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Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can mod-

ulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of

CREs, but a bottleneck lies in functionally interpreting these data. To address this issue, massively parallel reporter assays

(MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells, and the resulting barcoded tran-

scripts are quantified by next-generation sequencing. Thus far, MPRAs have been largely restricted to assaying short

CREs in a limited repertoire of cultured cell types. Here, we present two advances that extend the biological relevance

and applicability of MPRAs. First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling

across the targeted regions and markedly increasing the length of CREs that can be readily assayed. Second, we package

the library into adeno-associated virus (AAV), thereby allowing delivery to target organs in vivo. As a proof of concept,

we introduce a capture library of about 46,000 constructs, corresponding to roughly 3500 DNase I hypersensitive (DHS)

sites, into the mouse retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivoAAV injection.

We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples of high-resolution truncation mutation

analysis for multiplex parsing of CREs. Our approach should enable massively parallel functional analysis of a wide range of

CREs in any organ or species that can be infected by AAV, such as nonhuman primates and human stem cell–derived

organoids.

[Supplemental material is available for this article.]

Cis-regulatory elements (CREs, e.g., promoters and enhancers) are
DNA regions that regulate gene expression, and variants within
CREs can contribute to phenotypic diversity, including disease
susceptibility (Wray 2007; Albert and Kruglyak 2015). In the past
several years, vast amounts of genomic data have been generated
that predict the locations of hundreds of thousands of CREs in
cell lines and primary tissues (The ENCODE Project Consortium
2012; Shen et al. 2012; Romanoski et al. 2015). As an avenue for
the experimental validation of these predictions, massively paral-
lel reporter assays (MPRAs, e.g., CRE-seq) have been developed, in
which barcoded plasmid reporters are introduced into cells. Next-
generation sequencing of the resulting barcoded transcripts pro-
vides a quantitative measure of CRE activity (Kwasnieski et al.
2012; Melnikov et al. 2012; Patwardhan et al. 2012; Arnold et al.
2013; White et al. 2013; Levo and Segal 2014; Shlyueva et al.
2014). Thus far, MPRAs have been largely restricted to assaying
short CRE fragments (<150 bp) synthesized as oligonucleotide li-
braries on microarrays (Patwardhan et al. 2009; Baker 2011;
White et al. 2013) and delivered into selectmammalian cells acces-
sible by transfection or electroporation. However, CREs are often
hundreds of base pairs in length, andCRE activity depends crucial-
ly on the assayed cell type and its particular complement of tran-
scription factors (TFs) (Davidson 2001). Therefore, we sought to
expand the biological relevance and applicability of MPRAs by in-
creasing the length of assayedCREs and bywidening the repertoire
of assayable cell types.

The retina and cerebral cortex are two parts of the central ner-
vous system (CNS) with a shared forebrain origin, whose gene reg-
ulatory networks are topics of intense research interest (Swaroop
et al. 2010; Wright et al. 2010; Bae et al. 2015; Nord et al. 2015).
The genome-wide locations of putative CREs have been mapped
in both tissues, using methods such as ChIP-seq and DNase-seq
(Visel et al. 2009; Corbo et al. 2010; The ENCODE Project
Consortium 2012; Wilken et al. 2015). Compared to the cortex,
the retina ismore experimentally amenable to cis-regulatory analy-
sis, in part because its cellular composition is more completely
understood (Livesey and Cepko 2001; London et al. 2013).
Electroporation can be used to efficiently deliver plasmid DNA
into rod photoreceptors, which constitute the majority (∼80%)
of the cells in the retina (Jeon et al. 1998). We previously conduct-
ed CRE-seq by electroporating thousands of short CREs into the
neonatal mouse retina ex vivo (Kwasnieski et al. 2012; White
et al. 2013). Although hundreds of putative developmental fore-
brain enhancers have been assayed with one-at-a-time transgenic
mouse reporter assays (Nord et al. 2013; Visel et al. 2013), never be-
fore has massively parallel cis-regulatory analysis been conducted
in the mammalian CNS in vivo.

Here, we sought to overcome current technological hurdles
by developing a “capture-and-clone” approach for synthesizing
CRE-seq libraries with a selectable range of fragment sizes for tar-
geted cis-regulome analysis. As a built-in feature, our approach
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allows for truncation mutation analyses, which can identify re-
gions within CREs that are critical for activity. We furthermore
demonstrate the feasibility of conducting in vivo CRE-seq in the
adult cerebral cortex by AAV-mediated delivery. Our approach pro-
vides a framework for the massively parallel functional analysis of
CREs in a broad repertoire of organs and species in vivo.

Results

Identification and characterization of candidate CRE regions

The genomic locations of CREs can be predicted by the patterns of
phylogenetic conservation, the occurrence of transcription factor
binding sites, and the presence of various chromatin features
(Levo and Segal 2014; Shlyueva et al. 2014). DNase I hypersensi-
tive (DHS) sites, which demarcate regions of open chromatin, are
one of the most informative predictive features of active CREs
(Arvey et al. 2012; Natarajan et al. 2012; Kwasnieski et al. 2014).
Moreover, DNase-seq data for a variety of primary mouse tissues
are available as part of the Mouse ENCODE Project (Yue et al.
2014). To facilitate the direct comparison of a given CRE-seq
library in retina and cerebral cortex, we generated a list of tissue-
specific candidate CREs based on mouse DNase-seq data, corre-
sponding to 1000 DHS regions from adult retina and 1000 DHS re-
gions from adult whole brain. Additionally, we included DHSs
from two adult mouse non-neural tissues (1000 DHSs from heart
and 1000 DHSs from liver) as controls (Supplemental Table S1).
Together, this yielded 4000 target DHS regions.

We first examined the genome-wide distributions of the 4000
target DHS regions using GREAT and HOMER, two computational
tools for annotating coding and noncoding regions (Heinz et al.
2010; McLean et al. 2010). The majority (75%) of the DHS regions
were distal elements located >10 kb away from the nearest tran-
scriptional start site (TSS) (Supplemental Fig. S1A). Almost all of
the DHS regions fell within introns (46%) or intergenic regions
(45%) (Supplemental Fig. S1B), similar to the genome-wide distri-
bution of DHS regions in other cell types (Shu et al. 2011). A small
number of DHSs (156/4000 or 4%)were “promoter-proximal,” i.e.,
falling within −1 kb to +100 bp relative to the nearest TSS
(Supplemental Fig. S1A). Among these, 77/156 (49%) were retinal
DHSs, consistent with the previous observation that photorecep-
tor CREs often cluster around TSSs (Corbo et al. 2010).

Tissue-specific CREs are often enriched for the binding of TFs
important for cell identity and function (Davidson 2001).
Accordingly, we used HOMER (Heinz et al. 2010) to quantify en-
richment of TF motifs in the target regions (Supplemental Table
S2). For each set of tissue-specific target DHSs, we found strong
enrichment of putative binding sites for TFs known to be impor-
tant in that tissue. For example, among the top statistically
significant enrichments for the retina, brain, heart, and liver
DHSs were putative motifs for CRX (Chen et al. 1997; Freund
et al. 1997), ASCL1 (Kim et al. 2008), MEF2C (Edmondson et al.
1994), and ONECUT1 (also known as HNF6) (Clotman et al.
2005), respectively.

Since tissue-specific CREs are often associated with genes spe-
cifically expressed in the corresponding tissue (Natarajan et al.
2012; Heinz et al. 2015), we also examined the genes associated
with the target DHSs based on the nearest TSS (Supplemental
Table S1). Gene Ontology (GO) analysis (Carbon et al. 2009) re-
vealed an enrichment for tissue-specific functions that corre-
sponded to the tissue of DHS origin. For instance, among the top
significant hits for the retina, brain, heart, and liver target DHSs

were “sensory perception of light stimulus,” “nervous system de-
velopment,” “cardiovascular system development,” and “organic
substance metabolic process,” respectively (Supplemental Table
S3). Thus, the 4000 target DHS regions were likely enriched for tis-
sue-specific CREs.

‘Capture-and-clone’ allows synthesis of targeted cis-regulome

libraries

To overcome the length restrictions imposed by oligonucleotide
array synthesis of CRE fragments (Cleary et al. 2004), we took ad-
vantage of DNA capture, a technique routinely used for exome se-
quencing. For exome capture, biotinylated RNA baits are designed
to selectively hybridizewithDNA fragments containing sequences
of interest, i.e., exonic regions (Gnirke et al. 2009). Here, we adapt-
ed this technology to target our CREs of interest (a subset of the pu-
tative “cis-regulome”) instead of the exome. This approach offers
important advantages. First, the input DNA pool can derive from
any genomic DNA source. Hence, the cis-regulome of any single
individual or groups of individuals can be assessed. Second, the in-
put DNA pool can be size-selected for a range of fragment lengths,
enabling inclusion of long CREs.

Using mouse (C57BL/6J) genomic DNA that was sheared by
sonication and then size-selected to be ∼400–500 bp (excluding
adapter sequence), we captured with RNA baits tiling the central
300 bp (which is the median size of DHSs) (Natarajan et al.
2012) of the 4000 target DHS regions. We amplified the captured
fragments with primers containing restriction sites for cloning
into a barcoded vector library (Fig. 1A). Since the cloning was non-
directional, both orientations were roughly equally represented, as
expected (49% and 51% of fragments mapped to the plus and mi-
nus strands of the mm9 reference genome, respectively). Paired-
end sequencing revealed a distribution of CRE fragment sizes
with a median length of 464 bp (SD = 72 bp) (Fig. 1B). Using two
successive rounds of capture, we achieved a very high “on-target”
rate: 98.5% of the captured fragments overlapped a target region.
The median overlap for on-target fragments was 282 bp out of
the 300-bp target, i.e., 94% of the target region length (Supple-
mental Fig. S2). Overall, 3483 of the 4000 (87%) targeted regions
were represented, with a median coverage of eight barcodes per
represented region, for a total of 45,670 uniquely barcoded con-
structs (Fig. 1C).

The distribution of captured fragments across a representative
chromosome is shown in Figure 2A. Notably, many loci exhibited
a multiplicity of captured fragments corresponding to a single tar-
get region, resulting in a tiling of the DHS peak, as exemplified in
Figure 2B–E. Hence, the ability to conduct CRE truncation muta-
tion analysis at a given locus is a key built-in feature of our cap-
ture-and-clone approach.

AAV packaging and delivery preserves CRE-seq library

composition

We next considered how to expand the repertoire of cell types ac-
cessible by CRE-seq. Whereas efficient plasmid delivery is limited
to mitotic cells amenable to chemical transfection or electropora-
tion (Mortimer et al. 1999; Karra and Dahm 2010), the ideal
CRE-seq delivery vehiclewould permit access to a variety of tissues,
including post-mitotic tissues, and in a range of species. We rea-
soned that adeno-associated virus (AAV), a nonpathogenic virus
commonly used for gene therapy studies, would be suitable for
this purpose. AAV causes long-lasting infection in rodents and pri-
mates, and its tissue tropism ranges by serotype from promiscuous
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to cell-type selective (Mingozzi and High 2011). Moreover, unlike
DNA delivered by lentivirus, the AAV-delivered DNA remains al-
most exclusively episomal, thereby permitting cis-regulatory anal-
ysis without the insertion site effects associated with integration
into the host genome (McCarty et al. 2004).

After cloning in a TATA box-containing minimal promoter-
green fluorescent protein (GFP) cassette (Fig. 1A), we transferred
the library into a vector with inverted terminal repeats (ITRs),
which are necessary for AAV packaging (Yan et al. 2005). This
yielded the final plasmid library (Fig. 3A). To deliver the library
into the retina, we conducted ex vivo electroporation of the plas-
mid library into the neonatal mouse retina, as in our past CRE-
seq studies (Kwasnieski et al. 2012;White et al. 2013). We generat-
ed three biological replicates, each consisting of multiple electro-
porated retinas.

To deliver the library into the cerebral cortex, we packaged
the plasmid library into AAV9(2YF) and conducted in vivo stereo-
tactic injections to infect adult primary motor cortex. AAV9 is a
serotype that exhibits broad tissue tropism, and its tyrosine-mu-
tated derivative AAV9(2YF) transduces neurons of the CNS with
high efficiency and minimal host-mediated degradation of viral
particles (Zhong et al. 2008; Zincarelli et al. 2008; Dalkara et al.
2012; Aschauer et al. 2013). We generated three biological repli-
cates, each consisting of cerebral cortex tissue from a single inject-
ed mouse.

As evidence that AAV packaging
and stereotactic injection did not ad-
versely affect the composition of the li-
brary, we observed a strong correlation
(Pearson r = 0.95) between the relative
abundance of individual barcoded con-
structs in the retina after delivery of
the plasmid CRE-seq library and in
the cerebral cortex after infection with
the AAV-packaged CRE-seq library (Fig.
3B). Furthermore, 76% (34,824/45,670)
of the on-target barcodes were “well-
represented” (i.e., had at least 10 raw
DNA reads) in all six biological replicates
(three replicates each for retina and
cerebral cortex). These 34,824 barcodes
covered 97% (3375/3483) of the targeted
DHS regions that were represented in the
initial post-capture library. These results
indicated good preservation of barcode
abundance and diversity throughout
the procedure, from the initial post-cap-
ture cloning to the delivery of the library.

We then examined the tissues histo-
logically for evidence of library ex-
pression, as visualized by fluorescence
microscopy. Upon examination of the
electroporated retinas, we observed
GFP-positive cells in the outer nuclear
layer (ONL) of the retina, where the rod
photoreceptor cell bodies reside (Fig.
3C). Moreover, the GFP-positive cells
coexpressed the rod-specific Rho-CBR3-
DsRed reporter (Supplemental Fig. S3A;
Corbo et al. 2010). These findings indi-
cated that the GFP-positive cells were
rod photoreceptors, which are the pre-

dominant cell type assayed by neonatal retinal electroporation.
Upon histological examination of the AAV-injected brains,

we observed bilateral GFP-positive regions throughout all layers
of the cerebral cortex (Fig. 3D), corresponding to GFP-expressing
cells seen under higher magnification (Fig. 3E). Many of the
GFP-positive cells were morphologically consistent with pyrami-
dal neurons, with an apically oriented primary dendrite and an
axon. Furthermore, GFP expression colocalized with RBFOX3
(also known as NeuN) (Mullen et al. 1992), a widely expressed
marker of mature neurons (Supplemental Fig. S3B). Interestingly,
there were bundles of GFP-positive axons crossing the midline in
the corpus callosum (red arrow in Fig. 3D), indicating that inter-
hemispheric projection neurons were among the cells that ex-
pressed the CRE-seq library.

AAV-mediated CRE-seq demonstrates tissue-specific

CRE activity of DHSs in vivo

Given the histological evidence for expression of the library in
both tissues, we next quantified the cis-regulatory activity of indi-
vidual constructs by next-generation sequencing. As quality con-
trol measures, we verified that the samples overall clustered by
the assayed tissue type (retina versus cerebral cortex). We also ob-
served that the RNA read counts for individual barcodes were cor-
related among the three biological replicates for each tissue,
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although greater variability was observed among the cerebral cor-
tex samples than the retinal samples (Supplemental Fig. S4;
Supplemental Table S4).

Since tissue-specific DHSs are believed to mediate tissue-spe-
cific cis-regulatory activity (Natarajan et al. 2012; Heinz et al.

2015), we first asked whether this was the case. For this analysis,
we assigned the “overall” cis-regulatory activity of a given DHS
by averaging across corresponding barcoded constructs (as well
as across biological replicates). Here, we included the roughly
3000 DHSs with at least two barcoded constructs. When we
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examined the relationship between the DHS type (i.e., the tissue
origin of the DHS) and CRE activity as assayed in the retina, we ob-
served strong enrichment of retinal DHSs among highly expressed
DHSs, especially among the top∼20%most highly expressedDHSs

in the retina (Fig. 4A). Since averaging
across barcoded constructs may not nec-
essarily be the best metric of cis-regulato-
ry activity for a given DHS, we also
examined the expression of individual
barcoded constructs. This again revealed
the strong preference of the retina for ex-
pressing retinal DHSs (Fig. 4B).

Similarly, in the cerebral cortex,
there was an enrichment of brain DHSs
amonghighly expressedDHSs, especially
among the top ∼15% most highly ex-
pressed DHSs in the cortex (Fig. 4A).
However, this enrichment was less pro-
nounced than for retina: Among the top
15% most highly expressed DHSs in the
retina, 79% were retinal DHSs, whereas
among the top 15% most highly ex-
pressed DHSs in the cerebral cortex, 42%
were brain DHSs (P < 0.0001, Fisher’s ex-
act test). As seen from the individual bar-
coded constructs (Fig. 4B), there was a
clear preference for brain DHSs among
the most active constructs, but there was
overall more promiscuous (less selective)
activity of constructs in the cortex. The
activity profile of nonbrain DHSs in the
cortex was right-shifted (increased) and
overlapped to a greater extent with the
activity profile of brain DHSs in the cor-
tex, compared to the activity profile
of nonretinal versus retinal DHSs in the
retina. Overall, these findings indicated
that there was tissue-specific cis-regulato-
ry activity of DHSs in the retina and the
cortex, with the retina exhibiting a stron-
ger preference for retinal DHSs than the
cortex exhibited for brain DHSs.

Parameters that predict cis-regulatory
activity

We next asked whether certain parame-
ters previously found to be associated
with cis-regulatory activity were predic-
tive of high activity in our assay. For
each parameter examined in Figure 5,
A–D, we considered the top 100 and top
200 most highly expressed DHSs for the
tissue-appropriate DHS type (i.e., for the
retina, we restricted our analysis to reti-
nal DHSs; and for the cerebral cortex,
we restricted our analysis to brain
DHSs). Corresponding data for the liver
and heart DHSs are provided in Supple-
mental Figure S5. We first surveyed
expression as a function of position rela-
tive to the center of the DHS target re-

gion, within a 1-kb window (Fig. 5A). Although DNase-seq
signals had a relatively narrow peak (∼300-bp width) (Fig. 5B),
cis-regulatory activity in both the retina and cortex had a much
broader peak, plateauing in the central ∼500 bp. The breadth of
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the cis-regulatory activity peaks likely reflects the longer length of
the captured fragments (median length of 464 bp) and the large ex-
tent of overlapwith the central 300 bp of the DHS regions (median
overlap of 94%). Notably, we did not find a substantial relation-
ship between the length of individual CRE fragments and CRE ac-
tivity (Supplemental Fig. S6) or between distance from the nearest
TSS and CRE activity (Supplemental Fig. S7).

Interestingly, higher DNase-seq scores were significantly as-
sociated with higher cis-regulatory activity in the retina but not
in the cortex (Fig. 5B). A possible explanation is that the retinal
DNase-seq data primarily reflect the chromatin state of rods, since
they constitute the vast majority of cells in the retina (Jeon et al.
1998), and the most strongly expressed DHSs are rod CREs. By
comparison, the brain DNase-seq data reflect the chromatin state
of a heterogeneous cell population, and the most strongly ex-
pressed DHSs in the cortex may be cell-type–specific CREs highly
active in only a subset of cells.

Next, we investigated GC content, which has been reported
to be elevated within CREs. This elevation in GC content is
thought to favor nucleosome occupancy in tissues where the
CRE is not active, thereby repressing cis-regulatory activity in those
tissues (Tillo andHughes 2009; Tillo et al. 2010; Fenouil et al. 2012;
Wang et al. 2012; Hughes and Rando 2014). We previously pub-
lished an enhancer study, in which short (84 bp) synthetic CREs
were cloned upstream of a photoreceptor-specific proximal pro-
moter. This study revealed a positive correlation between GC con-
tent and enhancer activity in the retina (White et al. 2013). Thus,
we were surprised to find that here, the most active retinal DHSs
had significantly lower GC content (Fig. 5C). However, a recent
CRE-seq study using a minimal promoter also found lower GC
content in highly active enhancers (Kwasnieski et al. 2014).

Therefore, GC content appears to have
distinct roles when the CRE acts as an au-
tonomous element with a minimal pro-
moter or as an enhancer with an active
proximal promoter. Brain DHSs had a
different pattern, withmarkedly elevated
GC content centrally, and further in-
creased GC content was seen among
the most active brain DHSs in the cortex
(Fig. 5C). The different effects of GC con-
tent in the two tissuesmay reflect AT-rich
versus GC-rich motifs of tissue-specific
TFs, and/or the distinct preferences of
tissue-specific TFs for AT-rich versus
GC-rich “environments” surrounding
the TF motif (Dror et al. 2015).

An ongoing debate in the field of
genomics is the degree towhich phyloge-
netic conservation at the DNA sequence
level is an accurate predictor of func-
tional CREs, given that there is rapid
turnover of individual TF binding sites
in the course of evolution (Dermitzakis
and Clark 2002; Vierstra et al. 2014).
We observed significantly higher verte-
brate conservation (as measured by
PhastCons scores) (Siepel et al. 2005) for
the most strongly expressed retinal and
brain DHSs in the retina and cortex, re-
spectively. This elevated phylogenetic
conservation occurred primarily within

the central ∼100 bp of DHSs (Fig. 5D). This distribution of phylo-
genetic conservation is consistent with the previous observation
that highly local (<100 bp) sequences confer substantial CRE activ-
ity (White et al. 2013).

We then considered TF motif content, which has been found
to be predictive of cis-regulatory activity (Kwasnieski et al. 2014;
Blatti et al. 2015). Here, we examined the enrichment of TF motifs
among the DHSs with the highest or lowest activity in the retina
and cortex, regardless of the type of DHS (Fig. 5E; Supplemental
Table S5). In the retina, highly active DHSs were enriched for ho-
meobox, E-box, nuclear receptor (NR), MADS-box, and CCAAT
motifs, while in the cerebral cortex, highly active DHSs were en-
riched for MADS-box, zinc finger (ZF), and helix-turn-helix
(HTH) motifs.

To assess the predictive power of these features (DNase-seq
scores, GC content, PhastCons scores, and TF motifs), we created
logistic regressionmodels andvisualized theirperformancewith re-
ceiver operating characteristic (ROC) curves, with fivefold cross-
validation to control for overfitting (Supplemental Table S6).
All constructs assayed in each tissue were classified as “high” (top
∼5% of approximately 36,000 constructs in retina, or top ∼1% of
approximately 39,000 constructs in cerebral cortex) versus “not
high.” In the retina, DNase-seq was the single most predictive fea-
ture (AUC = 0.921), reflecting the strong tendency for highly active
constructs to be retinal DHSs. Retinal CRX ChIP-seq peaks (Corbo
et al. 2010)performednearly aswell (AUC = 0.892), likely reflecting
the fact that CRX ChIP-seq peaks are essentially a subset of retinal
DHSs (Wilken et al. 2015). Interestingly, a model based on 15 TF
motifs also performed reasonably well (AUC = 0.785). By compari-
son, in a prior CRE-seq study conducted in cell lines, amodel using
50 TF motifs attained an AUC of 0.80 (Kwasnieski et al. 2014). The

Figure 4. Tissue-specific cis-regulatory activity of DHSs. (A) Frequency distribution of DHSs ranked by
cis-regulatory activity (bin size: 5 percentiles) as measured in the retina (top) or cerebral cortex (bottom).
In the retina,∼15%DHSs had undetectable activity and hence were binned together. Averages were tak-
en across biological replicates and barcodes for a given target DHS. Only DHSs with at least two barcoded
constructs were included in this analysis (about 3000 DHSs). Frequencies were normalized to the total
number of DHSs in each category. To test for enrichment, a χ2 test was performed (one-tailed): (∗)
P<0.05; (∗∗) P < 0.01; (∗∗∗) P < 10−4. (B) Scatterplot showing the expression of individual barcoded con-
structs as assayed in the cerebral cortex (x-axis) versus retina (y-axis). Each dot represents an individual
construct. For each construct, the average measurement across the three biological replicates for each
tissue was taken. The approximately 35,000 barcodes that were well-represented (at least 10 DNA reads)
in all six samples were included in the analysis. Gray, blue, red, and orange dots denote constructs with
CRE fragments that overlap retina, brain, heart, and liver DHSs, respectively. The dotted gray box encom-
passes constructs that are strongly active in the retina, and the dotted blue box encompasses constructs
that are strongly active in the cortex.
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predictive values of GC content (AUC = 0.521) and PhastCons
(AUC = 0.537) were weak. In the cerebral cortex, DNase-seq was
likewise the single most predictive feature (AUC = 0.778). A model
based on 13 TF motifs performed reasonably well (AUC = 0.734),
whereas GC content (AUC = 0.608) and PhastCons (AUC = 0.659)
hadmodestpredictivepower in thecortex.Notably, inboth tissues,
the combined model performed only slightly better than DNase-
seq alone. Overall, these results reflect the degree of preference of
the retina and cerebral cortex for expressing retinal DHSs and brain
DHSs, respectively, while underscoring the importance of TF mo-
tifs in specifying CRE activity. Furthermore, these results under-
score the power of open chromatin mapping techniques such as
DNase-seq for identifying functional CREs.

Tiling of captured fragments allows for truncation

mutation analysis

The potential for conducting truncationmutation analysis is an at-
tractive and potentially powerful feature of the capture approach.
We therefore sought to determinewhether the results were compa-
rable to those of a previously published “traditional” one-at-a-time
promoter analysis. NRL is a master regulator of rod photoreceptor
development, required both for rod fate determination and main-
tenance (Mears et al. 2001; Swaroop et al. 2010). Past studies of
the Nrl promoter region identified a 30-bp “critical region” that
is absolutely required for promoter activity. This critical region
contains TF binding sites for CRX and RORB, both of which are
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Figure 5. Parameters that predict CRE activity. (A–D) Retinal DHSs as assayed in the retina (left) and brain DHSs as assayed in the cerebral cortex (right).
Each panel shows a 1-kb centered window. Only DHSs with at least two barcodes were included in this analysis, i.e., 710 retinal DHSs in retina (black lines,
left) and 696 brain DHSs in cortex (black lines, right). The top 100 (red lines, left) and top 200 (orange lines, left) retinal DHSs expressed in the retina and the
top 100 (red lines, right) and top 200 (orange lines, right) brain DHSs expressed in the cortex are shown. To compare the top 100 DHSs versus the rest of the
DHSs in each group, a two-tailed Student’s t-test was calculated for the means within the 1-kb window, except for PhastCons scores, which was calculated
within the central 100 bp: (∗∗) P < 0.01; (∗∗∗) P < 0.001; (N.S.) not significant. (A) Cis-regulatory activity, as measured by mean expression in log2 units. For
each assayed DHS, at each base position across the 1-kb window, the expression values of the individual barcoded constructs whose CREs overlapped the
position were averaged across biological replicates. (B) DNase-seq score (Yue et al. 2014). (C ) GC content, calculated in 50-bp windows, sliding 25 bp at a
time. The fractions denote the proportion of DHSs that were promoter-proximal (i.e., located within −1 kb to +100 bp relative to the nearest TSS) based on
GREAT annotations (McLean et al. 2010). (D) Phylogenetic conservation as measured by 30-way vertebrate PhastCons (Siepel et al. 2005). (E) Enrichment
for TF motifs among low- versus high-expressing DHSs in each tissue, without restriction on the type of DHS (see Methods). Only significant motifs are
shown (P < 0.05 in at least one category). For motifs enriched in both tissues, the logo from the tissue with the more significant enrichment is shown:
(HD) homeodomain; (NR) nuclear receptor; (ZF) zinc finger; (HTH) helix-turn-helix. (F) Receiver operator characteristic (ROC) curves show the perfor-
mance of logistic regression models for GC content, PhastCons, TF motifs, retina or brain DNase-seq, or a combined model. A model based on CRX
ChIP-seq (Corbo et al. 2010) was included for the retina only. The area under the curve (AUC) for each model is indicated. For cross-validation results,
see Supplemental Table S6.
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required forNrl expression (Kautzmann et al. 2011; Montana et al.
2011a). Since the Nrl promoter contained a retinal DHS that was
targeted in our library, we compared the results of CRE-seq and a
traditional promoter analysis that used fluorescence as a readout
of cis-regulatory activity (Montana et al. 2011a). Since promoters
act directionally (Andersson et al. 2014; Duttke et al. 2015), we
compared CRE-seq constructs that were oriented in the same direc-
tion as the traditional promoter constructs. We found good agree-
ment between the two assays overall (Fig. 6A), despite differences
in construct design (e.g., the CRE-seq constructs contained a min-
imal promoter, and the 3′ ends of fragments varied). Importantly,
both identified the same critical region within a block of phyloge-
netic conservation (Montana et al. 2011a). Thus, CRE-seq trunca-
tion analysis recapitulated the results of a traditional truncation
mutation analysis.

Besides the Nrl promoter, we found additional instances of
novel truncation mutation analyses afforded by the capture ap-
proach. As seen in Figure 6B, a retinal DHS in the intron of
Rbm20 showed strong activity in the retina and weak activity in
the cortex. Intriguingly, our assay revealed a 12-bp critical region
containing a predicted binding motif for CRX. This motif,
“CTAATCCT” (on the negative strand), is a near-perfect match to
the consensus motif, “CTAATCCC” (Lee et al. 2010).

Figure 6C depicts another truncation mutation analysis, this
time for two brainDHSs (labeled “1” and “2”) located <0.5 kb apart
within an intron of Bsn (bassoon). Bassoon is a presynaptic protein
that is important for neurotransmitter release from glutamatergic
(excitatory) neurons (Altrock et al. 2003). Both of these brain
DHSs contained phylogenetically conserved regions, as observed
by PhastCons (Siepel et al. 2005). Interestingly, although both
had low cis-regulatory activity in the retina, DHS #1 had low activ-
ity in the cerebral cortex, whereas DHS #2 had high activity in
the cortex. Furthermore, given the extensive tiling of the region,
the boundaries of activity could be determined at both the
5′ and 3′ ends of DHS #2.

Next, we present a brain DHS region with high cis-regulatory
activity in the cerebral cortex (Fig. 6D). A critical region of ∼150 bp
in length was identified that overlapped a block of phylogenetic
conservation. Incremental loss of bases in this region resulted in
progressive decreases in cis-regulatory activity. Within this critical
region, two TF motifs were identified: a consensus E-box motif
(recognized by bHLH TFs) (Massari and Murre 2000), immediately
next to a motif recognized by basic region leucine zipper (bZIP)
proteins of the AP-1 family (Heinz et al. 2010). Like neural bHLH
proteins, AP-1 family proteins are known to have important roles
in regulating gene expression in the cerebral cortex (Raivich and
Behrens 2006; Mongrain et al. 2011).

Additional examples of truncation mutation analysis are pre-
sented in Supplemental Figure S8. Overall, we identified 46 retinal
DHSs and 13 brain DHSs with examples of truncation mutation
analysis, thus representing 4.6% and 1.3% of the 1000 retinal
DHSs and 1000 brain DHSs initially targeted in the library, respec-
tively. We observed that for the loci with truncation mutation
analyses, at least eight barcoded constructs tiled across the DHS.
For DHSs with at least eight assayed barcodes, the fraction of loci
with truncation mutation analyses was about threefold higher:
46/363 (12.7%) of retinal DHSs and 13/345 (3.8%) of brain DHSs.

Truncationmutation analyses rely on assaying long CRE frag-
ments that tile across CRE regions. Previously, we conducted a
CRE-seq enhancer study (White et al. 2013) in which short
(84 bp) CREs (synthesized by oligonucleotide array) were assayed
upstream of a rod photoreceptor-specific proximal promoter.

These short CREs corresponded to retinal CRX ChIP-seq peaks,
which are essentially a subset of retinal DHSs (Wilken et al.
2015). Thus, we wondered whether, for a given CRE, our cap-
ture-and-clone approach identified active cis-regulatory sequences
beyond the central region tested by the short CRE. Overall, there
were 176 CRE regions in the White et al. library that overlapped
with assayed regions in the current library, all of which corre-
sponded to retinal DHSs. Most (141/176 or 80%) regions were
more active as short enhancers than as long autonomous elements
(Supplemental Fig. S9A). This is not surprising, as it is known that
some photoreceptor CREs exhibit strong activity as enhancers but
minimal activity as autonomous elements (Corbo et al. 2010). In-
terestingly, in a minority (13/176 or 7%) of cases, the long auton-
omous elements exhibited substantially more activity, likely
because they encompassed functional regions (e.g., critical regions
and/or phylogenetically conserved regions) that were not found
within the short CREs, as illustrated in Supplemental Figure S9B,
C. Although the comparison of these two studies is limited by
the differences in assay platforms and the small number of shared
CREs, these results indicate that the capture-and-clone approach
can provide additional cis-regulatory information beyond that of
short CREs.

Together, these examples illustrate that CRE-seq multiplex
truncation mutation analysis can identify both known and novel
critical regions. In some cases, the spatial resolution is high
enough to pinpoint candidate TF motifs required for activity.
Thus, our assay has the ability not only to measure the overall ac-
tivity of a candidate CRE, but also to demarcate the spatial bound-
aries of cis-regulatory activity.

Traditional reporter assays confirm that critical bases identified

by CRE-seq truncation mutation analysis are required for activity

To validate the ability of CRE-seq truncation mutation analysis to
identify critical regions de novo, we utilized traditional reporter as-
says.We previously developed a quantitative fluorescence reporter
assay in retinal explants that accurately measures CRE activity
(Montana et al. 2011b; Kwasnieski et al. 2012). Thus, we selected
three retinal DHS loci (including R64, which is the locus depicted
in Fig. 6B) with critical regions identified by CRE-seq truncation
mutation analysis to test with the traditional approach (Fig. 7A).
These critical regions contained bioinformatically predicted CRX
sites, thus allowing us to test whether these CRX sites were re-
quired for cis-regulatory activity.

For each locus, we created a “long” construct, a “short” con-
struct missing the critical region, and a “mutant” construct identi-
cal to the “long” construct except that a single pointmutation was
introduced in the predicted CRX site (Fig. 7A). The pointmutation
was an adenine-to-cytosine substitution at the fourth position of
the CRX motif (thymine-to-guanine in the reverse orientation),
which is predicted to inactivate the CRX site (Supplemental
Table S7; Lee et al. 2010; White et al. 2013). The constructs were
directionally cloned upstream of the minimal promoter-GFP cas-
sette in a non-AAV vector without barcodes in the 3′ UTR, thus
controlling for any effects of orientation, AAV vector sequence,
or barcode sequence.

Each construct was individually electroporated into multiple
retinas and quantified relative to a loading control, Rho-CBR3-
DsRed (Fig. 7B). We observed that in each case, the long construct
showed high activity, whereas the short construct showed ex-
tremely low activity. Notably, the mutant construct exhibited a
low level of activity comparable to the activity of the short
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Figure 6. Truncation mutation analysis by CRE-seq. (A) Example of a truncation mutation analysis at the Nrl promoter via a traditional one-at-a-time
reporter assay (Montana et al. 2011b) versus capture-and-clone CRE-seq. For the traditional reporter constructs, the 3′ end extends beyond the window
depicted in the figure. For the CRE-seq data, only barcoded constructs in the same orientation as theNrl promoter are shown. The yellow highlighted region
corresponds to a known critical regionwith CRX and RORBmotifs (André et al. 1998;Montana et al. 2011b). Theminus strand of DNA is displayed. In A and
B, the CRXmotif (fromHOMER) (Heinz et al. 2010) is based on CRXChIP-seq data (Corbo et al. 2010). The reverse orientation of the CRXmotif is displayed.
(B–D) Additional examples of CRE-seq truncationmutation analysis: (B) Retinal DHS with retina-specific expression. The critical region identified by CRE-seq
(red) contains a putative CRXmotif. (C) Two adjacent brain DHSs in the same intron of Bsn exhibit low (DHS #1, green) versus high (DHS #2, red) activity in
the cortex. (D) Truncation mutation analysis of a brain DHS. A gradual decrease in activity was observed within the ∼150-bp critical region (red), corre-
sponding to a phylogenetically conserved peak. Within this critical region, a smaller region (vertical blue stripe) was identified that contained an E-box
consensus motif (“CANNTG”) and a motif for a bZIP protein, based on AP-1 ChIP-seq data (Heinz et al. 2010). All browser images are from the UCSC
Genome Browser (mm9) (Karolchik et al. 2014). DNase-seq data are from Mouse ENCODE (Yue et al. 2014). PhastCons depict 30-way vertebrate phylo-
genetic conservation (Siepel et al. 2005). The heat map scale shown in B is the same as that used in C and D.
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construct (Fig. 7C). Thus, for all three loci, wenot only verified that
the critical regions are required for activity, but also that these spe-
cific CRX sites are required. These experiments demonstrate that
our approach identifies bona fide TF binding sites required for
activity.

Discussion

Here, we described an innovative “capture-and-clone” approach
for synthesizing CRE-seq libraries. We furthermore demonstrated
the feasibility of using AAV-mediated CRE-seq to conductmassive-
ly parallel cis-regulatory analysis in the cerebral cortex in vivo. By
comparing retina and cerebral cortex, we showed tissue-specific
cis-regulatory activity of DHSs. By taking advantage of the trunca-
tionmutation analysis afforded by the tiling of captured fragments
across targeted loci, we illustrated high-resolution, multiplex func-
tional parsing of CREs.

Previously, high-throughput functional assays of CRE activity
had been technologically limitedwith regard to the length of CREs
that could be readily assayed (Levo and Segal 2014; Shlyueva et al.
2014). Our capture-and-clone approach provides a strategy for as-
saying candidate CREs with lengths of a desired range. Moreover,
the capture approach can be used in conjunctionwith any existing
MPRA-like approach, including those that already rely on DNA

fragmentation (Dickel et al. 2014; Murtha et al. 2014). For exam-
ple, STARR-seq (Arnold et al. 2013) has been used to assess long
DNA fragments obtained by whole-genome shotgun cloning of
theDrosophila genome. However, themouse and human genomes
are approximately 25 times larger than the fly genome. Moreover,
only ∼5%–10% of the mammalian genome is thought to be func-
tionally constrained (Graur et al. 2013; Kellis et al. 2014; Rands
et al. 2014). Therefore,whole-genomeshotguncloningofmamma-
lian genomes for cis-regulatory analysis is impractical. Instead, cap-
ture-and-clone permits targeted cis-regulome analysis.

We note that another group has recently coupled capture
technology to STARR-seq (i.e., CapSTARR-seq) (Vanhille et al.
2015). Our approach differs from CapSTARR-seq in two key ways
(Supplemental Table S8). First, we achieved higher on-target rates
of capture (98.5% versus 14%) due to a rigorous capture protocol
to avoid nonspecific pull-down of off-target DNA (Gnirke et al.
2009; Lee et al. 2009). Second, we conducted paired-end sequenc-
ing of the input library, whereas CapSTARR-seq mapped only one
end of the fragments. Thus, we were able to harness the potential
of capture-and-clone for truncation mutation analysis.

Capture-and-clone allows the testing of longer CREs, which
presumably harbor more cis-regulatory information. However,
there was essentially no correlation between fragment length
and CRE activity. What accounts for this observation? One

Figure 7. Validation of individual loci by fluorescence reporter assays. (A) Critical regions (red areas) identified by CRE-seq truncationmutation analysis at
three retinal DHSs (R64, R28, and R62)were validated by testing of individual constructs with fluorescence reporter assays. Depicted CRE-seq data are based
on expression scores averaged across retinal replicates. Note that R64 is the same locus as in Figure 6B. For each locus, a “long” construct containing the
critical region (CR), a “short” construct without the critical region, and a “mutant” construct with point mutations (red font) in predicted CRX sites (blue
font) were synthesized. Sequences are shown for the plus strand of DNA in all cases. For R62, one CRX site fell within the critical region, and a second CRX
site was immediately adjacent (yellow area). Individual test constructs were directionally cloned upstream of the minimal promoter-GFP cassette in a non-
AAV vector. The test constructs were coelectroporated into explant retinaswith Rho-CBR3-DsRed (Corbo et al. 2010) as a loading control. (B) Representative
whole-mount images of electroporated retinas are shown (exposure times are the same for all images). (C) Quantification of the GFP levels normalized to
DsRed levels. Error bars represent SEM (n = 10–12 retinas per test construct). (∗∗∗) P-value <10−6 (two-tailed Student’s t-test).
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consideration is that the size range of assayed CRE fragments was
relatively narrow. Another explanation, based on the truncation
mutation analyses, is that some long fragments exhibited low ac-
tivity due to the omission of critical regions. A third possibility is
that some long CRE fragments included repressive sequences
that decreased activity (Reynolds et al. 2013).

The capture-and-clone approach is particularly well suited for
screening thousands of candidate CREs and identifying the most
active CREs in a particular tissue of interest, thereby narrowing
the list of CREs that may be relevant to a particular phenotype.
For instance, genome-wide association studies (GWAS) and
whole-genome sequencing studies have generated lists of thou-
sands of disease-associated noncoding variants (Ward and Kellis
2012; Albert andKruglyak 2015). To prioritize these lists and there-
by accelerate the identification of causal variants, the locations of
the candidate variants can be intersected with the locations of
putative CREs. The cis-regulomes of unaffected and affected indi-
viduals can then be screened by capture-and-clone CRE-seq to
identify CREs that exhibit the greatest differential activity between
the unaffected and affected groups. Capture-and-clone is thus
complementary to CRE-by-synthesis, which is better suited to pre-
cisely measuring the effects of specific variants (Levo and Segal
2014). Capture-and-clone can be used to assess a broad range of re-
gions in any organismwhoseDNA and reference genome are avail-
able, although certain types of sequences are not amenable to
targeted capture, namely repetitive regions (due to nonspecific
pull-down) and sequences with very high (>65%) or low (<25%)
GC content (Mertes et al. 2011).

Prior to our study, the implementation of MPRAs inmamma-
lian cells had been almost exclusively restricted to immortalized
cell lines and cultured tissues (Shlyueva et al. 2014). The only
mammalian tissue that had been assayed in vivo was the mouse
liver, due to its ability to take up limited amounts of plasmid
DNA via a hydrodynamic tail vein assay (Herweijer and Wolff
2007; Patwardhan et al. 2012). Here, we take a step forward by us-
ing AAV to conduct CRE-seq in vivo in the mammalian CNS.

One potential drawback of AAV is that packing constraints
limit the size of the insert to <4.7 kb (Wu et al. 2010). Lentiviruses
havegreater carrying capacity (Kumaret al. 2001), but their integra-
tion into the host genome poses the risk of integration site cis-reg-
ulatory effects (Clark et al. 1994). In contrast, AAV-mediated CRE-
seqmeasures the cis-regulatory potential of elements independent
of chromosomal context, thereby interrogating the function of the
DNAsequences themselves. Interestingly, there is evidence that de-
spitebeingepisomal, theAAVvector is organized intonucleosomes
(Penaud-Budloo et al. 2008). Another limitation of AAV is that the
onset of expression is relatively slow, with maximal expression re-
quiringup to severalweeks (Day et al. 2014). This delay is due to the
required conversion of the genome from single-stranded into dou-
ble-stranded DNA. Recently, self-complementary AAV (scAAV) se-
rotypes have been developed that exhibit more rapid transgene
expression (McCarty 2008). As novel AAV serotypes for gene ther-
apy continue to emerge (Wu et al. 2006; Daya and Berns 2008),
AAV-mediated CRE-seq will become increasingly powerful.

Why are some tissue-specific DHSs active and others inactive,
even when assayed in the appropriate tissue? One reason is that
DHSs demarcate not only active enhancers but also other types
of regulatory elements (e.g., silencers and insulators) (Gross and
Garrard 1988; Thurman et al. 2012). Here, we used a TATA-box
containingminimal promoter to assay the autonomous cis-regula-
tory activity of the tested elements, rather than a tissue-specific
proximal promoter to assay for enhancer/silencer activity (Butler

and Kadonaga 2002). Only a minority (∼10%–20%) of mammali-
an promoters contain TATA boxes (Sandelin et al. 2007). Future
use of tissue-specific proximal promoters may allow for more sen-
sitive assays, especially as enhancer–promoter compatibility and
TATA-box versus DPE-containing promoters become better un-
derstood (Sandelin et al. 2007; van Arensbergen et al. 2014;
Zabidi et al. 2015). Additionally, since some enhancers become
active only in response to particular stimuli (Ostuni et al. 2013;
Shlyueva et al. 2014), environmental perturbations may be neces-
sary to unmask their cis-regulatory potential. Furthermore, the cis-
regulatory landscape of a given tissue is dynamic across develop-
ment, as illustrated by DNase-seq in the developing mouse retina
and brain (Wilken et al. 2015). Future CRE-seq experiments at
multiple developmental stages will help elucidate the temporal dy-
namics of CREs. Nonetheless, evenwith the TATA-box–containing
minimal promoter assayed in steady-state conditions, we demon-
strated tissue-specific CRE activity.

Assaying autonomous activity and assaying enhancer activi-
ty are complementary approaches, as they appear to reflect differ-
ent biological activities and properties of a given CRE. In the
current study, we observed that GC content was associated with
decreased autonomous CRE activity in the retina. Given the differ-
ences in the assays, this finding does not contradict our earlier ret-
inal CRE-seq study (White et al. 2013), in which we observed a
positive association between GC content and enhancer activity.
In fact, the current result is consistent with a recent CRE-seq study
in which GC content was associated with decreased autonomous
activity of predicted enhancers in cell culture (Kwasnieski et al.
2014).

In our study, the retina exhibited a stronger preference for ret-
inalDHSs than the cerebral cortex exhibited for brainDHSs. Several
explanations are possible. First, the cellular complexity of the brain
is likely amajor factor (Wurmbach et al. 2002). A recent DNase-seq
study in the mouse brain observed that DHSs could be found
around genes expressed in only a small percentage of neurons,
such as cortical laminar-specific genes (Wilken et al. 2015). Thus,
a given “brain DHS” may actually be a cell-type–specific DHS
that is active in a small population of cells. When averaged over
the entirepopulationof assayed cells, the cell-type–specific activity
of theDHSmaybe obscured. For tissueswithhighlyheterogeneous
cell populations such as the cerebral cortex, it should be possible to
target specific subpopulations by combining AAV-mediated CRE-
seq with fluorescence-activated cell sorting (FACS) of defined cell
types (Okaty et al. 2011; Gisselbrecht et al. 2013; Dickel et al.
2014). Second, the minimal promoter used in this study contains
a possible weak CRX site, whose affinity is predicted to be ∼10%
that of the CRX consensus motif (Chen and Zack 1996; Lee et al.
2010). Lastly, although DNA barcode representation was similar
in the retina and cerebral cortex, thedifference indeliverymethods
for the two tissues may have been a contributing factor.

In summary, we have developed a powerful and efficient
strategy for constructing CRE-seq libraries that extends the size
range of the CREs that can readily be assayed, using targeted cis-
regulome capture. At the same time, we have demonstrated the
feasibility of conducting CRE-seq in vivo in a mammalian tissue
using AAV. As new assays for rapidly identifying the locations of
putative cell-type–specific CREs are developed, e.g., ATAC-seq
(Buenrostro et al. 2013), our study sets the stage for the high-
throughput functional screening of thousands of candidate CREs
in a range of cell types and in a variety ofmodel systems, including
nonhuman primates and human induced pluripotent stem cell
(iPSC)-derived organoids (Lancaster et al. 2013).
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Methods

Animals

Mice were maintained on a 12-h light/dark cycle at ∼20°C–22°C
with free access to food and water. Neonatal mice were euthanized
by decapitation, and adult animals were euthanized with CO2 an-
esthesia followed by cervical dislocation, unless otherwise stated.
All experiments were conducted in accordance with the Guide for
the Care and Use of Laboratory Animals (National Research Council
2011), and were approved by the Washington University in
St. Louis Institutional Animal Care and Use Committee.

Reference genome

The mouse reference genome used throughout was mm9.

Identification of target tissue-specific DHS peaks

We downloaded DHS data in narrowPeak format from the Mouse
ENCODE Project (Yue et al. 2014) for the following tissues
(GEO sample accessions are listed): whole brain age E14.5 (GSM
1014197, replicate 1), whole brain age E18.5 (GSM1014184, repli-
cate 1), whole brain age 8wk (GSM1014151, replicate 1), retina age
P1 (GSM1014188), retina age P7 (GSM1014198), retina age 8 wk
(GSM1014175), liver age E14.5 (GSM1014183, replicate 1), liver
age 8 wk (GSM1014195, replicate 1), lung age 8 wk (GSM
1014194, replicate 1), kidney age 8 wk (GSM1014193, replicate
1), thymus age 8 wk (GSM1014185, replicate 1), and heart age
8 wk (GSM1014166, replicate 1). We parsed these data using cus-
tom Perl scripts, tallying the number of reads per 150-bp block
across the mouse genome to give a DHS “score.” We then exam-
ined the top roughly 4000 tissue-specific peaks each for brain
age 8 wk, retina age 8 wk, heart age 8 wk, and liver age 8 wk. For
a peak to be identified as “tissue-specific,” it was required to have
a DHS score of greater than 25 in the 8 wk tissue of interest and
less than 25 in samples derived from other tissues (but the peak
score for samples deriving from different developmental stages of
the same tissue type were not required to be less than 25). For in-
stance, if the score for a retina age 8 wk peak was greater than
25 and the score for the corresponding retina age P7 peak was
greater than 25, but all nonretinal peaks were less than 25, then
that peak was called “retina-specific.” After removing any tissue-
specific peaks that overlapped repetitive genomic sequences
(∼10% of peaks), we selected the 1000 peaks with the highest tis-
sue-specific peak scores from each of adult brain, retina, heart,
and liver for inclusion as capture targets.

Capture bait library design and synthesis

For each of the 4000 target regions, seven 80-bp baits were de-
signed to tile across the 300-bp region (sliding 37 bp at a time),
for a total of 1.2 Mb and 28,000 baits. To check for potential off-
target bait hybridization, bait candidates were BLASTed against
the mm9 genome, which was masked for the regions from which
baits were designed. By definition, Tm is the temperature at which
50% of the molecules are hybridized. Bait candidates were ac-
cepted only if no BLAST hits (Altschul et al. 1990) with a predicted
Tm > 40.0°C were found.

GREAT analysis and gene ontology

GREAT v2.0.2 analysis withmm9 as the reference genome was im-
plemented, using the “single nearest gene” within 1000 kb as the
algorithm for associating genomic regions to genes, and using
the whole genome as background and excluding the “include cu-
rated regulatory domains” option (McLean et al. 2010). The input

to the GREAT analysis was the list of 4000 target DHS regions.
Gene Ontology (GO) (Ashburner et al. 2000) enrichment analysis
for “biological process” in Mus musculus was implemented using
PANTHER (Mi et al. 2005) with AmiGO 2 v2.1.4 (Carbon et al.
2009). The input to the GO analysis was the GREAT-generated
list of genes associated with target DHSs (“region-to-gene”
associations).

Restriction enzymes and PCR reagents

Unless otherwise indicated, restriction enzymes were from New
England BioLabs, and Phusion Hot Start Flex 2× Master Mix
(NewEngland BioLabs)was used for PCR. Primer sequences are list-
ed in Supplemental Table S9.

Preparation of gDNA for capture

Genomic DNAwas purified from liver tissue of C57BL/6J mice and
sonicated with Covaris E210 (duty 10%, intensity 4, cycles/burst
200, time 100 sec). The freshly sonicated DNA was end repaired,
3′ adenylated, ligated to commercial adapters, and enriched by
PCR, using the TruSeq LT or TruSeq Nano Kit (Illumina) according
to the manufacturer’s instructions (1 µg or 200 ng input gDNA,
and 10 or 8 cycles of PCR, respectively). For final size selection
and purification prior to capture, the samples were gel electropho-
resed on 2% low melting point agarose and gel extracted with
MinElute (Qiagen). To concentrate the samples in preparation
for capture, the samples were speed vacuumed in LoBind tubes
(Eppendorf).

Cis-regulome capture and preparation for cloning

Capture was conducted in a similar manner as previously de-
scribed (Gnirke et al. 2009). Two rounds of sequential capture
were conducted to achieve high on-target rates (Lee et al. 2009).
Briefly, for the first round of capture, a 9-μL library mix was pre-
pared, consisting of ∼300 ng input (TruSeq LT or TruSeq Nano
gDNA library), 2.5 μg human Cot-1 DNA, 2.5 μg salmon sperm
DNA, and 0.6 μL adapter blocking agent (MYcroarray). This solu-
tion was denatured for 5 min at 95°C. Meanwhile, a 36.8-μL hy-
bridization mix was prepared, consisting of 5 μL 20X SSPE
(instead of the standard 20 µL), 0.8 μL 0.5 M EDTA, 8 μL 50X
Denhardt’s, 8 μL 1% SDS, and 15 μL RNase-freewater. This solution
was prewarmed for 3 min at 65°C. A 6-μL capture bait mix was pre-
pared, consisting of 50 ng (instead of the standard 500 ng) biotiny-
lated baits and 1 μL SUPERase-In (Ambion). This solution was
prewarmed for 2 min at 65°C. Finally, 7 μL of the library mix,
13 μL of the hybridization mix, and all 6 μL of the capture bait
mix were incubated for ∼24 h at 65°C. The reaction was then ap-
plied to Dynabeads MyOne Streptavidin C1 (Invitrogen) with
washing and elution as described (Gnirke et al. 2009). Each capture
reaction was purified withMinElute (Qiagen), with an elution vol-
ume of 30 µL. Each eluate was speed vacuumed in a LoBind tube
(Eppendorf) down to a volume of 3–4 μL and used as the library
“input” for a single reaction in the second round of capture. The
second round of capture was otherwise identical to the first. No
PCR was conducted between the first and second rounds of cap-
ture. After the second round of capture, PCR was conducted using
Ill_NotI_1XL and Ill_NotI_2XL primers (for 1 min at 98°C, 14–16
cycles: for 10 sec at 98°C, for 30 sec at 58°C, for 1 min at 72°C, fol-
lowed by 5 min at 72°C). The samples were PCR purified with
MinElute (Qiagen), digested with NotI-high fidelity (HF) and gel
extracted with MinElute (Qiagen). Two independent pools of cap-
ture products were generated, with each pool deriving frommulti-
ple capture reactions.
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CRE-seq library construction

To minimize the likelihood of cleaving captured fragments, the 8-
bp cutters NotI, FseI, and AscI were used. To create the barcoded
vector library for insertion of NotI-ended captured fragments,
the Rho basal-DsRed construct (Hsiau et al. 2007) was modified
with linkers on the 3′ end of DsRed to replace a former NotI site
with an EagI site and to add NsiI, FseI, and AscI sites, and on the
5′ end of the Rho basal promoter to add XbaI, NotI, and KpnI sites.

To add 15-mer barcodes, two pools of 30 nmol oligos were
synthesized with random 15-bp sequences (Integrated DNA
Technologies) as BC_F and BC_R. The two pools were annealed
and ligated into the AscI and NsiI sites of the vector. After transfor-
mation of 5-alpha chemically competent E. coli (New England
BioLabs) and overnight growth in liquid culture, a total of approx-
imately 9.5 × 106 colonies were harvested (as estimated from plat-
ing a small aliquot) and purified with the PureLink HiPure Plasmid
Maxiprep Kit (Invitrogen). The barcoded vector library was then
digested with EagI-HF and dephosphorylated with alkaline phos-
phatase (Roche). The captured fragments were digested with
NotI-HF and cloned into the EagI site of the vector library with
5-alpha chemically competent E. coli (New England BioLabs). A to-
tal of about 80,000 colonies were scraped from LB/ampicillin agar
plates, grown for ∼2 h in liquid LB/ampicillin culture, and purified
with the PureLink HiPure Plasmid Maxiprep Kit (Invitrogen).

After paired-end sequencing to determine the CRE-barcode
correspondence (described below), the minimal promoter-eGFP
cassette was cloned into the FseI and AscI sites. The minimal pro-
moter is the previously described “Rho basal” minimal promoter,
which contains a TATA box (“CATAA”) and which by itself does
not have detectable activity in electroporated retina (Hsiau et al.
2007). Theminimal promoter-eGFP cassette was created by replac-
ing DsRed with eGFP (Zhang et al. 1996) in the Rho basal-DsRed
construct (Hsiau et al. 2007). After transformation with 5-alpha
chemically competent E. coli (New England BioLabs) and over-
night growth in liquid culture, a total of about 2.7 × 106 colonies
were harvested (as estimated by plating a small aliquot) and puri-
fied with the PureLink HiPure Plasmid Maxiprep Kit (Invitrogen).

The AAV-ITR vector was prepared by digesting the pAAV2.1-
RHO-eGFP vector (Allocca et al. 2007) with NheI and XhoI, and re-
placing the RHO-eGFP cassette with a linker containing an EagI
site. To transfer the library into the AAV-ITR vector, the entire
CRE-minimal promoter-eGFP-polyA cassette was subjected to
PCR using 5′ Tak and NotI_polyA_R1 primers (for 1 min at 98°C,
10 cycles: for 10 sec at 98°C, for 30 sec at 64°C, for 1 min 30 sec
at 72°C, followed by 5min at 72°C). The PCR product was digested
with NotI-HF (New England BioLabs) and cloned into the EagI site
of the AAV-ITR vector. After transformation of 5-alpha chemically
competent E. coli (New England BioLabs) and overnight growth in
liquid culture, a total of about 2.5 × 106 colonies (as estimated by
plating a small aliquot) were harvested and purified with the
PureLink HiPure Plasmid Maxiprep Kit (Invitrogen). ITR integrity
was verified by restriction digest. Note that the final NotI digestion
removes any captured fragments initially cloned in as NotI multi-
mers, leaving only the 3′-most captured fragment.

Paired-end sequencing for CRE-barcode correspondence

Prior to insertion of the promoter-reporter cassette, the library was
prepared for paired-end sequencing as follows. PCR amplification
was conducted using primers LibPCR_F and LibPCR_R (for 1 min
at 98°C, 8 cycles: for 10 sec at 98°C, for 30 sec at 64°C, for 1 min
at 72°C, followed by 5 min at 72°C). The product was digested
with NotI-HF and SacII, gel purified with MinElute (Qiagen), and
ligated to P1_NotI and PE2_SacII adapters with T4 DNA ligase
(New England BioLabs) using an equimolar mix of P1_NotI in-

dexed adapters to facilitate nucleotide balance. The ligation prod-
ucts were PCR amplified to enrich for molecules that had both P1
and PE2 adapters, using primers JKP4F and JKP4R (for 1 min at 98°
C, 14 cycles: for 10 sec at 98°C, for 30 sec at 65°C, for 1min at 72°C,
followed by 5 min at 72°C). The final product was gel-extracted
on 2% low melting point agarose and verified on an Agilent
Bioanalyzer. Two lanes of MiSeq 2 × 250-bp sequencing were run
at a loading concentration of 1.6–2 pM and 12%–15% spiked-in
Phi-X DNA (Illumina).

Analysis of paired-end sequencing for CRE-barcode

correspondence

Barcodes and captured fragment sequences were extracted based
on flanking bases. Captured fragment sequences were aligned as
paired reads to mm9 using Bowtie 2 v2.1.0 (Langmead and
Salzberg 2012) with an allowed maximum insert size of 1000 bp
(“-X 1000” setting). SAM files were converted to BAM files using
SAMtools v0.1.19 (Li et al. 2009) and then to BED files using
BEDTools v2.22.1 (Quinlan and Hall 2010). Only paired reads
that mapped concordantly were used. Fragments were examined
for overlap with the 4000 target DHS regions (which were each
300 bp). If a fragment overlapped two adjacent target regions, it
was assigned to the target region with the most bases of overlap.
Barcodes were required to be 14–16 bp in length. Barcodes with
multiple CRE fragment associations, and PCR-duplicate CRE frag-
ments associated with multiple barcodes (∼1.6% of fragments),
were discarded. A list of “on-target” CRE correspondences for
45,670 barcoded constructs (minimum 10 reads) resulted. To
determine the “off-target” rate, the number of barcoded constructs
that did not overlap a target DHS was found to be 712. Hence,
∼98.5% of fragments were on-target.

Retinal explant electroporation and culture for CRE-seq

Electroporation and explant culture of mouse retinas were per-
formed as described previously (Montana et al. 2011b). In brief,
retinas were dissected from newborn (P0) CD-1 mouse pups and
coelectroporated with 0.5 μg/μL AAV-ITR plasmid CRE-seq library
and 0.5 μg/μL Rho-CBR3-DsRed, a rod-specific construct for visual-
izing electroporation efficiency (Corbo et al. 2010). Retinas were
grown in explant culture and harvested 8 d later. Five retinas
were pooled for each CRE-seq biological replicate.

Viral production

Recombinant AAV9(2YF) was produced and purified as previously
described (Grieger et al. 2006). To summarize, HEK293 cells
at ∼80% confluency were cotransfected with the AAV-ITR plasmid
CRE-seq library, p-Helper plasmid, and AAV9(2YF) rep/cap plas-
mid (Dalkara et al. 2012). Cells were harvested 72 h after trans-
fection, and the virus was purified by Iodixanol gradient
ultracentrifugation, followed by buffer exchange. The viral titer,
as determined by dot blot or quantitative PCR, ranged from 5 ×
1012 to 1 × 1014 vg/mL (Zolotukhin et al. 2002; Aurnhammer
et al. 2012).

Stereotactic cortical injection

Stereotactic cortical injections were performed in amanner similar
to that described (Cetin et al. 2006). Briefly, female CD-1mice (age
4–6 wk) were anesthesized with isoflurane. Each mouse received
bilateral injections. For each injection, a small craniotomywas per-
formed, and 1 μL of AAV9(2YF) CRE-seq library was delivered into
the primary motor cortex (stereotactic coordinates: dorsal/ventral
axis 0.52 mm, anterior/posterior axis 1 mm, medial/lateral axis
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1.5mm). Animals were harvested 4–5 wk after injection. The brain
was sliced coronally, and a fluorescent dissecting scope (Leica
MZ16 F) was used to visualize GFP-positive regions, which were
isolated bymicrodissection. Each CRE-seq biological replicate con-
sisted of GFP-positive cortical tissue from a single animal.

Isolation of RNA and DNA and preparation for sequencing

Tissues were rapidly harvested and rinsed in cold sterile HBSS with
calcium and magnesium (Gibco) and stored at −80°C in TRIzol
(Invitrogen). Samples were homogenized in TRIzol, and RNA
and DNA were isolated according to the manufacturer’s instruc-
tions. RNA samples were treated with TURBO DNase (Ambion)
to remove potential DNA contamination. RNA and DNA were
prepared for sequencing essentially as previously described
(Kwasnieski et al. 2012). RNA was reverse-transcribed with
SuperScript III (Invitrogen) using oligo-dT primers. The resulting
first-strand cDNA was treated with RNase H. Both the cDNA and
DNA samples were subjected to PCR to amplify the barcode se-
quence in the 3′ UTR of GFP using the forward primer SSP1F and
the reverse primer JKP3R (for 1 min at 98°C, 22 cycles for DNA
or 26 cycles for cDNA: for 10 sec at 98°C, for 30 sec at 60°C, for
30 sec at 72°C, followed by 5 min at 72°C). This resulted in PCR
products flanked by EagI and EcoRI restriction enzyme sites. The
products were purified with PureLink PCR Purification Kit
(Invitrogen) and digested with EagI-HF and EcoRI. After digestion,
the samples were gel purified with Qiagen Gel Extraction Kit and
ligated to P1_EagI and PE2_EcoRI adapters using T4 DNA ligase
(New England BioLabs). To enrich for molecules that had both
P1 and PE2 adapters, the ligation products were PCR amplified
with primers JKP4F and JKP4R (for 1 min at 98°C, 20 cycles: for
30 sec at 98°C, for 30 sec at 65°C, for 30 sec at 72°C, followed by
5 min at 72°C). The final product was gel purified from 2% low
melting point agarose and verified on an Agilent Bioanalyzer.

Illumina sequencing for CRE-seq barcode abundance

For each tissue, the three cDNA samples and three corresponding
DNA samples were multiplexed and run on a single lane of
Illumina HiSeq 2000 (1 × 50 bp) at a loading concentration of 8
pM with 10% spiked-in Phi-X DNA.

CRE-seq data analysis

Samples were demultiplexed, and the barcode was extracted based
on flanking sequences. Reads were tabulated to obtain the raw
RNA andDNA counts for each barcode. Only barcodes with at least
10 raw DNA reads in all three biological replicates of a tissue were
included (36,005 barcodes for retina and 38,826 barcodes for cere-
bral cortex). For each barcode, the RNA count was normalized to
the total RNA counts in the sample, and the DNA count was nor-
malized to the total DNA counts in the sample. The normalized ex-
pression was the ratio of the normalized RNA count to the
normalized DNA count. A pseudocount of 0.001 was added to
the normalized expression, and the log2 was taken. The average
of the log2 values across biological replicateswas the “mean expres-
sion (log2 units).”

Histology

Retinal explants were rinsed twice with PBS and fixed in 4% para-
formaldehyde/PBS for 30–60 min at room temperature, equilibrat-
ed in 30% sucrose/PBS, and embedded in Tissue-Tek O.C.T.
(Sakura). Retinal cryosections (12–14 μm)were prepared and stored
at −20°C until imaging. For stereotactically injected brains, ani-
mals were deeply anesthesized with ketamine/xylazine and then

transcardially perfused with heparin/PBS followed by 4% parafor-
maldehyde/PBS. Animals were decapitated and the brainswere dis-
sected in PBS and post-fixed in 4% paraformaldehyde/PBS for at
least a day at 4°C. Vibratome sections (200 μm) were prepared
from agarose-embedded brain slices and then optically cleared
with glycerol/PBS (Selever et al. 2011). Brain slices were treated
with sodium borohydride to minimize autofluorescence (Clancy
and Cauller 1998). For anti-RBFOX3 (also known as anti-NeuN)
staining of free-floating vibratome sections, the sections were
blocked with 4% normal donkey serum (NDS)/0.25% Triton
X-100/PBS for at least 1 h at room temperature with gentle agita-
tion, incubated with rabbit anti-RBFOX3 antibody (ABN78; EMD
Millipore) (1:50, diluted in 4% NDS/0.1% Triton X-100/PBS)
overnight at 4°C with gentle agitation, washed with 0.1% Triton
X-100/PBS, incubated with Alexa Fluor 555 donkey anti-rabbit
(A-31572; Molecular Probes) (1:800, diluted in 4% NDS/0.1%
Triton X-100/PBS) for 1 h at room temperature with gentle agita-
tion, and washed with 0.1% Triton X-100/PBS. All brain slices
were stored in PBS at 4°C until imaging. For imaging, tissue was
mounted with Vectashield (Vectorlabs) and coverslipped. Confo-
cal imaging was conducted with a laser confocal microscope
(Zeiss LSM 700) and ZEN 2009 software (Zeiss). Flat-mount
imaging of an untreated brain slice (Fig. 3D) was conducted with
an inverted fluorescent microscope (Nikon Eclipse TE300) and
MetaMorph software (Molecular Devices). Images were processed
with Adobe Photoshop.

Cluster analysis of biological replicates

Hierarchical clustering and principal component analysis (PCA)
were used to assess the underlying structure of CRE expression
across retina and brain replicates. For hierarchical clustering, the
sample distance was defined as one minus the Pearson correlation
coefficient (calculated across the normalized expression of the
roughly 35,000 barcodes with at least 10 DNA reads in all six
samples), and clustering was implemented using average linkage.
PCA was performed via singular value decomposition on scaled,
centered expression data (i.e., zero-centered values with unit
variance).

Analysis of TF motif enrichment in low versus

high-expressing DHSs

To compare the motif content of low- and high-expressing con-
structs (Fig. 5E), a list of brain and retina TF motifs were obtained
as follows. DNase-seq reads for adult brain (GSM1014151, replicate
1) and adult retina (GSM1014175) were downloaded and aligned
to mm9 with Bowtie 2 v2.2.3 (Langmead and Salzberg 2012).
DNase-seq peaks were then called using MACS2 v2.1.0 (Zhang
et al. 2008). For de novo motif discovery, peaks were first parti-
tioned by HOMER v4.7 annotations (“promoter,” “intronic,”
and “intergenic”) (Heinz et al. 2010). De novo motif discovery
was then performed independently for each of these classes of
peaks from brain and retina, with the final motif list consisting
of all motifs identified at a threshold of P < 1 × 10−50. To compare
similar numbers of DHSs in the “high” and “low” categories, indi-
vidual barcoded constructs were ranked by average expression in
each tissue. The highest-expressing constructs that constituted
100 distinct DHS target regions (regardless of DHS tissue origin)
were classified as “high” in that tissue, and the lowest-expressing
constructs that constituted 100 distinct DHS target regions (regard-
less of DHS tissue origin) were classified as “low” in that tissue
(DNA read countwas used to break ties). Finally, overlapping inter-
vals were merged, and the resulting regions were scored for motif
enrichment (binomial test, via HOMER) relative to a background
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of approximately 50,000 randommm9 sequencesmatched for size
and dinucleotide content.

Receiver operating characteristic (ROC) curves

To quantify the extent towhich sequence features and epigenomic
data could predict expression (Fig. 5F), we implemented multiple
logistic regression as ameans of classifyingwhether or not individ-
ual constructs were among those with the highest expression,
similar to the approach described by Kwasnieski et al. (2014).
Briefly, all assayed constructs (approximately 36,000 constructs
for retina and about 39,000 constructs for cerebral cortex) were
partitioned by expression into “high” and “not high” expression
groups. “High” was defined here as mean expression across repli-
cates (log2 units) of >−2 for constructs assayed in the retina
(∼95th percentile), and > 2 for constructs assayed in the cerebral
cortex (∼99th percentile) (see Fig. 4B). Our model included terms
for GC content (averaged across the CRE fragment), phylogenetic
conservation (30-way vertebrate PhastCons, averaged across the
CRE fragment) (Siepel et al. 2005), brain or retina DNase-seq data
{log2[(read depth+1)/CRE size]}, retina CRX ChIP-seq data {log2-
[(1/2) × (read depth of two WT CRX ChIP-seq replicates + 1)/CRE
size]} (Corbo et al. 2010), and individual TF motifs (the number
of each motif in each CRE fragment, as identified by HOMER).
CRX ChIP-seq data were only included in the retina model, and
distinct TFs were considered for retina and cerebral cortex models.
TFmotifs for each tissuewere identified as described above (17mo-
tifs for retina and 13 motifs for cerebral cortex) (Supplemental
Table S5). Two retinal motifs (YY1 and ZBTB33) were omitted
from themodel, as they were observed fewer than 100 times across
the roughly 36,000 constructs, andhence 15motifswere in the ret-
ina TF motif model. The performance (AUC) of models was quan-
tified using the ROCR package in R (Sing et al. 2005). Fivefold
cross-validation was used to control for overfitting.

Expression scores for browser screenshots

For Figure 6A, the scales for the heatmaps are indicated. Elsewhere,
heat maps were generated according to the default grayscale on
the UCSC Genome Browser (Karolchik et al. 2014), using custom
BED tracks that were generated as follows. For each biological
replicate, a BED track was created using the useScore=1 attribute
for intensity shading of individual barcoded constructs using a
“BED score.” The “BED score” was obtained by adding 10 to the
log2 expression andmultiplying by 75. For each tissue, an “average
signal” bedGraph track was created by segmenting the tiled re-
gions and averaging the BED scores across replicates and barcodes.
A segment was required to be encompassed by at least two bar-
coded constructs to be included in the “average signal” track.
Thewindowing functionwas set to “mean.” A smoothingwindow
function (10 pixels) was applied to the average signal tracks, which
were displayed on the following scales: 0–1400 for retina and
300–1200 for cortex.

Synthesis of individual constructs for validation

The R28 constructs were cloned as EcoRV/KpnI fragments. To cre-
ate the long and short R28 constructs, the R28_L/R28_R and
R28_S/R28_R primer pairs were used, respectively. To create the
mutant R28 construct, R28_MT was ordered as a double-stranded
gene block (Integrated DNA Technologies). The R62 constructs
were cloned as EcoRI/XbaI fragments. To create the long and short
R62 constructs, the R62_L/R62_R and R62_S/R62_R primer pairs
were used, respectively. To create the mutant R62 construct,
R62_MT was ordered as a double-stranded gene block (Inte-
grated DNA Technologies). The R64 constructs were cloned as

EcoRV/KpnI fragments. To create the long, short, and mutant
R64 constructs, the R64_L/R64_R, R64_S/R64_R, and R64_MT/
R64_R primer pairs were used, respectively. For the PCR reactions,
C57BL/6J gDNA was the template. The CREs were digested and
cloned upstream of the minimal promoter-eGFP cassette in the
Rho basal-eGFP vector, which was created from Rho basal-DsRed
(Hsiau et al. 2007) by replacing DsRed with eGFP at XmaI and
NotI sites. Test constructs were confirmed with Sanger sequencing
that encompassed the entire CRE.

Validation of individual constructs by fluorescent

reporter assays

Electroporation, explant culture, and quantification of fluo-
rescence were performed essentially as previously described
(Montana et al. 2011b). In brief, as for CRE-seq, retinas were dis-
sected from newborn (P0) CD-1 mouse pups. Here, they were co-
electroporated with 0.5 μg/μL of the test construct and 0.5 μg/μL
Rho-CBR3-DsRed (Corbo et al. 2010). Retinas were cultured for
8 d, fixed, and then whole mounted for quantitative imaging of
fluorescent intensity (GFP intensity normalized to DsRed intensi-
ty), using a monochromatic camera (Hamamatsu ORCA-AG) and
MetaMorph software (Molecular Devices). For each retina, five re-
gions were quantified in ImageJ and averaged. SEM was calculated
based on normalized fluorescence measurements across retinas
(n = 10–12 retinas per test construct). Representativewhole-mount
images using a color camera (Olympus DP70) were also taken.

Comparison with CapSTARR-seq

The raw sequence data for the CapSTARR-seq (Vanhille et al. 2015)
input library (GEO accession number GSM1463994) were down-
loaded and mapped to mm9 with Bowtie 2 v2.1.0 (Langmead
and Salzberg 2012).

Data access

The sequence data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE68247. Custom tracks
for the UCSCGenome Browser (Karolchik et al. 2014) are provided
in Supplemental Table S10.
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