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Abstract

Heterogeneity in individual-level transmissibility can be quantified by the dispersion parameter k of the offspring
distribution. Quantifying heterogeneity is important as it affects other parameter estimates, it modulates the degree
of unpredictability of an epidemic, and it needs to be accounted for in models of infection control. Aggregated data such
as incidence time series are often not sufficiently informative to estimate k. Incorporating phylogenetic analysis can help
to estimate k concurrently with other epidemiological parameters. We have developed an inference framework that uses
particle Markov Chain Monte Carlo to estimate k and other epidemiological parameters using both incidence time series
and the pathogen phylogeny. Using the framework to fit a modified compartmental transmission model that includes the
parameter k to simulated data, we found that more accurate and less biased estimates of the reproductive number were
obtained by combining epidemiological and phylogenetic analyses. However, k was most accurately estimated using
pathogen phylogeny alone. Accurately estimating k was necessary for unbiased estimates of the reproductive number,
but it did not affect the accuracy of reporting probability and epidemic start date estimates. We further demonstrated
that inference was possible in the presence of phylogenetic uncertainty by sampling from the posterior distribution of
phylogenies. Finally, we used the inference framework to estimate transmission parameters from epidemiological and
genetic data collected during a poliovirus outbreak. Despite the large degree of phylogenetic uncertainty, we demon-
strated that incorporating phylogenetic data in parameter inference improved the accuracy and precision of estimates.
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Introduction
The intensity of epidemics is often summarized by the repro-
ductive number R, the average number of secondary infec-
tions caused by a typical infectious individual over the course
of their infectious period. This statistic is useful for determin-
ing whether an epidemic can take off and if so the final size of
the epidemic. However, large variation between individuals is
frequently observed in outbreaks of directly transmitted
acute infections leading to superspreading events such that
a few individuals cause most of the infections (Lloyd-Smith
et al. 2005). The offspring distribution captures the distribu-
tion of secondary infections per infectious individual, and can
be parameterized by a negative binomial with mean R and
dispersion k. The presence of superspreading as indicated by
small values of k can affect the effectiveness of control strat-
egies (Garske and Rhodes 2008).

Inferring the value of k from data is not straightforward,
even in the presence of contact tracing data as many infec-
tions may be asymptomatic or not reported. The offspring
distribution fit to incomplete transmission chain data has to
be corrected for biased and under-reporting (International
Ebola Response Team 2016). Obtaining precise estimates of

k from just incidence time series is usually not possible be-
cause k only affects the noisiness of the incidence time series
at low numbers.

Besides epidemiological data, pathogen population genet-
ics are playing an increasingly important role in inferring ep-
idemiological parameters (Volz et al. 2009; Koelle and
Rasmussen 2012; Volz 2012; Stadler et al. 2013; Kühnert
et al. 2014). For coalescent-based approaches, the offspring
distribution is integral to the inference process as it affects the
relationship between the underlying epidemic and the ob-
served distribution of coalescent (branching) events in the
pathogen phylogeny. When the offspring distribution is over-
dispersed, shorter intervals between coalescent times in the
pathogen phylogeny are observed. This is expected as coales-
cent events correspond to transmission events during the
epidemic and superspreaders can cause the aggregation of
many transmission events within a short period of time.

Given that epidemiological parameters could be estimated
either from epidemiological data or from phylogenetic data,
combining the analysis of both types of data should provide
more accurate and precise estimates. Rasmussen et al. (2011)
found that estimating parameters jointly from both incidence
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time series and pathogen phylogeny reduced uncertainties in
estimates of parameters and the prevalence over time.
However, this work did not allow for uncertainty in the path-
ogen phylogeny and was limited to simple SIR models. While
Rasmussen et al. (2014) showed that parameter estimates did
not significantly change for phylogenies of sequences collected
over many years, the uncertainty in pathogen phylogeny dur-
ing outbreaks is generally greater and needs to be accounted
for to ensure accurate estimation of transmission parameters.

Here we develop a statistical inference framework to fit a
stochastic compartmental model with an explicit offspring
distribution to enable the estimation of k and other epide-
miological parameters from outbreak data when there is un-
certainty in the pathogen phylogeny. A major challenge is
that small numbers of infections at the start of epidemics
combined with highly heterogeneous transmission lead to
substantial stochasticity in the initial dynamics of epidemics.
We used the Particle Monte Carlo Markov Chain (PMCMC)
method to infer parameters while integrating over stochastic
outcomes (Andrieu et al. 2010; Rasmussen et al. 2011).

We simulated data to assess the coverage, precision, and
bias of estimates of k and other epidemiological parameters
using our method. We also applied our inference framework
to genetic sequence and epidemiological data collected dur-
ing a poliovirus outbreak (Yakovenko et al. 2014). Although
polio sequences have provided interesting insight into path-
ogen diversity and geographic transmission routes, phylody-
namic methods such as those presented here have not
previously been used to infer epidemiological parameters.

New Approaches
The inference framework that we developed here uses both
incidence time series and pathogen phylogenies to infer the
value of k and other epidemiological parameters. It is based
on integrating results from coalescent theory and epidemio-
logical modeling into a combined inference framework and
using particle filtering to estimate the marginal likelihood of
the data under the model in an MCMC approach. The main
novelty of our method is the ability to estimate k by fitting
stochastic compartmental models to both epidemiological
and phylogenetic data. To do this we needed a transmission
model with an explicit offspring distribution, a formulation of
the coalescent parameterized in terms of the offspring distri-
bution parameters, and a method to integrate over the phy-
logenetic uncertainty that often arises in rapid outbreaks.

Compartmental Model with Explicit Offspring
Distribution
The offspring distribution describes the distribution of second-
ary infections Zi caused by each infectious individual i. The
offspring distribution for unstructured compartmental models
such as the SIR is geometric due to the Poisson transmission
process and exponentially distributed duration of infection.
However, the geometric is not able to capture the variation
in infectiousness for several directly transmitted diseases for
which the negative binomial provides a better fit (Lloyd-Smith
et al. 2005). We use a negative binomial distribution with mean

Rt and variance Rt 1þ 1
k

� �
to characterize the offspring distri-

bution of individuals infected at time step t ¼ f1; . . . ; nTg,
where the size of the simulation time step is Dt. The dispersion
parameter k determines the level of overdispersion in the off-
spring distribution. A small k means that a few superspreading
individuals cause most of the infections.

Without specifying an offspring distribution, the implicit
assumption of the stochastic SIR model is that the offspring
distribution is geometric. Throughout this paper, we param-
eterize the negative binomial with the mean and dispersion as
they are the most relevant statistics for epidemiological stud-
ies. For a given individual i infected at time step Hi, the num-
ber of secondary infections they cause is distributed according
to Zi � NBinðRt¼Hi

; kÞ. The reproductive number Rt is the
average number of secondary infections caused by an indi-
vidual infected at time step t: Rt ¼ EðZijHi ¼ tÞ.

We simulated from a modified susceptible-infected-
removed (SIR) model using the binomial distribution based
tau-leap method (Chatterjee et al. 2005). As we focused on
the analysis of acute infectious diseases with short generation
times, we approximated the transmission process by assum-
ing all secondary infections occur at the end of the infectious
period. This approximation was used so that we could sim-
ulate according an arbitrary offspring distribution without
having to keep track of infection times of infected individuals.
In practice, this meant drawing a random number from
�i � NBinðRt¼Hi

Yt; kYtÞ, where Yt was the number of infec-
tious individuals recovering at time step t.

Coalescent Likelihood
The original coalescent provided the statistical distribution of
coalescent times for a given effective population size Ne
(Kingman 1982). In the context of epidemiology, Ne is related
to the number of infectious individuals N via the variance of
the offspring distribution r2 at endemic equilibrium Ne ¼ N

r2

(Koelle and Rasmussen 2012). The discrepancy between the
total number of infectious individuals and the effective num-
ber of individuals contributing to infections increases with the
variance of the offspring distribution. For infectious diseases,
N corresponds with the number of infectious individuals Y
(time index t has been dropped for clarity).

Going backward in time, the probability density function
of the time to coalescence of a pair of lineages U is
fðUÞ ¼ ke�kU, where rate k ¼ 1

Ne�Tg
and Tg is the generation

time (duration of infection).
In this work, we use a formulation of the coalescent param-

eterized by an arbitrary offspring distribution that is time-
varying (Fraser and Li 2017). Assuming a negative binomial
offspring distribution with mean R and variance R 1þ R

k

� �
,

the expected rate of coalescence for a pair of lineages is given by:

k ¼ Rð1þ 1

k
Þ

N � Tg
; (1)

where Tg is the mean generation time, that is, the duration of
infectiousness in an SIR model. We assume that
k; R; and N change over time in a step-wise fashion at

Quantifying Transmission Heterogeneity . doi:10.1093/molbev/msx195 MBE

2983

Deleted Text: m
Deleted Text: e
Deleted Text: o
Deleted Text: d
Deleted Text: -
Deleted Text: l
Deleted Text: i.e
Deleted Text: .


each simulation time step. Equation (1) is used to calculate
the likelihood given a phylogeny (see Materials and Methods
for more details).

Phylogenetic Uncertainty
To avoid the computationally intensive process of phyloge-
netic reconstruction on top of particle filtering, we separated
the process of parameter estimation and phylogeny recon-
struction. In Rasmussen et al. (2014), the authors used the
same approach but with fewer (ten) phylogenies and they did
not pool together posterior estimates to get an overall pos-
terior distribution. An alternative approach was taken by Volz
and Pond (2014) where they calculated the average likelihood
across all phylogenies at each iteration of MCMC. Because we
are adopting a PMCMC approach, it was more computation-
ally efficient to run parallel PMCMC for each phylogeny than
using the particle filter multiple times at each iteration of the
MCMC.

Phylogenetic reconstruction programs such as
MrBayes (Ronquist et al. 2012) produce a posterior dis-
tribution PðPhyjSÞ of phylogenies given the sequences S.
To estimate the marginal posterior probability of the
parameters PðhjSÞ, we can integrate over the phyloge-
nies: P hSð Þ / PðhÞ

Ð
Phy PðPhyjhÞPðPhyjSÞdPhy. Taking M

samples from the posterior distribution PðPhyjSÞ, we can
estimate the marginal posterior density PðhjSÞ using
equation (2).

P hjSð Þ / P hð Þ
M

XM

m¼1

PðPhy mð ÞjhÞ: (2)

However, as we reconstruct the phylogeny independently
from estimation of epidemiological parameters, equation (2)
is only an approximation of the marginal posterior density.
The number of phylogenies M needed to accurately estimate
epidemiological parameters depends on uncertainties in
branching times and the molecular clock rate.

Implementation
Although programs that implement PMCMC do exist, they
are mostly tailored for analyses of incidence time series
(Dureau et al. 2013; King et al. 2016). Existing code for con-
currently analyzing incidence time series and phylogenetic
data is not parallelized and does not allow for phylogenetic
uncertainty (Rasmussen et al. 2014). Parallelization is not
needed if the number of particles is small (a few hundred),
for example for analyzing data generated through largely de-
terministic processes. The number of particles needed to ob-
tain stable estimates of likelihood scales with the length of the
time series (Andrieu et al. 2010) as well as the stochasticity of
the model. Without parallelization, the MCMC would not
converge in a reasonable amount of time for outbreak data.

We implemented a parallelized version of particle filtering
implemented in Cþþ (code available at github.com/
lucymli/EpiGenMCMC; last accessed June 23, 2017) with an
accompanying R package (github.com/lucymli/EpiGenR; last
accessed June 23, 2017) to interface with the Cþþ program.

More details on the implementation are provided in the
“Materials and Methods” section.

Results
An overview of the simulated data analyzed in the following
sections is provided in the “Materials and Methods” section.

Phylogeny Is More Informative than Incidence Time
Series for Estimating k
Based on data simulated from an SIR model, pathogen phy-
logeny was needed to accurately estimate the dispersion pa-
rameter k of the offspring distribution when k was small
(fig. 1). This suggested that superspreading events left suffi-
cient signal to allow inference of k in the phylogeny but not
the incidence time series. There was insufficient signal in the
incidence time series to determine the value of k. Although
using both epidemiological and phylogenetic data produced
the least biased and most precise estimates of k, the coverage
was lower than using each set of data alone as the true value
did not fall within the credible intervals in many instances. In
fact, using phylogenetic data alone seemed to produce the
most accurate estimates that were only slightly less precise
and slightly more biased compared with estimates that used
both types of data (table 1).

We also estimated the basic reproductive number R0, time
of the first infection T0, and the probability of sampling an
infectious individual in the incidence time series q at the
same time as estimating k. There were no noticeable

k = 0.1 k = 1 k = 10
R

0 = 2
R

0 = 5

Both Epi Phy Both Epi Phy Both Epi Phy

1e−01

1e+01

1e+03

1e−01

1e+01

1e+03

Proportion of cases
sampled in time series

0.01 0.1

FIG. 1. Estimates of k from simulated data. The horizontal lines denote
the true value of k for that set of parameters, that is, the value used to
generate the simulated data. The boxes with a horizontal line in the
middle indicate the median and 95% HPD interval of parameter
estimates pooled from all simulations for that parameter set. The
vertical lines with a single dot denote the median and 95% HPD
interval of each individual simulation. Blue lines are from simulations
in which 10% of individuals were sampled. Red lines are from simu-
lations in which 1% of individuals were sampled.
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differences between estimates of these parameters when only
epidemiological, only phylogenetic, or both data sets were
used for inference (supplementary fig. S1, Supplementary
Material online). We did not estimate q when just using
the phylogenetic data, as the reporting rate q referred to
the probability that an infection appeared in the incidence
time series.

Estimates of the R0 and k were closer to the true value
when both genetic and epidemiological data were used in
inference, compared with fitting to each set of data individ-
ually (table 1). The coverage of estimates for T0 and q while
fitting to both sets of data was similar to fitting to epidemi-
ological or phylogenetic data alone.

Estimates of R0 Were Biased If k Was Fixed at the
Incorrect Value
The dispersion parameter k of the offspring distribution is
usually not estimated when fitting compartmental models.
We investigated the effects of assuming the wrong value of k
on parameter estimates, especially on R0 estimates. The im-
plicit assumption of an unstructured SIR compartmental
transmission model is that the offspring distribution is geo-
metrically distributed, which is equivalent to fixing k ¼ 1 in
the negative binomial. For a subset of simulated outbreaks
(those where we sampled 1% of individuals), we re-estimated
parameters with a fixed k ¼ 1.

We compared these results (fig. 2) to those obtained when
k was also estimated (fig. 1), and found significant differences
in R0 estimates when the true value of k 6¼ 1. This was evi-
denced by an increase in the Kolmogorov–Smirnov distances
(Massey 1951), a measure of distance between two distribu-
tions when the true value of k 6¼ 1 compared with when the
true value of k ¼ 1 (table 2). Inference using just incidence
time series was less affected by assumptions of k, given the
small K–S distances.

Estimates of the reporting rate and the epidemic start date
were not affected by assumptions of k, regardless of the data
used during inference.

Estimation from Multiple Phylogenies
For a subset of data (those generated using R0 ¼ 2 and
k ¼ 0:1), we re-estimated the parameters for each phylogeny
inferred from the simulated sequences (fig. 3). All 95% HPD
intervals obtained using inferred phylogenies included the

true parameter value. However, estimates of R0 and k
obtained from inferred phylogenies instead of the true phy-
logeny reduced precision and increased bias, although esti-
mates of k were still more precise than those estimated from
epidemiological data. Interestingly, estimates of the epidemic
start date were less biased when using inferred phylogenies
than the true phylogeny, although this might simply be due
to the sample phylogeny randomly having a tree height fur-
ther away from the epidemic start date.

Phylodynamic Analysis of a Wild Poliovirus Type 1
Outbreak
Although most poliovirus infections are asymptomatic, tem-
porary or permanent paralysis can occasionally occur. Those
symptomatic cases are reported to the World Health
Organization. Accurately estimating the reporting rate (i.e.,
case-to-infection ratio) is especially important as the eradica-
tion of polio approaches completion. The consensus value
often used in epidemiological modeling of wild poliovirus
type 1 (WPV1) is 0.5% (Grassly et al. 2006; Blake et al.
2014). If the reporting rate is lower than expected, then a
much longer period of no reported infections must pass be-
fore eradication can be certain (Eichner and Dietz 1996;
Kalkowska et al. 2015). We wanted to apply our inference
method to poliovirus phylogenies to see if we can obtain
more accurate estimates of the reporting rate compared with
using incidence time series alone.

In 2010, a large outbreak of wild poliovirus type 1 occurred
in Tajikistan resulting in 518 reported cases of poliomyelitis
(Yakovenko et al. 2014). Fitting an SEIR model structured by
three age groups to incidence time series, Blake et al. (2014)
used iterated filtering to obtain maximum likelihood esti-
mates of various epidemiological parameters. We fit the
same model to pathogen phylogenies, incidence time series,
or both using a Bayesian approach. The posterior distribu-
tions of parameters are presented in figure 4, and the median
and 95% HPD intervals are in supplementary table S1 in the
Supplementary Material online.

The rate of substitution estimated using MrBayes was
0.010 (0.006, 0.014) substitutions per site per year, which
was in line with previous estimates (Jorba et al. 2008).

We obtained more precise estimates of the reporting rate
when using both epidemiological and phylogenetic data.
These estimates are dependent on the initial number of

Table 1. Precision (measured by the root mean squared deviation), Bias, and Coverage (% of simulations in which the true value is found in the 95%
highest posterior density intervals) of Parameter Estimates When Fitting Models to Either Epidemiological, Phylogenetic, or Both Types of Data.

Data R0 : RMSD R0: Bias R0: in HPD k: RMSD k: Bias k: in HPD

Both 0.1507 �0.0756 100% 15.0737 0.0103 75%
Epi 0.1695 �0.0387 100% 673.9374 93.4255 100%
Phy 0.1863 �0.0855 100% 31.7680 0.5461 100%
Data T0: RMSD T0: Bias T0: in HPD q: RMSD q: Bias q: in HPD
Both 11.0638 0.1813 100% 0.1183 �0.0766 75.00%
Epi 11.4962 0.3933 100% 0.1267 �0.1002 83.33%
Phy 11.9352 �1.2768 100% NA NA NA

NOTE.—These statistics were evaluated across all simulations presented in figure 1. The estimates of epidemic start dates T0 were converted to the number of days after an
arbitrary date. For bias and precision, we normalized the statistics by the true parameter value.
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susceptible individuals, which we fixed to their maximum
likelihood estimates obtained by fitting to epidemiological
data only (Blake et al. 2014).

The basic reproductive number of children aged 0–5 years
Rc was estimated to be 2.58 (2.23–2.98) when both epidemi-
ological and phylogenetic data were used in inference. These
values were more similar to the results obtained from just the
incidence time series than those estimated from pathogen

phylogeny, indicating that the epidemiological data were
more informative of the reproductive number than pathogen
phylogeny. The maximum likelihood estimate of 2.18 from
Blake et al. (2014) were included within the 95% highest pos-
terior density (HPD) interval except when only phylogenetic
data were used for inference.
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FIG. 2. Parameter estimates when reporting rate was 1 in 100 and k was fixed to 1. The horizontal dashed lines denote the true parameter value for
that set of parameters that is, the parameter value used to simulate the data. The boxes indicate the median and 95% HPD interval of parameter
estimates pooled from replicate simulations. The vertical lines with a single dot denote the median and 95% HPD interval of each individual
simulation. Simulations where the MCMC chain did not converge were left out of the plot. Estimates of the reporting rate did not include inference
from phylogenetic data, as the reporting rate refers to the probability that an infection appears in the incidence time series.

Table 2. The Kolmogorov–Smirnov (K–S) Distance between the
Posterior Distributions of R0 Estimated Assuming a Geometric
Offspring Distribution (i.e., fixing k ¼ 1) and Those Estimated
While Estimating k (see results in table 1 and figure 1).

k Both Epi Phy

0.1 0.725 (0.078, 0.956) 0 (0, 0.125) 0.201 (0, 0.887)
1.0 0.325 (0.111, 0.979) 0.151 (0.078, 0.247) 0.422 (0.142, 0.777)
10.0 0.646 (0.135, 0.977) 0.066 (0, 0.101) 0.395 (0.067, 0.954)

NOTE.—K–S values closer to 1 reflect larger discrepancies between the posterior
distributions, whereas those close to 0 suggest no difference in posterior distribu-
tions. The numbers in the brackets denote the range (maximum–minimum) of K–S
distances from different sets of simulated data, and the number preceding the
brackets denotes the median K–S distance.

Table 3. Parameters of the SIR Model Fit to Simulated Outbreak Data.

Parameter Value Prior

Population size NTotal 20,000 —
Initial number of infected I0 1 —
Duration of infection Tg ¼ 1

c — Uniform (3, 7)
Basic reproductive number R0 — Uniform (1, 20)
Offspring distribution

dispersion k
— 1

k � Uniform
ð1� 10�4, 1� 104)

Reporting rate q — Uniform (0.0, 1.0)
Time of first infection T0 — Uniform (01 Jan 16, �)

NOTE.—The upper bound of the prior distribution of the epidemic start date is the
time of the first reported case or the time of root node in the phylogeny, whichever
comes first.
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The posterior distributions of the reproductive number of
older children and adults Ra all included the maximum like-
lihood estimate of 0.46. Adding the phylogenetic data did not
significantly alter parameter estimates. This was not surprising
as the credible interval surrounding estimates using just phy-
logenetic data was much wider.

The estimated value of k was high (>1), indicating the lack
of superspreading dynamics. The estimated values were 6.7
(0.1–349.7) when only genetic data were used for inference.
These values were much higher when epidemiological data
were used: 69.0 (2:6� 10�3–729.8), and when both data sets
were used at the same time: 64.0 (1.8–518.1).

Given the large credible intervals around estimates of vaccine
effectiveness per campaign using phylogenetic data, only epide-
miological data were informative of this parameter. The credible
intervals using just epidemiological data included the maximum
likelihood estimate from Blake et al. (2014) at 69% (55–80%).

Finally, the estimated start date of the epidemic for analysis
using both data sets, epidemiological data only, and phyloge-
netic data only all overlapped with each other, as well as with
estimates from Blake et al. (2014).

Overall, it seems that incidence time series were more
informative for estimates of reproductive number, k, and
vaccine effectiveness than pathogen phylogeny. However, in
all these cases, including the pathogen phylogeny improved
the precision of estimates.

Discussion
Building on methods that enable parameter inference for
stochastic models and phylodynamic approaches integrating
both epidemiological and phylogenetic data, we presented a
framework for quantifying the offspring distribution disper-
sion k while inferring key epidemiological parameters from
both types of data. The addition of pathogen phylogeny to
epidemiological inference was necessary to accurately esti-
mate the dispersion of the offspring distribution k. This would
be useful for detecting superspreading dynamics in infectious
disease outbreaks where data from densely sampled trans-
mission networks are not available.

The phylogenetic data were not useful for all estimated
parameters, however. In the poliovirus analysis, phylogenetic
data alone were not informative of vaccine effectiveness per
campaign or the basic reproductive number of older children
and adults.

The use of a single representative phylogeny to infer epi-
demiological parameters is sufficient for well-resolved phylog-
enies. Rasmussen et al. (2014) found that parameters of an
HIV transmission model were broadly consistent amongst 10
phylogenies sampled from Bayesian phylogeny reconstruc-
tion in BEAST. As these sequences were collected over a
number of years, there was sufficient confidence in the
branching times that different phylogenies sampled
from the posterior distribution produced similar esti-
mates. In an outbreak setting when transmission happens
over a short time compared with viral evolution, greater
uncertainty in branching times meant that we needed to
use a larger number of phylogenies to be confident of the
posterior distribution of parameters. For the analysis of
the 2010 polio outbreak in Tajikistan, integrating over a
large number of phylogenies was necessary given the ex-
tent of uncertainty in branching times (supplementary
fig. S4, Supplementary Material online).

Ideally, an inference framework would concurrently esti-
mate epidemiological parameters and reconstruct the phy-
logeny. This could be implemented in existing phylogenetic
reconstruction packages such as MrBayes (Ronquist et al.
2012) and BEAST (Drummond et al. 2012; Bouckaert et al.
2014) by incorporating a particle filter. However, such a
framework would be even more computationally intensive
than PMCMC due to the additional parameters that need to
be estimated.

Existing approaches to epidemiological inference from
pathogen phylogeny do not usually account for overdispersion
in the offspring distribution (Volz et al. 2009). While the var-
iance of the offspring distribution can be increased by dividing
the population into a limited number of infectious categories
(Volz and Pond 2014), the number of secondary infections per
individual lies on a continuum in real populations. Also,
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FIG. 3. Inference using 100 trees sampled from simulated sequences,
compared with the estimates obtained using the true phylogeny.
Horizontal lines with a black dot in the middle represent the median
and 95% HPD intervals of parameter values estimated using each of
the 100 trees. The red vertical lines are the true parameter values. The
red distributions are the posterior distributions integrated over the
100 phylogenies, and the blue distributions are the posterior distri-
butions obtained using the true phylogeny.
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discretization of infectiousness requires a structured coales-
cent approach whereas estimating the offspring distribution
parameters assumes homogeneous mixing.

In previous studies on the relationship between the effec-
tive population size Ne and the prevalence N have assumed
that Ne ¼ N

r2 (de Silva et al. 2012; Magiorkinis et al. 2013).

However, this relationship is only accurate when N is con-
stant. The formulation used in this paper is valid for any
arbitrary time-varying offspring distribution and changing
prevalence N (Fraser and Li 2017).

Although the particle filter produces an unbiased estimate
of marginal likelihood, it is very computationally intensive.
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Li et al. . doi:10.1093/molbev/msx195 MBE

2988



The number of particles required scales with the length of
simulations, the number of transitions in the model, and the
reporting probability of cases. As we simulated from the index
case, the epidemic trajectories at the beginning of simulations
were highly unpredictable. Data sets with overdispersed off-
spring distribution further increased the stochasticity of sim-
ulations, necessitating a large number of particles to obtain a
stable estimate of the marginal likelihood. In our implemen-
tation, we needed 10,000 particles for k ¼ 0:1 and at least
1,000 for k ¼ 1. For simpler models, approximations such as
the Kalman filter can be used. The strength of PMCMC, how-
ever, is the applicability to a wide range of models including
high-dimensional ones (Sheinson et al. 2014).

We provide a parallelized Cþþ implementation of the
PMCMC algorithm with an accompanying R package to pro-
cess input and output for the Cþþ program. We decided to
use our own implementation of PMCMC as existing pro-
grams and libraries did not provide all the necessary features
we needed for inference from both epidemiological and phy-
logenetic data. The R package POMP provides an extensive
array of inference and simulation methods for Markovian
processes including PMCMC (King et al. 2016), however the
program is not easily parallelizable and is not well suitable for
inference from phylogenetic data. On the other hand, the
BEAST packages are well optimized for inference of epidemi-
ological and evolutionary parameters from pathogen sequen-
ces but have not yet implemented particle filtering and have a
limited number of epidemiological models (Drummond et al.
2012; Bouckaert et al. 2014).

In addition to methodological contributions, we demon-
strated the value of a phylodynamic approach for poliovirus
research. While phylodynamic analyses have been used to
characterize the epidemiological dynamics of other viral dis-
eases such as influenza and HIV, such methods are not widely
used for poliovirus analysis. Molecular surveillance through
sequencing of poliovirus isolates has mainly been used for
tracking the geographic spread of poliovirus in endemic coun-
tries (Angez et al. 2012), detecting orphan lineages which are
indicative of long-term silent transmission (Gumede et al.
2014), and reconstructing the history of pathogen diversity
(Burns et al. 2013). Although model-based parameter

inference has been used to analyze epidemiological data for
polio (Grassly et al. 2006; Mangal et al. 2013; Blake et al. 2014),
it has not been used to analyze viral sequence data.

The gold standard of polio surveillance has traditionally
been through Acute Flaccid Paralysis (AFP) surveillance, in
which stool samples from patients with AFP symptoms are
tested for the presence of poliovirus. As the number of po-
liovirus infections decreases, there might be too few symp-
tomatic cases reported through AFP surveillance to provide
sufficient data in terms of incidence time series and viral
sequences. Environmental sampling of poliovirus shed by
asymptomatically infected individuals will thus play an in-
creasingly important role in monitoring poliovirus and quan-
tifying its epidemiology as eradication gets closer.

The inference framework presented here integrates the
analyses of epidemiological and phylogenetic data. It can ac-
count for demographic stochasticity and phylogenetic uncer-
tainty to quantify heterogeneity between individuals at the
same time as estimating other epidemiological parameters.
This inference method can be further applied to other rapidly
evolving viral infections especially those with superspreading
dynamics.

Materials and Methods

Coalescent Likelihood Calculation
The likelihood given a phylogeny (Phy) is calculated in a
piecewise fashion for small time intervals. The small time
intervals are unequal in size, and bounded by the times for
one of three “events”: end of a simulation time step (total of
nT steps), coalescence (total of ntips � 1 events), or sampling
(total of ntips events). The length of each time interval be-
tween events is denoted by Us where s ¼ f1; . . .; nTþ2ntips

�1g and the number of lineages at the end of each interval is
As. Let gðtÞ return a vector of indices of time intervals the
phylogeny corresponding to simulation time step t. The phy-
logenetic data at simulation time step t are summarized by
Phyt ¼ fUgðtÞ;AgðtÞg.

At each simulation time step t, we calculated the coales-
cent likelihood sequentially for each time interval s 2 gðtÞ,

PðPhyt;sjkt;sÞ ¼
�

As

2

�
kte
�
�

As

2

�
ktUs

if interval s starts with a coalescent event

e
�
�

As

2

�
ktUs

otherwise;

8>>><
>>>: (3)

where kt is calculated from the simulated epidemic trajectory
using equation (1). The overall likelihood for all time intervals
in simulation time step t is the product of probabilities cal-
culated using equation (3) P Phytktð Þ ¼

Q
s PðPhyt;sjkt;sÞ for

s 2 gðtÞ.
For the poliovirus analysis we used an SEIR model instead,

which included a short latent compartment E after an

individual became infected. Because we still simulated sec-
ondary infections at the end of an individual’s infectious pe-
riod, this was equivalent to an SIR model with a gamma-
distributed instead of exponentially distributed generation
time. Because the latent period was very short compared with
the infectious period, we approximated the coalescent likeli-
hood with the same formula as above, replacing It with Et þ It
and setting Tg as the duration of infection.
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We ignored age-structure in the likelihood calculation
based on the phylogeny because mixing between age groups
occurred at a sufficiently high rate that we could ignore pop-
ulation structure. For the purposes of inference, we calculated
the likelihood for the phylogeny using the reproductive num-
ber for the whole population. However, we included age-
structure in the epidemic model because different age groups
were vaccinated at each of the three immunization
campaigns.

When data are sparsely sampled, the epidemiological and
phylogenetic data can be considered to be independent.
Thus, when inferring from both types of data, the overall
likelihood is calculated as the product of epidemiological
and phylogenetic likelihoods.

Particle MCMC Procedure
The aim of the statistical inference framework presented here
is to obtain the Bayesian posterior distribution
PðhjDÞ / PðDjhÞPðhÞ, where h ¼ ðh1; . . . ; hnhÞ is a vector
of nh parameters with parameter space H ¼ ðH1; . . . ;Hnh

Þ.
The prior probability PðhÞ is updated with the likelihood of
parameters given the data D. For compartmental transmis-
sion models, it is not usually possible to analytically solve the
likelihood function. To solve this problem, particle filtering
has been implemented within an Markov chain Monte Carlo
(MCMC) framework to estimate the likelihood by integrating
over stochastic epidemic trajectories (Andrieu et al. 2010). A
stochastic model simulation generates an epidemic trajectory
X0:nT

from time step 0 to nT describing the temporal changes
in incidence, prevalence, and reproductive number. Initial
model conditions are given by X0. Data comprise incidence
time series and phylogenetic data D1:T ¼ fEpi1:nT

; Phy1:nT
g.

Epit refers to the total number of reported cases during the
time interval [(t�1) Dt; t Dt].

The overall marginal likelihood is calculated sequentially
for each discrete time step indexed by t ¼ f1; :; nTg (eq. 4;
fig. 5).

PðD1:nT
jhÞ ¼

Ð
PðDnT

jX0:nT
; hÞPðX0:nT

jhÞdX0:nT

¼
ðYnT

t¼1

½PðDtjXt; hÞ�PðX0jhÞ
YnT

t¼1

½PðXtjXt�1; hÞ�dX0:nT
(4)

Pseudocode of the inference procedure is provided below.
We assume that both epidemiological and phylogenetic data
are used.

1. Sample M phylogenies indexed by m from the posterior
distribution of a Bayesian phylogenetic reconstruction pro-
gram Phy

ðmÞ
1:nt

.

FOR each phylogeny m in 1 to M

2. Calculate marginal likelihood L :¼ PðDjhinitÞ using par-
ticle filtering and set h :¼ hinit. (See particle filtering al-
gorithm below)

FOR iteration i in 1 to MCMC iterations

3. Propose new parameter values h� :¼ qðh�jhÞwhere q is
the proposal distribution.

4. Calculate the marginal likelihood L� ¼ Pðh�jDÞ using
the particle filtering algorithm below.

5. Calculate acceptance probability of new parameters

pa ¼ qðhjh�ÞPðh�ÞPðDjh�Þ
qðh�jhÞPðhÞPðDjhÞ

6. Draw a random number z �Unifð0; 1Þ. IF ðz < paÞ
THEN h :¼ h� and L:¼L* ELSE h :¼ h

END LOOP

7. Remove first 50% of samples as burn-in and sample
every x iteration from h values accepted by MCMC.

END LOOP

8. Concatenate samples from all phylogenies. Calculate the
median and 95% highest posterior density intervals.

The particle filtering algorithm used to calculate the mar-
ginal likelihood is given below. J is the number of particles,
where each particle is associated with an epidemic trajectory
X
ðjÞ
0:nT

, and a particle weight xðjÞ. The epidemic trajectory
comprises two state variables that vary with time: incidence
and pairwise coalescent rate.

FOR time step t in 1 to nT

FOR particle j in 1 to J

1. Simulate X
ðjÞ
t according to model.

2. Set the weight to the likelihood xðjÞ :¼ PðDtjXðjÞt Þ.
END LOOP

3. Calculate the mean weight �xt :¼ 1
J

PJ

j¼1

xðjÞ.

4. Use a multinomial distribution with probabilities XðjÞ

¼ xðjÞPJ

i¼1

xðjÞ
to resample J particles for the next time step.

END LOOP

5. Calculate the marginal likelihood LðhjD1:TÞ ¼
QnT

t¼1
�xt.

END LOOP

For incidence time series, the likelihood calculation uses
the probability mass function of the binomial:

P EpitjX jð Þ
t

� �
¼ X

jð Þ
t

Epit

� �
qEpi

jð Þ
t ð1� qÞX

ðjÞ
t �Epit , where q is the

probability of a case being reported. If the simulation time
step is smaller than the reporting period for incidence data,
then we only calculate the likelihood every x number of sim-
ulation time steps, such that xDt is equal to or greater than
the reporting period.

At the start of an MCMC chain, the initial parameter
values were set to their true parameter values in the case of
simulated data to reduce convergence time. We simulated an
additional 100 data sets from the stochastic SIR model with
true parameter values R0 ¼ 2, k ¼ 1, and q ¼ 1%, but start-
ing the MCMC chains at parameter values far from their true
values. Using a heated chain at the beginning of the MCMC
(multiplying pa by a factor), we found that the MCMC chain
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FIG. 5. Illustration of likelihood estimation using particle filtering (PF). (A) The median and range of simulated epidemic trajectories during PF.
(B–D) show the steps that occur during one iteration of PF. (B) J epidemics (particles) are simulated. The frequency distribution of the simulated Xt

is proportional to the probability density PðXtjXt�1; hÞ. (C) The weight of each simulated epidemic (particle) is calculated according to the
likelihood PðDtjXt; hÞ. (D) Particles are resampled with replacement according to multinomial distribution where probabilities are the normalized
particle weights. Further details of the PF implementation are given as pseudocode and discussed in more detail in the “Materials and Methods”
section.
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converged on the same posterior distributions as when the
initial parameter values were close to the true parameter
values (supplementary table S2, Supplementary Material
online).

For the poliovirus analysis, the initial parameter values
were set to those obtained through by fitting a stochastic
SEIR model to incidence time series (Blake et al. 2014).

For the simulated data, up to 500,000 MCMC iterations
were carried out, sampling parameter values every 100 iter-
ations. Convergence was determined by calculating the effec-
tive sample size after removing the first 50% of samples as
burn-in. Samples with an effective sample size <200 were
removed from the final result plot.

At each iteration of the MCMC, we used a Gaussian dis-
tribution qðh�i jhiÞ to propose a new parameter value h�i cen-
tered around the old parameter value hi, where
i ¼ f1; . . . ; nhg and nh is the total number of parameters
to be estimated. For k, we estimated its reciprocal 1

k so the
proposal distributions were centered around 1

k instead. We
did not include a covariance matrix because we proposed a
new value for only one parameter at each iteration of MCMC.

The standard deviation ri of proposal distribution qðh�i jhiÞ
was adjusted to optimize the acceptance probability of pa-
rameter hi. During the first 20,000 proposals of a parameter
hi, the acceptance probability of the parameter ai was cal-
culated every 200 proposals. If ai < 0:15 or ai > 0:75, the
standard deviation of the proposal distribution ri was re-
duced or increased, respectively. Assuming an optimal ac-
ceptance probability aopt ¼ 0:234 (Roberts and Rosenthal
2001), the standard deviation was adjusted using:

r�i ¼ rie

1

2
ai � aoptÞ:
�

(7)

The time per MCMC iteration depends on the length of
the time series data, the number of particles, and the number
of random number draws per simulation time step. For a
simulated data set with around 130 time steps, it took
0.77 seconds per MCMC iteration on a Linux cluster with
20 cores (Imperial College High Performance Computing
Service) using 20,000 particles and both incidence time series
and pathogen phylogeny for inference. The number of par-
ticles depended on the length of the time series, the number
of compartments in the model, and the stochasticity of the
model. For example, simulations are more stochastic when k
is small so more particles are needed to prevent particle de-
pletion. An example is provided in supplementary figure S5 in
the Supplementary Material online to illustrate the issue of
particle depletion when simulating outbreaks.

Overview of Simulation Study
We tested the PMCMC inference framework on simulated
data first to determine the accuracy of parameter estimates,
assess the value of phylogenetic data in epidemiological in-
ference, and to demonstrate the importance of estimating k.
For the simulation study, we generated 60 simulated data sets
using a stochastic SIR model under various combinations
of R0, k and reporting probability q (see supplementary

figs. S2 and S3, table 3, and Supplementary Information in
the Supplementary Material online for more details on the
simulations). Each data set comprised a phylogeny and an
incidence time series for a sample of infected individuals. The
phylogeny is a dated phylogeny representing the genealogy of
the sampled individuals. For each data set, we performed
three sets of inference: using incidence time series; using phy-
logenetic data; or using both. The following parameters were
concurrently estimated: R0, Tg , k, T0, and q when incidence
time series were used during inference. The results were
shown in figure 1, supplementary figure S1 in the
Supplementary Material online, and table 1.

To assess the consequences of not estimating k, we re-
estimated all other parameter values except k for 30 of the
simulated data sets (those with q ¼ 1% sampling) while fix-
ing k ¼ 1. Again, we conducted statistical inference 3 times
using one or both sets of data. The posterior estimates were
shown in figure 2.

For one of the simulated data sets (R0 ¼ 2, k ¼ 0:1), we
simulated the evolution of pathogen sequences down the
true phylogeny to obtain a sample of pathogen sequences.
Using MrBayes (Ronquist et al. 2012) to reconstruct the phy-
logeny from the pathogen sequences, we obtained a posterior
distribution of phylogenies given the simulated pathogen
sequences. We then sampled 100 phylogenies from this pos-
terior distribution and re-estimated the parameter values us-
ing each sampled phylogeny. The posterior estimates using all
phylogenies were shown in figure 3.

For all the parameter estimation above, we set the initial
parameter values to be very close to the true parameter
values (those used to simulate the data). To test that we
can obtain the true parameter values in the absence of prior
information, we generated 100 extra simulated data sets using
R0 ¼ 2, k ¼ 1 and q ¼ 1%. For each of these, the initial
parameter values were randomly sampled from the prior
distributions for the parameters. The coverage, precision,
and bias of estimates are presented in supplementary table
S2 in the Supplementary Material online.

Incorporation of Phylogenetic Uncertainty
Using a fixed phylogeny to infer parameters would not cause
problems if confidence in the branching times was high.
However, low diversity among pathogen sequences increases
the uncertainties in parameter estimates due to uncertainties
in topology and branching times.

For one of the outbreaks simulated using R0 ¼ 2 and k
¼ 0:1 and sampled with 1% probability, we simulated se-
quence evolution down the sampled phylogeny using seq-
gen (Rambaut and Grassly 1997). In addition to the sampled
sequences, we also simulated the sequence evolution of an
outgroup so that the tree could be rooted. Each sequence was
1,000 nucleotides in length with equal equilibrium frequen-
cies of A, C, T, and G. We used the JC69þC model of substi-
tution (Jukes and Cantor 1969) with a rate of substitution of
0.15 per site per year. This ensured that sufficient evolution
would take place during the outbreak.

We used MrBayes (Ronquist et al. 2012) to estimate the
phylogeny from the simulated sequences assuming a strict
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molecular clock and a JC69þC model. We used the outgroup
sequence to root the phylogenies, and the tip sampling dates
to estimate the rate of nucleotide substitution. From the
resulting posterior distribution, we sampled 100 dated phy-
logenies. We divided the branch lengths of phylogenies mea-
sured in substitutions per site by the estimated molecular
clock rates to obtain dated phylogenies. For each dated phy-
logeny, we re-estimated the epidemiological parameters. An
overall posterior distribution was obtained by concatenating
samples of parameter values obtained for each phylogeny.

Assessing the Coverage, Bias, and Precision of
Estimates
The coverage was determined by the percentage of simula-
tions for which the true parameter value was within the 95%
HPD interval of estimates. Bias was the distance between the
median parameter estimate and the true parameter value.
Finally, the precision was determined by the Root Mean
Squared Deviation (RMSD) using the formulaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1ðhi � ĥÞ2Þ

q
, where hi for i ¼ f1; :; ng were the n

values of parameter h sampled from the posterior distribu-

tion of the parameter and ĥ was the true parameter value.

Poliovirus Analysis
Data used for poliovirus outbreak analysis were collected dur-
ing the 2010 outbreak of WPV1 in Tajikistan, which resulted
in 518 confirmed and polio-compatible cases (CDC 2010).
Poliovirus genomes in stool samples collected from patients
were sequenced in the 960-nucleotide VP1 region
(Yakovenko et al. 2014). A total of 116 sequences
were obtained from the stool samples in Tajikistan

(GenBank: KC880365–KC880521). Each sequence was associ-
ated with the date of collection.

The posterior distribution of phylogenies was estimated
using MrBayes (Ronquist et al. 2012), assuming a K80þC
model of substitution (Kimura 1980) and a strict molecular
clock. A uniform prior was placed on the branch lengths to
avoid specifying a population model when inferring the phy-
logeny, given that the phylogeny would then be used to infer
population dynamics. The K80þC model was selected by as
it returned the lowest Bayesian Information Criterion score in
jModelTest2 (Guindon and Gascuel 2003; Darriba et al. 2012).
Phylogenies were rooted using an outgroup sequence sam-
pled in India in 2009 (GenBank: KC800662). The tip dates
were fixed to the date of sampling that is, the date of first
stool collection. This was usually within 48 h of a patient
arriving with symptoms of acute flaccid paralysis (AFP). As
with the simulated data, dated phylogenies were obtained by
dividing the branch lengths of reconstructed phylogenies by
the molecular clock rate. We sampled 100 dated phylogenies
from the MrBayes posterior and estimated parameter values
based on each phylogeny.

A time series of daily reported cases was constructed from
the line list and formed the epidemiological data. This data set
was divided into three age groups: 0–5, 6–14, and 15þ years,
which corresponded to the target age groups of supplemen-
tary immunization activities (CDC 2010).

We fit the SEIR model used in Blake et al. (2014) to the
polio data. The model is divided into three age groups
indexed by i. St;i; Et;i; It;i and Rt;i are the number of suscepti-
ble, exposed, infectious and recovered individuals in age
group i at time t. Details of the model can be found in the
Supplementary Material online. Unlike the usual SEIR model,
all infections occurred at the end of an individual’s infectious

Table 4. Model Parameters of the Transmission Model for Polio.

Parameter Value Estimated Prior

Population sizes in thousands
NTotal;1;NTotal;2;NTotal;3

656, 1,249, 3,721

Susceptible individuals at start in thousands
S0;1; S0;2; S0;3

109.6, 176.1, 104.2

Initial numbers of infected I0;1; I0;2; I0;3 1, 0, 0
Mean duration of latency TL ¼ 1

c1
4

Mean duration of infectiousness TI ¼ 1
c2

Yes Gamma (a ¼ 5:12;b ¼ 1:7)
Reproduction numbers of children aged

0–5 years Rc

Yes* (proposal and prior on b)

Reproduction numbers of people aged
6þyears Ra relative to Rc

Yes* (proposal and prior on bp) Uniform (1�10�5, 1)

Offspring distribution dispersion parameter k Yes Uniform (1�10�5, 1,000)
Infections:Case ratio (inverse of reporting

fraction) 1
q

Yes Uniform (1, 1�106)

Time of first infection T0 Yes Uniform (08 Sep 09, 01 Feb 10)
Vaccine efficacy t Yes Uniform (0.0, 1.0)
Mean and shape parameters of the Erlang

distributed incubation period n, a
16.5 days, 16

NOTE.—Values of fixed parameters are given in the column “Value.” For parameters that are estimated, the prior distribution on the parameter is given in the “Prior” column. The
population was divided into three age groups: 0–5, 6–14 and 15þ years. The initial numbers of susceptibles were fixed to the maximum likelihood estimates used in Blake et al
(2014). Vaccinations took place on the following dates: 06 May, 20 May, 03 Jun, 17 Jun and 17 Jun 2010. On these dates, individuals were moved from the susceptible to the
recovered compartment with probability t. Gamma distributions are parameterized by the shape and scale parameters. *The reproductive numbers Rc and Ra were calculated
from the estimated transmission rate amongst young children b, the relative transmission rate between all other groups bp , the duration of infectiousness, and numbers of
susceptibles.
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period. Thus the model used in this paper can be considered a
SIR model with gamma-distributed generation time.

We fixed the initial susceptible population sizes to those
used in Blake et al. (2014), and also placed a strong prior on the
duration of infectiousness based on likelihood profile obtained
in Blake et al. (2014). Fixed parameter values and prior distri-
butions on estimated parameters are outlined in table 4.

We used 10,000 particles and up to 150,000 MCMC iter-
ations sampling every 20 iterations. The Markov chains were
terminated earlier than 150,000 iterations if estimates of the
marginal posterior density had an ESS of at least 100.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We thank Professor Vadim I. Agol and his team for the wild
poliovirus type-1 sequences from the 2010 Tajikistan out-
break. We also thank Dr Margarita Pons-Salort for her com-
ments on the manuscript. This work used the facilities of the
Imperial College High Performance Computing Service, which
were funded by the UK MEDical BIOinformatics
partnership—aggregation, integration, visualization and anal-
ysis of large, complex data (UK MED-BIO) which is supported
by the Medical Research Council (grant number MR/
L01632X/1). L.M.L, N.C.G, and C.F. acknowledge funding
from the MRC Centre for Outbreak Analysis and Modelling
at Imperial College. L.M.L. was supported by a studentship
funded by the Medical Research Council (grant number
G01360). N.C.G. acknowledges the Bill and Melinda Gates
Foundation (grant number #OPP1099374) and the World
Health Organization (Geneva, 2013/363982). C.F. thanks the
Li Ka Shing Foundation for funding at Oxford University.

References
Andrieu C, Doucet A, Holenstein R. 2010. Particle Markov chain Monte

Carlo methods. J R Stat Soc B. 72:269–342.
Angez M, Shaukat S, Alam MM, Sharif S, Khurshid A, Zaidi SSZ. 2012.

Genetic relationships and epidemiological links between wild type 1
poliovirus isolates in Pakistan and Afghanistan. Virol J. 9(1):51.

Blake IM, Martin R, Goel A, Khetsuriani N, Everts J, Wolff C, Wassilak S,
Aylward RB, Grassly NC. 2014. The role of older children and adults
in wild poliovirus transmission. Proc Natl Acad Sci U S A.
111:10604–10609.
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Kühnert D, Stadler T, Vaughan TG, Drummond AJ. 2014. Simultaneous
reconstruction of evolutionary history and epidemiological dynam-
ics from viral sequences with the birth–death SIR model. J R Soc
Interface. 11:20131106.

Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. 2005. Superspreading
and the effect of individual variation on disease emergence. Nature
438:355–359.

Magiorkinis G, Sypsa V, Magiorkinis E, Paraskevis D, Katsoulidou A,
Belshaw R, Fraser C, Pybus OG, Hatzakis A. 2013. Integrating
Phylodynamics and Epidemiology to Estimate Transmission
Diversity in Viral Epidemics. PLoS Comput Biol. 9(1):e1002876.

Mangal TD, Aylward RB, Grassly NC. 2013. The potential impact of
routine immunization with inactivated poliovirus vaccine on wild-

Li et al. . doi:10.1093/molbev/msx195 MBE

2994

Http://www.imperial.ac.uk/admin-services/ict/self-service/research-support/hpc/
Http://www.imperial.ac.uk/admin-services/ict/self-service/research-support/hpc/


type or vaccine-derived poliovirus outbreaks in a posteradication
setting. Am J Epidemiol. 178(10):1579–1587.

Massey FJ. Jr 1951. The Kolmogorov-Smirnov test for goodness of fit. J
Am Stat Assoc. 46:68–78.

Rambaut A, Grassly NC. 1997. Seq-Gen: an application for the Monte
Carlo simulation of DNA sequence evolution along phylogenetic
trees. Comput Appl Biosci. 13:235–238.

Rasmussen DA, Ratmann O, Koelle K. 2011. Inference for nonlinear
epidemiological models using genealogies and time series. PLoS
Comput Biol. 7:e1002136–e1002136.

Rasmussen DA, Volz EM, Koelle K. 2014. Phylodynamic inference
for structured epidemiological models. PLoS Comput Biol. 10:e1003570.

Roberts GO, Rosenthal JS. 2001. Optimal scaling for various Metropolis-
Hastings algorithms. Stat Sci. 16:351–367.

Ronquist F, Teslenko M, Mark P, van der Ayres DL, Darling A, Höhna S,
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