is primarily responsible for the increase
of fasting hepatic glucose production in individuals with type 2
diabetes (2). The transcription factor forkhead box protein O1
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(FOXO1) plays a dominant role in regulating hepatic gluco-
neogenesis (3, 4). The FOXO1 interacts directly with DNA-
binding sites in the promoter region of several genes related
to gluconeogenesis (5, 6), stimulating glucose production in
both mouse livers and isolated hepatocytes (4). The phos-
phorylation state of FOXO1 determines its cellular localization
and transcription activity of FOXO1, which is mainly regulated
by the insulin signaling pathway under physiological condi-
tions (7). Insulin activates Akt to phosphorylate FOXO1 pro-
tein and causes a higher binding affinity of FOXO1 with
chaperone protein, thus facilitating the cytoplasmic retention
and nuclear export of FOXO1 (4, 8). Phosphorylated FOXO1
in the cytoplasm remains inactive and is finally degraded by
the ubiquitin-proteasome pathway (8, 9).

Increased Foxo1 transcription has been observed in the
livers of db/db diabetic mice and patients with insulin resis-
tance (10, 11). Deletion of hepatic Foxo1 in diabetic mice
improves insulin sensitivity and glucose tolerance (12, 13).
Transgenic mice expressing the constitutively active Foxo1
allele show an increase in gluconeogenesis and hepatic glucose
production (14). Foxo1 haploinsufficiency rescues diabetes in
IRS2-deficient diabetic mice and prevents the development of
high-fat diet-induced insulin resistance in wild-type (WT)
mice (14, 15). Especially, disruption of Foxo1 in a liver-specific
manner restores glucose tolerance in insulin signal blocking
mice (16, 17), implying suppression of Foxo1 transcription may
be an insulin-independent therapeutic approach for diabetes
mellitus.

While insulin exerts its effects on gluconeogenesis in the
liver by inactivating FOXO1 proteins (4), insulin has no effects
on Foxo1 transcription. The mechanism of hepatic Foxo1
transcriptional regulation in type 2 diabetes mellitus is un-
known. The factors that stimulate hepatic Foxo1 transcription
are generally considered to be less important than FOXO1
protein phosphorylation and are almost ignored in type 2
diabetes. Our previous observations demonstrate that the
elevation of plasma adenine nucleotides is an upstream regu-
lator in type 2 diabetic db/db mice (18, 19). An increasing
amount of evidence highlights a critical role for the adenine
nucleotides in the regulation of glucose homeostasis and the
pathophysiology of diabetes mellitus (20). In the present study,
we demonstrated that adenine nucleotides stimulate hepatic
Foxo1 transcription via suppressing histones methylation in
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An insulin-independent transcription of Foxo1
type 2 diabetic db/db mice, indicating that adenine
nucleotides-driven hepatic Foxo1 transcription is crucial for
excessive glucose production in type 2 diabetic mice.

Results

Adenine nucleotide activates Foxo signaling

To explore the unbiased biological association of the role of
adenine nucleotides in diabetes, we used RNA sequencing to
measure all poly A-containing transcripts in the livers of
control and model mice. The significantly enriched pathways
were identified by using the KEGG database. Mapping of an-
notated DEGs to KEGG pathways resulted in 249 DEGs of 42
pathways and 656 DEGs of 44 pathways in the livers of 50-
AMP-treated (Fig. 1A, upper) and db/db mice (lower),
respectively (Supporting information S1–S4). Among these, a
total of 42 KEGG pathways were disrupted simultaneously in
both mouse models, indicating a high degree of similarity in
gene transcription changes between the AMP group and the
DB group. The 175 genes that are significantly changed in the
AMP group overlapped with the same genes in the DB group
(Fig. 1B, left). A heat map of the 175 genes with significant
regulatory functions was constructed (Fig. 1B, right). Pearson r
analysis showed that there was a strong correlation between
biological repeats in each group. Next, we used ingenuity
pathway analysis to identify the top 20 classic pathways
implicated by gene expression changes, revealing many
metabolic pathways, including glucagon signaling, insulin
signaling, and insulin resistance, which showed consistent
changes in the AMP and the DB group (Fig. 1C). Moreover,
the Foxo signaling pathway was found to be one of the largest
spots and was shown in the KEGG enrichment diagram of the
AMP group (Fig. 1D), and the gluconeogenesis-related genes
in the Foxo signaling pathway were activated (Fig. 1E). Simi-
larly, the Foxo signaling pathway in the DB group has changed
(Supporting Information S5). Although KEGG pathway anal-
ysis showed some changes between the AMP group and the
DB group, there was no significant difference in the pathways
related to type 2 diabetes (Fig. S1). Therefore, we speculate
that 50-AMP is likely to regulate hepatic gluconeogenesis
through Foxo signaling.

Adenine nucleotide promotes hepatic gluconeogenesis

To verify the reliability of RNA-Sequencing data, eight
responsive genes of 175 genes changed both in the AMP and
the DB group were analyzed by qRT-PCR analysis. As shown
in Figure 2A, the mRNA levels of Mfsd2a, Slc25a25, Etnppl,
Actg1, Klf3, Foxo1, G6Pc, and Pepck were elevated in both
groups. 50-AMP significantly increased the transcription of
gluconeogenesis-related genes including Foxo1, G6Pc, and
Pepck, which were closely related to Foxo signaling and insulin
resistance. Then, we investigated the function of 50-AMP in
regulating hepatic gluconeogenesis in vivo. 50-AMP increased
the glucose area under the curve during the pyruvate tolerance
test (PTT) (Fig. 2B). PTT experiments confirmed that gluco-
neogenesis also increased in the db/db mice (Fig. 2B). Using
different gluconeogenic substrates, we also found that 50-AMP
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significantly increased glucose appearance with intraperitoneal
(i.p.) administration of glycerol (Fig. 2C), lactate (Fig. 2D),
fructose (Fig. 2E), and glutamine (Fig. 2F), respectively. The
same results were obtained with db/dbmice (Fig. 2, C–F). PTT
experiments confirmed that 50-AMP accelerated the con-
sumption of gluconeogenic substrate pyruvate (Fig. 2G).
Moreover, inhibition of FOXO1 function by selective FOXO1
inhibitor AS1842856 (21) eliminated 50-AMP-induced hepatic
gluconeogenesis during PTT (Fig. 2H). Together, these results
indicate that 50-AMP stimulates Foxo1 transcription and pro-
motes hepatic gluconeogenesis.

Adenine nucleotide stimulates hepatic Foxo1 transcription

To investigate the underlying mechanism of 50-AMP-
dependent hepatic gluconeogenesis, we first examined the ef-
fects of 50-AMP on the expression levels of Foxo1 mRNA and
protein. 50-AMP caused a dose-dependent increase in the
mRNA levels of Foxo1, Pepck, and G6Pc in mouse livers
(Fig. S2). Western blotting analysis showed that the FOXO1
protein level was also increased in 50-AMP-treated livers
(Fig. 3A). Moreover, 50-AMP decreased the phosphorylation
level of FOXO1 (Fig. 3B). Immunofluorescence analysis
showed that the fluorescence intensity of FOXO1 was signif-
icantly increased after 50-AMP, and the immunofluorescence
of FOXO1 was mainly localized in the nucleus (Fig. 3C). These
observations indicate that 50-AMP enhances Foxo1 transcrip-
tion as well as FOXO1 nuclear translocation.

50-AMP-stimulated Foxo1 transcription is related to cellular
methylation potential

To clarify how 50-AMP stimulates hepatic Foxo1 transcrip-
tion, a transcription inhibitor actinomycin D (AD) was used to
explore the underlying mechanism. The results revealed that
the AD significantly blocked the transcription level of Foxo1 in
the livers of 50-AMP-treated mice and db/db mice, excluding
the possibility of posttranscriptional regulation of Foxo1
mRNA by 50-AMP (Fig. 4, A and B), suggesting that 50-AMP
increased Foxo1 mRNA level through a process involving de
novo gene transcription. Because 50-AMP can be dephos-
phorylated into adenosine by 50-nucleotidase anchored on the
cell membranes, the function of 50-AMP may play a role via
increasing intracellular adenosine levels or acting on specific
cell surface receptors (21). Administration of adenosine also
increased hepatic Foxo1 transcription (Fig. 4C) and promoted
gluconeogenesis in mice (Fig. 4D). To determine whether the
effects of adenosine were due to the engagement of adenosine
receptors, mice were treated with the broad-spectrum aden-
osine receptor antagonist theophylline. Theophylline treat-
ment did not lower Foxo1 mRNA levels seen in 50-AMP mice
(Fig. 4E). Next, we found that a methyl donor betaine reduced
Foxo1 mRNA in the livers of 50-AMP-treated mice (Fig. 4F)
and db/db mice (Fig. 4G). Cycloleucine acts as a competitive
inhibitor of methionine S-adenosyl transferase involved in
regulating the ratio of S-adenosylmethionine (SAM)/S-ade-
nosylhomocysteine (SAH), the cellular methylation potential
(22). The methylation inhibitor cycloleucine significantly
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increased Foxo1 mRNA levels in WT livers (Fig. 4F). HPLC
analysis showed that betaine, but not theophylline, increased
the ratio of SAM/SAH in the livers of 50-AMP mice (Fig. 4, H
and I) and db/db mice (Fig. 4J). As expected, cycloleucine
significantly reduced the ratio of SAM to SAH in mouse livers
(Fig. 4I). These results demonstrate that 50-AMP-stimulated
Foxo1 transcription is closely related to cellular methylation
potential. Then we examined whether 50-AMP influences
DNA methylation. As shown in Figure 4K, the DNA methyl-
ation levels of the Foxo1 promoter remained unchanged in the
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livers of 50-AMP-treated mice. Similar results were observed in
that of db/db mice (Fig. 4K).
Adenine nucleotide decreases histone H3K9 methylation

Histone methylations are known to control gene expression
(23). Increased histones methylation of some specific amino
acid residues is generally associated with transcriptional
silencing and heterochromatin formation, which ensures sta-
ble repression and genomic integrity (24). Then we detected a
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significant reduction in total H3K9me2 methylation in the
livers of 50-AMP-treated mice (Fig. 5A). The observation of a
reduction in methylation epitopes associated with transcrip-
tional repression (H3K9) chromatin suggests that hypo-
methylation may occur at the genome-wide level. Then,
chromatin immunoprecipitation (ChIP) analysis was per-
formed to compare histone methylation levels in Foxo1, G6Pc,
and Pepck promoter regions. Compared with the control
group, 50-AMP resulted in a significant decrease of H3K9me2
levels in the promoter regions of Foxo1, G6Pc, and Pepck
(Fig. 5B). The results of the ChIP analysis were confirmed by
ChIP-qPCR (Fig. 5C). We also detected a significant reduction
in H3K9 methylation in db/db livers by western blotting
analysis (Fig. 5D). ChIP assay and qPCR analysis demonstrated
that the H3K9me2 levels, as observed in 50-AMP-treated mice,
were markedly decreased in the promoter regions of Foxo1,
G6Pc, and Pepck in db/db mice (Fig. 5, E and F). Together, our
results suggest that the overall decrease of H3K9me2, specif-
ically the reduction of Foxo1, G6Pc, and Pepck promoter locus,
results in transcriptional stimulation of these genes in 50-
AMP-treated and db/db mice.

Adenine nucleotide promotes Foxo1 transcription in cultured
cells

To confirm the results we obtained from the mouse livers,
we used HepG2 cells to investigate the effects of 50-AMP on
the regulation of Foxo1 in vitro. The results showed that 50-
AMP resulted in a significant increase of glucose production in
HepG2 cells (Fig. S3). HPLC analysis revealed that 50-AMP
caused a significant decrease in the SAM/SAH ratio (Fig. 6A).
Then, we investigated whether nonspecific adenosine receptor
antagonist (theophylline) and adenosine transporter inhibitor
(dipyridamole) affect cell methylation potential and are related
to Foxo1 transcription. As shown in Figure 6A, theophylline
did not affect the 50-AMP-decreased cellular methylation po-
tential, and the adenosine transport inhibitor dipyridamole
significantly inhibited the effect of 50-AMP on methylation
potential (Fig. 6A). To further explore the possible involve-
ment of cellular methylation potential, we added SAM and the
methylation inhibitor cycloleucine to observe the changes in
the SAM/SAH ratio (Fig. 6B). The addition of SAM restored
the 50-AMP-decreased ratio of SAM/SAH. Twenty-four hours
after the incubation of cycloleucine, the SAM/SAH ratio
decreased significantly (Fig. 6B). The qRT-PCR analysis
showed that 50-AMP significantly increased Foxo1 mRNA
levels in HepG2 cells, and the addition of theophylline did not
affect the regulation of Foxo1 transcription by 50-AMP
(Fig. 6C). Notably, dipyridamole significantly decreased 50-
AMP-stimulated Foxo1 transcription (Fig. 6C). In HepG2 cells,
cycloleucine increased Foxo1 transcription like 50-AMP
(Fig. 6D), and SAM eliminated the effects of 50-AMP on Foxo1
transcription regulation (Fig. 6D), further indicating that 50-
AMP regulates Foxo1 transcription by affecting the methyl-
ation potential of cells. Immunofluorescence analysis was
performed to show the subcellular location of FOXO1. While
FOXO1 was mainly located in the cytoplasm in control cells,
50-AMP significantly increased FOXO1accumulation in the
nucleus (Fig. 6E). The theophylline did not affect 50-AMP-
regulated FOXO1 nuclear accumulation, but dipyridamole
inhibited the appearances of FOXO1 in the nucleus. Moreover,
SAM increased the intracellular cytoplasmic FOXO1 protein
level and reduced the nuclear FOXO1 accumulation.
Contrarily, cycloleucine markedly increased the appearances of
FOXO1 in the nucleus (Fig. 6E).

Discussion

Hepatic Foxo1 transcription is activated in the livers of pa-
tients with insulin resistance and type 2 diabetic mice (10, 11),
playing a crucial role in excessive glucose production (25). The
molecular mechanism that stimulates hepatic Foxo1 tran-
scription in type 2 diabetes is unknown and almost ignored. In
the present study, we showed that 50-AMP increased FOXO1
accumulation in the nucleus both in vivo and in vitro, thus
promoting gluconeogenesis. This characterization was initially
based on the induction of Foxo1 at the transcription level, for
J. Biol. Chem. (2021) 297(1) 100846 5
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cycloleucine, i.p. 16 μmol/g. Saline serves as control. G, quantitate RT-PCR analysis of Foxo1 mRNA of livers in db/db mice treated with methylation activator
betaine. The betaine (2 mg/ml) was administrated in drinking water for 2 weeks. H, HPLC analysis of liver SAM and SAH in mice treated with theophylline
and 50-AMP. AMP: 50-AMP, i.p. 0.5 μmol/g; TPL: theophylline, i.p. 10 μg/g. Saline serves as control. I, HPLC analysis of liver SAM and SAH in betaine and
cycloleucine-treated mice. AMP: 50-AMP, i.p. 0.5 μmol/g; Betaine: 2 mg/ml, in drinking water for 2 weeks prior to 50-AMP; CLC: cycloleucine, i.p. 16 μmol/g.
Saline serves as control. J, HPLC analysis of liver SAM and SAH in betaine-treated db/dbmice, betaine (2 mg/ml) in drinking water for 2 weeks (n = 5, A–J). K,
measurement of DNA methyl-cytosine in the Foxo1 promoter region of 50-AMP-treated (upper) and db/db (lower) livers. Saline and lean mice serve as
controls, respectively. No significant changes in both group comparisons (n = 10). Data represent means ± SEM. *p value < 0.05, **p value < 0.01, compared
with control group.

An insulin-independent transcription of Foxo1
the first time revealing that adenine nucleotides-driven Foxo1
transcription is essential for excess glucose production in type
2 diabetes.

Free fatty acid (FFA) is an important link between obesity,
insulin resistance, and type 2 diabetes (26). FFAs induce
adenine nucleotides release from human umbilical vein
endothelial cells (18, 27) and impair the resistance of red blood
cells to reactive oxygen species, leading to hemolysis, thereby
increasing plasma adenine nucleotides (27). Plasma-
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membrane-bound enzymes CD73 metabolize adenine nucle-
otides to adenosine (28). Adenosine works by activating G-
protein-coupled adenosine receptors A1, A2A, A2B, and A3 (29).
Under physiological conditions, A2A adenosine receptors have
been thought to play a role in modulating the function of
FOXO1 (30). In our observations, adenosine transport inhib-
itor, but not adenosine receptor antagonist, significantly
reduced 50-AMP-stimulated Foxo1 transcription. Adenosine
also has its direct biochemical function, which is not directly
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related to the adenosine receptor pathway (18, 31). The
equilibrative nucleoside transporters passively transport
adenosine across cell membranes by promoting diffusion (32).
Under the pathological state of type 2 diabetes, the sustained
high concentration of adenosine may passivate the regulatory
effect of adenosine receptors. Our results suggest that 50-
AMP-stimulated Foxo1 transcription is related to the trans-
ports rather than cell surface receptors.

Exogenous 50-AMP results in a dose-dependent elevation in
adenosine levels in the liver, thereby increasing SAH and
decreasing SAM/SAH ratio (33). Our data showed that 50-
AMP promoted hepatic gluconeogenesis and increased
glucose output, which was mediated by the methylation ability
associated with the SAM/SAH ratio. SAH is a powerful in-
hibitor of all methylation reactions. The concentrations of
SAM and SAH are associated with diabetes (34, 35). In pa-
tients with diabetes, especially in patients with kidney disease,
the concentration of SAM and related compounds in blood
changes abnormally (34). Compared with nondiabetic patients,
the concentration of SAH in plasma and erythrocytes of pa-
tients with type 2 diabetes is also significantly higher (36).
Antidiabetic drug metformin has been found to improve the
methylation ability through the regulation of the SAM/SAH
ratio (37), and insulin-regulating mTOR signaling is capable of
changing DNA methylation.

The SAM/SAH ratio does not directly affect the daily
changes in global DNA methylation (33). In our observation,
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the adenosine-driven SAM/SAH ratio did not change the DNA
methylation level of the Foxo1 gene, but it resulted in insuf-
ficient histone methylation associated with the Foxo1 pro-
moter region. Methylation of H3K9 is very common in
transcriptional silencing (38), and H3K9 methylation is an
inactive chromatin marker (39).

Therefore, the insufficient methylation of histone H3K9 in
the Foxo1 promoter region led to the activation of Foxo1 gene
transcription. In addition, the change of SAM/SAH ratio
implied that hypomethylation may occur at the whole genome
level. Thus, other genes related to diabetes pathways are
probably also involved. In fact, we found that Mfsd2a,
Slc25a25, Etnppl, Actg1, and Klf3 were indeed elevated in both
the AMP and the DB groups. Our analysis suggests a far more
substantial role for adenine nucleotides in diabetes
development.

Our previous observation showed that plasma 50-AMP
was elevated in type 2 diabetic db/db mice, and exogenous
50-AMP caused type 2 diabetes-like hyperglycemia in lean
mice (18). Plasma 50-AMP was also elevated in patients with
type 2 diabetes (19). Since adenosine was a potential in-
hibitor of insulin receptor (IR) tyrosine kinase, insulin-
stimulated IR autophosphorylation was significantly atten-
uated by 50-AMP treatment, resulting in a reduction of
insulin sensitivity (40). We also provide evidence for
adenine nucleotides regulating the activity of PTP1B in type
2 diabetic mice (19). Together, it strongly suggests that
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An insulin-independent transcription of Foxo1
adenine nucleotides and insulins may antagonize each other
on blood glucose homeostasis.

In conclusion, we revealed a novel molecular mechanism
underlying that adenine nucleotides regulate Foxo1 transcrip-
tion for excessive glucose production in type 2 diabetes
(Fig. 7). The mechanism of stimulating Foxo1 transcription in
type 2 diabetes is almost ignored. Our findings extend the
current understanding of epigenetic regulation of hepatic
gluconeogenesis through Foxo1, highlight the crucial role of
adenine nucleotides in the development of type 2 diabetes, and
reveal a novel strategy for diabetes treatment.
Experimental procedures

Mice

Eight-week-old male C57BL/6, C57BL/Ks db/db mice, and
their lean littermates (+/+) were used in this study. Mice were
housed in a standard animal facility under a 12-h/12-h light/
dark cycle with free access to food and water. All procedures
were approved by the Animal Care and Use Committee at
8 J. Biol. Chem. (2021) 297(1) 100846
Nanjing University of Science and Technology (ACUC-NUST-
20170223).

Treatment of 50-AMP, betaine, cycloleucine, and actinomycin D

50-AMP (adenosine 50-monophosphate disodium salt) was
solvated in saline and administered to mice by intraperitoneal
injection in doses of 0.5 or 1 μmol/g body weight at zeitgeber
time (ZT)1. Adenosine was solvated in saline and administered
to mice by intraperitoneal injection in doses of 0.2 μmol/g
body weight at ZT1. Saline was injected as a control. To
change cellular methylation potential, betaine was supple-
mented in the drinking water at a concentration of 2% (wt/vol)
for 2 weeks before the test (41). To decrease SAM levels,
cycloleucine was administered intraperitoneally (16 μmol/g
body weight) at ZT1 (42). To inhibit mRNA transcription,
actinomycin D was intraperitoneally (3 nmol/g body weight)
injected into C57BL/6, C57BL/Ks db/db mice, and their lean
littermates at ZT0. The transcriptional inhibitor actinomycin
D was administered 60 min before the administration of 50-
AMP. To explore the role of adenosine receptors, adenosine



Figure 7. Schematic representation of the proposed regulatory function of 50-AMP on modulating Foxo1 transcription. Model showing that adenine
nucleotides cause insufficient methylation of histone in the Foxo1 promoter region, thereby activating Foxo1 transcription.

An insulin-independent transcription of Foxo1
receptor antagonist theophylline (10 μg/g, i.p.) was used
30 min before the administration of 50-AMP. To inhibit
FOXO1, mice were treated with AS1842856 (30 μg/g, i.p.) or
the carrier solution 60 min before the administration of 50-
AMP. One hour after the injection of 50-AMP, adenosine, or
cycloleucine, all mice were sacrificed by cervical dislocation,
and the livers were removed and freeze-clamped in liquid ni-
trogen for further analysis. Blood samples were immediately
centrifuged at 5000 g for 5 min at 20 �C. The obtained plasma
was immediately used. 50-AMP, betaine, cycloleucine,
theophylline, adenosine, and actinomycin D were from Sigma.
AS1842856 was from MCE (HY-100596, MCE, China).

Gluconeogenesis tests

Gluconeogenesis tests were performed as described previ-
ously (43, 44). Briefly, mice were fasted overnight (16 h) prior to
injected i.p. with pyruvate (2 g/kg BW), glycerol (2 g/kg BW),
lactate (1.5 g/kg BW), fructose (2 g/kg BW), or glutamine (1.5 g/
kg BW), respectively. 50-AMP (0.5 μmol/g i.p.) or adenosine
(0.2 μmol/g i.p.) was mixed with gluconeogenic substrates and
coinjected into mice. Blood glucose levels were determined
from the tail vein at 0, 15, 30, 60, and 120 min after injection,
with a One Touch Ultra Blood Glucose Meter (Lifescan).

Measurement of pyruvate concentration

Hepatic pyruvate concentration was assayed with commer-
cial kits according to the manufacturers’ instructions (Jian-
cheng). Livers were homogenized in ice-cold PBS. Then, the
homogenates were collected for pyruvic acid determination.
Pyruvate concentration was normalized to the protein con-
centration of the samples.
RNA sequencing and analysis

Purified total RNA from the livers of 50-AMP-treated, db/
db, and control mice was used for RNA-sequencing prepara-
tion. cDNA library construction and sequencing were per-
formed by Beijing Genomics Institute using a BGISEQ-500
sequencer. High-quality reads were aligned to the mouse
genome (mm10) by using Bowtie2. The expression levels for
each of the genes were normalized to fragments per kilobase of
exon model per million mapped reads (FPKM) using RNA-seq
by Expectation Maximization (RSEM).

Promoter methylation analysis

Quantitative DNA promoter methylation of Foxo1 was
performed by bisulfite sequencing PCR (BSP) (45). The primer
sequences were shown in Table S1. Amplified DNA was
ligated into the pCR2.1 vector (Invitrogen) and transformed
into competent E. coli DH5α. Ten clones per sample were
selected and sequenced. The results were analyzed by Biq
Analyzer software.

HPLC analysis of SAM and SAH

SAM and SAH were extracted from frozen liver samples or
PBS washed cell monolayers using 0.4 N perchloric acid (19,
46). SAM and SAH were measured by a reverse-phase HPLC
(Waters 1525 system; Millipore Corp), according to the pro-
cedure previously described (33). The mobile phase contained
0.1 M sodium acetate, 5 mM heptanesulfonic acid adjusted to
pH 4.5 with acetic acid, and 5.5% acetonitrile. The samples
were eluted on a reversed-phase C18 column at room tem-
perature with an invariable gradient at a flow rate of 0.8 ml/
min. Characteristic peak spectra and retention times compared
J. Biol. Chem. (2021) 297(1) 100846 9
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with those of the standards were used to identify SAM and
SAH. Quantitation was based on peak areas. SAM was from
Solarbio. SAH was from Sigma.

RNA extraction and quantitative real-time PCR

Total RNA was extracted from livers and cells with Karrol
reagent (Karroten Scientific) according to the manufacturer’s
instructions. Reverse transcript reaction was carried out by
reverse transcript kit (Invitrogen) according to the manufac-
turer’s protocol. Real-time PCR was performed with the SYBR
Green PCR Kit (Applied Biosystems) following the manufac-
turer’s instructions on an ABI 7300 real-time PCR system
(Applied Biosystems) in a 20-μl volume. The relative mRNA
levels of Foxo1, Pepck, and G6Pc were quantified, with β-Actin
used for normalization. The primer sequences used for
quantitative RT-PCRs were shown in Table S2.

Western blot analysis

Fresh livers and cells were homogenized, and proteins were
extracted with an Extraction Reagent (KeyGEN) according to
the manufacturer’s instructions. The extraction was separated
by SDS-PAGE 10%–15% polyacrylamide gel. The membranes
were incubated with primary antibodies anti-FOXO1, phos-
pho-FOXO1 (Ser-256), anti-Histone H3, and anti-Di-Methyl-
Histone H3 Lys9 (Cell Signaling), respectively, following by
incubation with HRP-conjugated secondary antibody (Boster)
and detection by enhanced chemical luminescence kit
(Thermo scientific). β-actin was used as a control.

Chromatin immunoprecipitation assays

ChIP assays were performed as described previously (47,
48). Cross-linked chromatin was immunoprecipitated with
5 μg of anti-Histone H3, anti-Di-Methyl-Histone H3 Lys9,
respectively, or negative control rabbit IgG. Immunoprecipi-
tated DNA was then used as a template for PCR. The primer
sequences used for PCR were listed in Table S3.

Immunofluorescence analysis

Immunofluorescence and confocal microscopy were per-
formed as described previously (49). Briefly, liver tissues were
immersed in cryo-embedding medium and then sectioned into
10-μm-thick slices using a cryotome (Leica Microsystems). The
cultured cells were washed three times with fresh PBS, fixed with
4% paraformaldehyde for 15 min, permeabilized with 0.25%
Triton X-100 (Sigma) for 10 min. Slices and fixed cells were
incubated with primary antibodies (anti-FOXO1, Cell Signaling)
and secondary antibodies step by step. Nuclei were stained with
DAPI. Fluorescence images of liver slices were observed with
fluorescence microscopy (Eclipse 800; Nikon). The fluorescence
images of cultured cells were acquired on a superresolution
DeltaVision OMX imaging system (GE Healthcare).

HepG2 cells

HepG2 cells were maintained in Dulbecco’s modified Eagle’s
medium (Gibco) supplemented with 10% fetal bovine serum
10 J. Biol. Chem. (2021) 297(1) 100846
(Gibco) and penicillin/streptomycin (10 μl/ml of medium,
Gibco) at 37 �C in 5% (v/v) CO2. To investigate the mecha-
nisms responsible for the adenosine-mediated effects, the
medium was removed and replaced with fresh medium, con-
taining various concentrations of the compounds to be tested,
for another 24 h: nontreated, 50-AMP (0.5 mM) alone, 50-AMP
(0.5 mM) plus theophylline (100 μM), or dipyridamole
(0.1 μM). To further confirm the regulatory effect of cell
methylation potential, cells were treated with 50-AMP for 24 h
with or without 2 mM SAM. To inhibit methylation, cells were
treated with 20 mM cycloleucine for 24 h. Theophylline,
dipyridamole, SAM, and cycloleucine were purchased from
Sigma.

Glucose production in cells

A previously established protocol was followed to estimate
glucose production (50). HepG2 was plated in 6-well plates in
5% CO2 incubator at 37 �C for 24–48 h. After 70–80% con-
fluency cells were incubated overnight in DMEM media con-
taining 2% charcoal-treated FBS and 1% antibiotics. Cells were
washed three times with PBS to remove all traces of glucose
and incubated with media containing 2% charcoal-treated FBS,
phenol red, and glucose-free media for 2 h. Cells were treated
with 0.5 mM 50-AMP in glucose production assay medium
(phenol red and glucose-free DMEM) containing 2 mM so-
dium pyruvate and 20 mM sodium lactate, pH 7.4, and incu-
bated up to 24 h. A quantity of 300 μl of the medium was
sampled for measurement of glucose concentration using a
glucose assay kit (GAGO20, Sigma). Glucose values were
normalized with cellular total protein concentrations.

Statistical analysis

The results were presented as means ± SEM. Statistical
difference between groups was determined by Student’s t test,
and comparisons among groups were performed using
ANOVA. A p-value of less than 0.05 indicated statistical
significance.
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