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Abstract
Purpose: Mitral valve repair is a complex minimally invasive surgery of the heart valve. In this context, suture detection from
endoscopic images is a highly relevant task that provides quantitative information to analyse suturing patterns, assess prosthetic
configurations and produce augmented reality visualisations. Facial or anatomical landmark detection tasks typically contain
a fixed number of landmarks, and use regression or fixed heatmap-based approaches to localize the landmarks. However in
endoscopy, there are a varying number of sutures in every image, and the sutures may occur at any location in the annulus,
as they are not semantically unique.
Method: In this work, we formulate the suture detection task as amulti-instance deep heatmap regression problem, to identify
entry and exit points of sutures. We extend our previous work, and introduce the novel use of a 2D Gaussian layer followed
by a differentiable 2D spatial Soft-Argmax layer to function as a local non-maximum suppression.
Results: We present extensive experiments with multiple heatmap distribution functions and two variants of the proposed
model. In the intra-operative domain, Variant 1 showed a mean F1 of +0.0422 over the baseline. Similarly, in the simulator
domain, Variant 1 showed a mean F1 of +0.0865 over the baseline.
Conclusion: The proposed model shows an improvement over the baseline in the intra-operative and the simulator domains.
The data is made publicly available within the scope of the MICCAI AdaptOR2021 Challenge https://adaptor2021.github.
io/, and the code at https://github.com/Cardio-AI/suture-detection-pytorch/.

Keywords Point detection · Mitral valve repair · Endoscopy

Introduction

Mitral valve repair is a surgery of the mitral valve of the heart
that seeks to restore its function by reconstructing the valvu-
lar tissue. In this surgery, a prosthetic ring is affixed to the

The research was supported by the German Research Foundation DFG
Project 398787259, DE 2131/2-1 and EN 1197/2-1 and by Informatics
for Life funded by the Klaus Tschira Foundation.

B Lalith Sharan
lalithnag.sharangururaj@med.uni-heidelberg.de

Sandy Engelhardt
sandy.engelhardt@med.uni-heidelberg.de

1 Department of Internal Medicine III, Group Artificial
Intelligence in Cardiovascular Medicine, Heidelberg
University Hospital, 69120 Heidelberg, Germany

2 Department of Cardiac Surgery, Heidelberg University
Hospital, 69120 Heidelberg, Germany

mitral valve, by first suturing around the annulus of the valve
and then implanting the ring of a chosen size, through the
sutures onto the annulus [3]. Mitral valve repair is increas-
ingly performed in a minimally invasive manner [4], with a
reliance on image guidance, in particular endoscopic video
for the reconstruction process.

Besides, the use of surgical simulators are becomingmore
popular in training and familiarizing the surgeons with the
demanding surgical techniques. In our previous work, we
showed how to simulate endoscopic surgeries on a patient-
individual basis with the help of flexible 3D-printed mitral
valve replica [10,11]. The endoscopic data stream obtained
during surgery or such simulations can be analysed in real
time or retrospectively to extract quantitative information
with regard to patient-valve geometry [21] or context-aware
visualisations.

In particular, suture detection is one such task that can
provide quantitative information. This information can then
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be used to analyse the suturing patterns, examine the correla-
tion with different levels of expertise, understand the optimal
suture configuration in the context of ring implantation, and
to use the suture locations to create augmented reality visu-
alisations [8]. The task of suture detection entails detecting
the entry and exit point of the sutures around the annulus.
More precisely, given an image and the corresponding suture
locations for this image, the task is to predict the suture
locations for unseen endoscopic images. There have been
multiple approaches from the literature in the field of land-
mark detection,more commonly in facial landmark detection
[26], pose estimation [2,16] and medical landmark detec-
tion [23,28] to tackle this problem. However, there are two
important distinctions due to which these approaches are not
directly applicable to our task. Firstly, for any given image,
there exists a variable number of sutures, unlike a fixed num-
ber of facial or anatomical landmarks. Secondly, the points
have a semantic meaning and are of single instance. This
renders fixed regression-based approaches ill-suited to our
task. Additionally, commonly used patch-based refinement
of anatomical landmarks are inapt in this scenario.

In this approach, we seek to solve a multi-instance detec-
tion problem for 2D points. The approach is based on a
heatmap which typically models the distribution of likeli-
hood around the point as a Gaussian. In this paper, we extend
on our previous conference work [24], where we proposed a
simple U-net with a single channel output. The output map
was thresholded and the centre of mass was calculated for
each region to determine the final position of points.

In the work at hand, we introduce the usage of a differ-
entiable Gaussian filter and a Soft-Argmax layer to enforce
both, learning of the heatmap and further extracting the points
from the heatmap, in a differentiable manner. We demon-
strate an improvement compared to our previous baseline,
and additionally perform experiments comparing various
final layer configurations and loss functions. The approach is
evaluated on two different domains, i.e. video data from sim-
ulated surgery and from real procedures are used. The data
is made publicly available within the scope of the MICCAI
AdaptOR2021 Challenge https://adaptor2021.github.io/. To
be consistent with the challenge, we used the same data set
split like in the challenge, which is slightly different from
[24].

Related work

Regression-based approaches

Discriminative approaches to landmark detection comprise
of regression or heatmap based methods. Regression-based
methods directly estimate the landmark coordinates from the
image. Duffner and Garcia [6] is one of the early works

using neuronal layers to estimate facial feature positions.
Subsequently, due to the exponential growth of deep learn-
ing tools and techniques, there have been a number of works
that estimate this mapping with a neural network [26]. The
regression-based methods model a mapping from the image
space to the coordinate space, which is highly nonlinear and
therefore difficult to learn. The approaches from the literature
tackle this problem by using a CNN cascade or progressive
refinement of the landmarks [13,27].

In the field of medical imaging, landmark localization is
a relevant step for tasks such as registration and augmented
reality visualisations. Cascaded and stage-wise models [25,
28] are typically used for anatomical landmark regression.
Sofka et al. [23] presented a landmark regressor for ultra-
sound image sequences that additionally imposes a temporal
constraint with LSTM cells along with a centre-of-mass layer
to extract landmark locations. However, all of the aforemen-
tioned methods predict a pre-defined number of landmarks,
which allows to pre-determine the shape of the tensor to
be regressed in the output layer of a network. Additionally,
learning a transformation from the image space to the coor-
dinate space is a highly nonlinear mapping which is further
complicated by the variations in camera view, pose, illumi-
nation and scene composition.

Heatmap-based approaches

Unlike regression-based approaches that directly regress on
the coordinates, heatmaps model a distribution of likelihood
around the points of interest. In the recent years, the field of
landmark detection is moving towards the use of heatmap-
based approaches [26], as they model a mapping from
image-to-image space unlike regression models. A Gaus-
sian distribution is commonly used to model the likelihood
of the landmark locations. Typically, the heatmap approaches
represent a single landmark in one channel, making it easy
to perform differentiable operations or post-processing [5].
Bulat and Tzimiropoulos [2] proposed a two-stage network
to regress on heatmaps and further finetune the landmarks in
subsequent stages. TheDeep Alignment Network (DAN) [17]
processes the whole image in contrast to patches and fine-
tunes the landmark estimates using heatmaps. In the medical
domain, Zhang et al. [29] used a multi-task network to learn
displacement maps using heatmaps. Payer et al. [18] pro-
posed a two-stage heatmap-based network. All in all, similar
to the regression approaches, the heatmap-based regression
networks, model one heatmap per channel with a pre-defined
set of landmarks.

In earlier works on a small intra-operative dataset [8,9],
we have used random forests and tailored post-processing
for point detection and optical flow for point tracking. Our
previous work on the same data base [24] formulates the
landmark detection task as a deep learning-based approach,
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and demonstrates first results on intra-operative and surgi-
cal simulator datasets for heart surgeries. Hervella et al. [15]
demonstrated a similar method for the case of retinal fun-
dus images. However, the model has to learn from a heavily
unbalanced dataset due to the nature of point landmarks in
the context of a segmentation task. Brosch et al. [1] tack-
les this problem by using a novel objective function. In this
paper, we extend our previouswork [24] and tackle the unbal-
anced multi-instance sparse-segmentation task through the
use of a differentiable convolutional Soft-Argmax layer com-
bined with a balanced loss function. Iqbal et al. [16] used
a differentiable Soft-Argmax layer to extract the landmark
locations from the heatmap, but the problem formulation con-
tained a single heatmap per channel for a pre-defined number
of heatmaps. Chandran et al. [5] used a heatmap combined
with the differentiable Soft-Argmax layer to extract regions
of interest to provide a global context to landmark localiza-
tion. In contrast to Iqbal et al. [16] and Chandran et al. [5],
our approach uses a convolutional Soft-Argmax layer that is
convolved spatially with the feature map, in order to impose
stability in modeling a distribution and extracting multiple
instances of landmarks from this distribution. Additionally,
an Fβ loss is used to take into account the precision and recall
for optimisation. Results compared to our previous baseline
[24], along with ablations with various loss functions and
output layer configurations, are presented.

Methods

Task formulation

The labels si ∈ S, i ∈ 1, 2 . . . N can be equivalently rep-
resented as a binary mask, where p(xi ,yi ) ∈ {0, 1}, xi ∈
1, 2 . . . , H , yi ∈ 1, 2 . . . ,W , denotes the pixel value at
image location (xi , yi ), with a value of 1 in the suture loca-
tions and 0 otherwise. Alternatively, the position of each
suture instance can be modelled by a distribution centred
around the location that represents the likelihood of the pixel
being a landmark location. In this case, p(xi ,yi ) takes values
in [0, 1]. In this work, we present and compare two differ-
ent distribution functions to model the heatmap, namely the
Gaussian and the Tanh distribution. In the case of the Gaus-
sian distribution, the spread is controlled by the variable σ1,
which we set to σ1 = 1, 2, and 3. The Tanh distribution is a
sharper distribution, where we set the variable α = 3.5 × σ

that controls the spread of the distribution. We experiment
with the values of α = 7 and α = 10.5. An illustration
comparing theGaussian and Tanh distribution is provided in
Fig. 1.

(a) (b) (c)

Fig. 1 Distribution functions. a Gaussian, σ = 1 b Gaussian, σ = 2 c
Tanh, α = 7

Network architecture

The labels ŷ j for unseen endoscopic images can be esti-
mated by a neural network φ(x j , y j , θ) with parameters θ .
A U-Net-based [20] architecture is used, similar to the one
described in our previous work [24], but using ReLU activa-
tions for the convolutional layers. RGB 3-channel images of
size 288 × 512 are provided to the model as input. A mask
of the same size is created from the labelled suture locations.
A distribution function centred around each suture point is
applied to the binary mask as described in Sect. 3.1.

Furthermore, a differentiable Gaussian filter with spread
σ2 is applied to the output of the Sigmoid layer. Different val-
ues of σ1 and σ2 are applied and a comparison is presented
in Sect. 5.1. A similarity loss L1 between the filtered output
(Output Stage 1 in Fig. 2a, b) and the ground-truth heatmap is
applied that enforces the model to learn the likelihood distri-
bution of the suture locations. TheGaussianfilter encourages
the model to learn a smooth distribution around the predicted
locations. Additionally, the filtered output is fed through a
differentiable convolutional 2D spatial Soft-Argmax layer to
produce the final output of the model (Output Stage 2 in
Fig. 2a, b). In this layer, a Soft-Argmax kernel of size (3×3),
with a stride of 1 and a padding of 1 is convolved with the
output from the previous layer. The layer is implemented
using the Kornia [19] library. An additional similarity loss
L2 is applied at this stage, as shown in Fig. 2a and b. Other
works [5,16] demonstrated the use of a differentiable Soft-
Argmax layer in extracting the landmarks from the heatmaps,
where a single landmark is used per channel of the heatmap,
and as a result, the Soft-Argmax layer yields the landmark
locations. In contrast, we represent all suture locations in
a single channel. Therefore, the convolutional Soft-Argmax
layer functions as a local non-maximum suppression for the
points with low likelihood of being a suture point.

At the output of stage 1, a loss function of the form
L1 = MSE + 1 − SDC is applied between the predicted
suture points and the ground-truth heatmap, where MSE is
theMean Squared Error and SDC is the Sørensen Dice Coef-
ficient. For themodel variant 1 at theOutput Stage 2 as shown
in Fig. 2a, the same lossL2 = MSE+1−SDC is applied for
a heatmap ground-truth. For themodel variant 2 at theOutput
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(a) (b)

Fig. 2 Overview of the variants for the proposed suture detection network. a Variant 1: A Gaussian mask is used at both output stages. b Variant
2: A binary mask is used at output Stage 2

Stage 2 as shown in Fig. 2b, the output is optimised with a
binary ground-truthmask. In this case, the true and false pixel
classes are even more unbalanced. An asymmetric similarity
loss function that can weigh the precision and recall is pre-
viously shown to perform better for unbalanced classes [14],
in comparison with the dice coefficient. We therefore apply a
balanced Fβ loss function for the predicted and ground-truth
binary masks

Fβ = (1 + β2)
∑N

i=1 pi gi

(1 + β2)
∑N

i=1 pi gi + β2
∑N

i=1 (1 − pi )gi + ∑N
i=1 pi (1 − gi )

(1)

where pi is the likelihood of a pixel being a suture, and the
binary label gi ∈ {0, 1} denotes the presence of a suture
point. A value of β = 2 is used, to penalise the number
of false negatives. The final suture detection model, jointly
optimises the loss functions L1 and L2, given by

Lφ(x j ,y j ,θ) = min
θ

(L1 + L2). (2)

The predicted heatmaps that are obtained after evaluation
are thresholded with t = 0.5, and the centre-of-mass of the
local clusters are computed, to extract the predicted suture
coordinates, that are then evaluated with the labelled suture
coordinates.

Evaluation

A suture point is considered to be successfully predicted, if
the distance between the predicted and ground-truth point is
less than 6 pixels, as proposed in [24]. If multiple points are
matched with the ground-truth, then the point closest to the
ground-truth is chosen as the predicted point. Once the clos-
est match is allocated the second-best match is used to match
other labels in the image. An illustration of this is shown

in Fig. 3a. From these predicted coordinates, the number of
True Positives (TP), False Positives (FP), and False Nega-
tives (FN) is determined. Furthermore, thePositive Predicted
Value (PPV) is computed as PPV = TP/(TP + FP) and the
True Positive Rate (TPR) is determined as TPR = TP/(TP+
FN). In order to compare the performance of two different
models, the F1 score is computed by taking the harmonic
mean of PPV and TPR as F1 = (PPV×TPR)/(PPV+TPR).
Additionally in this work, we compute the root mean square
error of the Euclidean distance as a localisation metric. For
each predicted point in an image, the Euclidean distances to
all ground-truth points are computed and the least distance
is chosen. This is then averaged across all predicted points in
an image, for the images that have predictions. For images
without predicted points, themetric cannot be computed, and
we therefore additionally report the number of images where
this occurs in Table 3. For RMSE computation, we consider
each predicted point in the calculation, i.e. each point has a
match. Points which are further away without a match would
otherwise not be penalized in the metric.

Data and experiments

Datasets

In this work, datasets from two domains are used for the
experiments, namely the intra-operative and the surgical sim-
ulator domain. The data in the intra-operative domain comes
from endoscopic frames captured during mitral valve repair
surgery. The intra-operative data forms a heterogeneous
dataset comprising of frames with widely varying camera
view, scale, lighting sources, and white balance. Addition-
ally, the dataset also contains the presence of endoscopic
artefacts caused due to occlusion and specular reflections.
The intra-operative datasets are split on a surgery level,
like in the mentioned challenge. Firstly, a dataset for cross-
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(a) (b)

Fig. 3 a An illustration of allocating matches between the predicted and ground-truth suture labels. b A comparison of cases that yield a similar
RMSE metric

validation (A.1) is created, comprising of four surgeries, with
a total of 2376 images. It is important to note that the valida-
tion set is not used for fine-tuning themodel performance, for
example, using early stopping. Therefore, the validation set
functions as an unseen dataset for the model. Additionally, a
second independent intra-operative test set is created (A.2).
The data in the surgical simulator domain comes from endo-
scopic capture of the surgical training and planning sessions
on the mitral valve silicone replica models [10]. A simula-
tor dataset (B.1) is created from ten such simulator sessions,
with a total of 2708 images.

The endoscopic videos are captured in a top-down stereo
format, after which relevant frames are extracted. The left
and right images of the stereo pair are treated independently.
The suture points identified in these frames are then manu-
ally labelled using the annotation tool labelme. For further
details about the endoscopic capture of the data, the reader
is referred to our previous work [22,24]. For this work, the
previously annotated suture point labels are revisited and
quality-checked. After correction, the intra-operative cross-
validation dataset contains a total of 23, 938 sutures, and
the simulator dataset a total of 33, 872 sutures. The data
is released within the scope of the AdaptOR2021 MICCAI
challenge at https://adaptor2021.github.io/

The endoscopic frames are resized to a resolution of
288 × 512, and image and mask augmentations are applied,
before feeding to the model. Similar to our previous work
[24], the dataset was augmented with vertical and horizon-
tal flip, rotation of ±60◦, and affine translations with ±10%.
Additionally, image augmentations comprising of pixel shift-
ing in range±1%, shearing in range±0.1, brightness in range
±0.2, contrast in range from 0.3 to 0.5, random saturation in
range from 0.5 to 2.0, and hue in range of ±0.1 are applied.
All augmentations are applied with a probability of 50%.

Experiments

Firstly, in the intra-operative domain, a fourfold cross-
validation is performed on dataset A.1. Additionally, the

models are evaluated on an independent test set A.2. In the
simulator domain, a fivefold cross-validation is performed
on the dataset B.1. Our baseline results were presented in
[24] for aGaussian heatmap with a σ1 = 1. Here, we recom-
pute the baseline for σ1 ∈ 1, 2, 3, with the refined labels
and the data split as described in Sect. 4.1. We present a
comparison of the model variants described in Sect. 3.2 with
the baseline. Furthermore, we perform a sensitivity analysis
with different parameters of the heatmap distribution, namely
Gaussian with σ1 ∈ 1, 2, 3, 4, σ2 ∈ 1, 2, 3 and Tanh with
α ∈ 7, 10.5. Here, the effect on the model performance in
relation to varying σ1 and σ2 are presented. Moreover, we
present an evaluation with a localisation metric, as described
in Sect. 3.3. Finally, we present a comparison of the eval-
uation with 3 different radii around the ground-truth point,
namely 6, 8, and 10 pixels, for the best-performing model in
each domain. The network is trained with a learning rate of
0.001,with anAdam optimizer. A learning rate decay scheme
is used to reduce the rate by a factor of 0.1 upon a plateau for
10 epochs. Themodels were trained on one ofNVIDIAQuat-
tro P6000, NVIDIA TITAN RTX, or NVIDIA TITAN V. The
PyTorch library was used to implement the model pipeline.

Results and discussion

Results

The results of the fourfold cross-validation in the intra-
operative domain on dataset A.1 are presented in Table 1(a).
Additionally, an evaluation of two variants of the proposed
model in comparison with the baseline from our previous
work [24], on the intra-operative test set A.2 is shown in
Table 1(b). In the simulator domain, results of the fivefold
cross-validation are presented in Table 1 (c). Samples from
prediction from cross-validation in the intra-operative (A.1)
and the simulator domain (B.1) are shown in Fig. 5.

Firstly, from the cross-validation in the intra-operative
dataset (A.1), it can be seen that in comparison with the
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our previous baseline with the value of σ1 = 1 [24], the per-
formance of the model increases with σ1 = 2. For both the
values of σ1 = 2, σ1 = 3, the model performs better than
while using a Tanh distribution, with respective values of
α = 7, α = 10.5 (mean F1 +0.0082 for σ1 = 3, α = 10.5
OR A.1 c.f. Table 1a). To recall, σ1 here denotes the spread of
the Gaussian distribution used to create the masks. σ2 refers
to the parameters of the local differentiable Gaussian layer
used in the proposed model variants.

In the intra-operative dataset, theVariant 1 of the proposed
model with σ1 = 3 outperforms the baseline from our pre-
vious work [24] with σ1 = 1 (mean F1 +0.0082 for σ1 = 3
OR A.1 c.f. Table 1a). Variant 1 also outperforms the baseline
model with the same σ1 value of 3 (mean F1 +0.0080 for
σ1 = 3 OR A.1 c.f. Table 1 (a)). In this case, the difference
is the differentiable local Gaussian and SoftArgMax layers
in the model architecture. A larger spread of the Gaussian
distribution provides more likelihood values around every
landmark and additionally reduces the imbalance of the pix-
els in the dataset, thereby helping the model learn better.
However, a larger spread around the suture point also means
that the model is prone to confounding from nearby points
due to overlapping distributions. Similarly, in the Simulator
domain, the proposed model Variant 1 with σ1 = 2 outper-
forms the baseline from our previous work [24] (mean F1
+0.0865 Sim B.1 c.f. Table 1 (c)), with σ = 1, and the base-
line model with the same value of σ1 = 2 (mean F1 +0.0354
Sim B.1 c.f. Table 1 (c)).

In the intra-operative domain, Variant 2 of the proposed
model does not outperform the baseline with the correspond-
ing σ1 value (mean F1 −0.0144 for σ1 = 3 OR A.1 c.f.
Table 1 (a)). In the simulator domain however, the Variant 2
outperforms the corresponding baseline (mean F1 +0.0324
Sim B.1 c.f. Table 1 (c)). Binary masks in this case, with-
out a likelihood distribution, constitute a highly imbalanced
dataset, which hampers the learning process and affects per-
formance. In both domains, the model Variant 1 yields the
best performing model.

Furthermore, for values σ1 = 2, σ1 = 3, the values of σ2
are varied between 1, 2, and 3 and the results are presented in
Table 2. In each domain, the best performing model is with
the value σ2 = 1. In both the cases of intra-operative and the
simulator domains, there is a best-performing value of (σ1,
σ2) after which the performance of the model drops. In the
case of the intra-operative domain, this performance occurs
at (σ1 = 3, σ2 = 1) and in the case of the simulator domain,
at (σ1 = 2, σ2 = 1). This is due to the trade-off that occurs
while increasing the spread of the distribution around the
suture points. In order to understand this trade-off, the model
performance is analysed at the level of two different subsets.
Firstly, a subset of close-points are defined as the points that
are within a distance of 15 pixels within each other. The rest
of the points are categorised as non-close points. Then, the

change in the True Positive points, as we go from σ1 = 2 to
σ1 = 3 is analysed. An example illustration in the simulator
domain is shown in Fig. 4. It can be seen that the drop in the
percentage of True Positives is higher in the case of the close
subset in comparisonwith the points that are not located close
to each other.

Moreover, we compute the root-mean-square error of the
Euclidean distance as explained in Sect. 3.3, the results of
which are presented inTable 3.As given inTable 3, the results
are different as compared to the F1 score metric presented in
Table 2. Although the RMSE distance provides an indication
of the closeness of the points to the ground truth labels, it is
difficult to analyse a case where the RMSE of two models
are the same despite one of the models predicting more False
Positives, since the metric is averaged over each predicted
point. An example of this is shown in Fig. 3b. Finally, we
present an evaluation with three different radii around the
ground-truth point for which amatch is allocated, namely six
pixels, eight pixels, and ten pixels, for the best-performing
model in each domain, as given in Table 4.

Discussion

In this paper, as an extension to our previouswork [24], we
tackle the suture detection task by introducing adifferentiable
2D Gaussian filter layer, and an additional differentiable
convolutional 2D spatial convolutional Soft-Argmax layer.
Unlike other works [5,16] that use a Soft-Argmax layer to
directly extract the landmarks from the heatmap from a single
channel, we present its use as a form of local non-maximum
suppression to filter out points with low likelihood of being
a suture. Firstly, we perform experiments comparing the
baseline from our previous work [24], with different val-
ues of σ1. Here, we also present comparison of theGaussian
distribution with a Tanh distribution with a similar spread.
Then, we present two variants of our proposed model in
comparison with the baseline (c.f. Table 1). Further, we
present experiments by varying values of σ1 ∈ 1, 2, 3, 4 and
σ2 ∈ 1, 2, 3 (c.f. Table 2). In addition to the evaluation with
the F1 score, we compute an RMSE metric (c.f. Table 3).
The RMSE metric has a limitation by comparing the models
while taking into account the False Positives, as explained
in Sect. 3.3. In the intra-operative domain, the Variant 1
with values (σ1 = 3, σ2 = 1) is the best performing model
with an F1 score of 0.4798 ± 0.04 OR A.1, 0.4290 ± 0.04
OR A.2 c.f. Table 1(a) and (b), and Variant 1 with values
(σ1 = 2, σ2 = 1) is the best performing model with an F1
score of 0.7734 ± 0.06 Simulator B.1, c.f. Table 1 (c). The
intra-operative dataset is a highly heterogeneous dataset com-
prising of images from different viewing angles, scale, light
sources, and white balance. Furthermore, the intra-operative
datasets contain endoscopic artefacts caused due to specu-
larities, and occlusions from tissue or surgical instruments in
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Table 1 Results of baselines
and model variants on (a) OR
Cross-validation dataset A.1, (b)
OR Test dataset A.2, (c) Sim
Cross-validation dataset B.1.
Best F1 scores are highlighted
in bold

Experiment Mask distribution PPV TPR F1

(a) Cross-validation on OR data (A.1) (Higher is better)

Baseline [24] Gauss, σ = 1 62.2700 ± 9.54 33.1350 ± 6.68 0.4376 ± 0.06

Baseline [24] Gauss, σ = 2 64.4450 ± 11.01 37.6525 ± 8.46 0.4720 ± 0.05

Baseline [24] Gauss, σ = 3 65.8775 ± 8.95 37.8200 ± 10.58 0.4718 ± 0.08

Baseline [24] Tanh, α = 7 69.2850 ± 6.42 34.6900 ± 5.74 0.4494 ± 0.05

Baseline [24] Tanh, α = 10.5 68.3550 ± 7.90 35.2900 ± 5.55 0.4636 ± 0.06

Variant 1 Gauss, σ1 = 2 68.8400 ± 7.84 38.0650 ± 9.30 0.4789 ± 0.06

Variant 1 Gauss, σ1 = 3 67.2100 ± 11.08 39.5225 ± 10.23 0.4798 ± 0.04

Variant 1 Gauss, σ1 = 4 67.3275 ± 16.92 29.3600 ± 7.77 0.3711 ± 0.04

Variant 2 Gauss, σ1 = 2 74.7625 ± 8.30 33.9950 ± 9.99 0.4576 ± 0.09

Experiment Mask distribution PPV TPR F1

(b) Results on additional OR data test set (A.2)

Baseline [24] Gauss, σ = 2 76.0150 ± 7.36 28.5025 ± 2.53 0.4126 ± 0.02

Baseline [24] Gauss, σ = 3 72.6550 ± 1.43 28.9350 ± 1.14 0.4138 ± 0.01

Baseline [24] Tanh, α = 7 76.2525 ± 3.52 26.3000 ± 2.20 0.3902 ± 0.02

Baseline [24] Tanh, α = 10.5 74.1375 ± 5.83 28.2450 ± 2.18 0.4084 ± 0.03

Variant 1 Gauss, σ1 = 2 76.6475 ± 5.31 28.0750 ± 2.92 0.4086 ± 0.02

Variant 1 Gauss, σ1 = 3 73.3200 ± 2.94 30.4550 ± 3.76 0.4290 ± 0.04

Variant 1 Gauss, σ1 = 4 67.5825 ± 8.42 22.3425 ± 3.05 0.3317 ± 0.03

Variant 2 Gauss, σ1 = 2 78.3350 ± 2.88 26.3875 ± 1.79 0.3945 ± 0.02

Experiment Mask distribution PPV TPR F1

(c) Cross-validation on Simulator data (B.1)

Baseline [24] Gauss, σ = 1 78.3260 ± 4.44 61.6360 ± 7.96 0.6869 ± 0.06

Baseline [24] Gauss, σ = 2 81.3900 ± 5.18 67.9540 ± 9.82 0.7380 ± 0.08

Variant 1 Gauss, σ1 = 2 83.2840 ± 3.76 72.4860 ± 8.56 0.7734 ± 0.06

Variant 1 Gauss, σ1 = 3 78.4560 ± 6.38 64.6160 ± 9.72 0.7057 ± 0.07

Variant 2 Gauss, σ1 = 2 81.0100 ± 5.92 73.7160 ± 7.34 0.7704 ± 0.06

Fig. 4 A comparison of the
percentage of True Positives
detected in each fold in the
simulator domain
cross-validation dataset B.1.
Blue bars denote the model with
σ1 = 2, σ2 = 1; Yellow bars
denote the model with with
σ1 = 3, σ2 = 1; a provides a
comparison of the subset
containing points close to each
other. b Subset not close to each
other

the scene which make it a challenging dataset to learn from.
Finally, it is often the case that two sutures are stitched close
to each other. This makes it further difficult for the model,
and a human reader, to distinguish nearby sutures. In partic-
ular, the final 2D Gaussian filter layer and the convolutional
2D spatial Soft-Argmax layer operate locally with a window
and are prone to be confounded by closely occurring suture

points. This is especially true in the case of higher Gaussian
σ1 values, as can be seen in Table 2. Varying the values σ1 and
σ2 each have an effect on model performance in relation to
the number of points in the dataset that are nearby or farther
away from each other. In this regard, an adaptive variation in
theGaussian distribution is a potential future work, to handle
these variations (Fig. 5).
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Table 2 Comparison of differentGaussian values used for creating the suture masks (σ1) versus theGaussian values used in the local differentiable
Gaussian layer (σ2); on the OR (A.1) and simulator dataset (B.1). Highest values for each metric are highlighted in bold

Metric Experiment Mask distribution σ2 = 1 σ2 = 2 σ2 = 3

(a) Cross-validation on OR dataset (A.1) (Higher is better)

PPV Variant 1 Gauss, σ1 = 2 68.8400 ± 7.84 75.1825 ± 6.42 68.3875 ± 6.90

Variant 1 Gauss, σ1 = 3 67.2100 ± 11.08 70.6550 ± 13.90 63.4375 ± 13.53

TPR Variant 1 Gauss, σ1 = 2 38.0650 ± 9.306 35.4575 ± 6.26 35.5925 ± 9.03

Variant 1 Gauss, σ1 = 3 39.5225 ± 10.23 33.9025 ± 3.74 35.8525 ± 8.46

F1 Variant 1 Gauss, σ1 = 2 0.4789 ± 0.06 0.4781 ± 0.06 0.4582 ± 0.07

Variant 1 Gauss, σ1 = 3 0.4798 ± 0.04 0.4503 ± 0.03 0.4485 ± 0.07

Metric Experiment Mask distribution σ2 = 1 σ2 = 2 σ2 = 3

(b) Cross-validation on Simulator dataset (B.1)

PPV Variant 1 Gauss, σ1 = 2 83.2840 ± 3.76 80.8760 ± 7.53 82.0220 ± 5.14

Variant 1 Gauss, σ1 = 3 78.4560 ± 6.38 77.8520 ± 9.46 79.6720 ± 4.77

TPR Variant 1 Gauss, σ1 = 2 72.4860 ± 8.56 68.0740 ± 5.00 64.9800 ± 9.81

Variant 1 Gauss, σ1 = 3 64.6160 ± 9.72 66.1020 ± 11.25 67.2180 ± 10.76

F1 Variant 1 Gauss, σ1 = 2 0.7734 ± 0.06 0.7368 ± 0.05 0.7188 ± 0.06

Variant 1 Gauss, σ1 = 3 0.7057 ± 0.07 0.7116 ± 0.09 0.7254 ± 0.07

Table 3 Comparison of the
RMSE distance with different
Gaussian values used for
creating the suture masks (σ1)
versus the Gaussian values used
in the local differentiable
Gaussian layer (σ2); on the (a)
OR cross-validation dataset
(A.1) (b) additional OR test
dataset (A.2), and the simulator
cross-validation dataset (B.1).
Lowest RMSE values are
highlighted in bold

(a) Cross-validation on OR dataset (A.1) (Lower is better)
(Computed for 2187 out of 2376 images)

Experiment Mask distribution σ2 = 1 σ2 = 2 σ2 = 3

Variant 1 Gauss, σ1 = 2 22.99 ± 6.61 17.20 ± 4.26 28.84 ± 11.12

Variant 1 Gauss, σ1 = 3 25.01 ± 12.84 24.82 ± 17.65 28.55 ± 13.96

(b) Results on additional OR data test set (A.2)
(Computed for 391 out of 500 images)

Experiment Mask distribution σ2 = 1 σ2 = 2 σ2 = 3

Variant 1 Gauss, σ1 = 2 17.2489 ± 3.00 17.3576 ± 4.65 17.4979 ± 2.01

Variant 1 Gauss, σ1 = 3 19.6230 ± 4.25 17.1994 ± 3.67 24.5889 ± 2.73

(c) Cross-validation on simulator data (B.1)
(Computed for 2678 out of 2708 images)

Experiment Mask distribution σ2 = 1 σ2 = 2 σ2 = 3

Variant 1 Gauss, σ1 = 2 11.2789 ± 6.00 13.1211 ± 10.95 11.4301 ± 6.34

Variant 1 Gauss, σ1 = 3 13.4286 ± 8.49 14.1760 ± 10.45 13.8515 ± 6.70

Besides providing quantitative information for analysis of
endoscopic data, the learned representations from the suture
detection task can also be used to support other learning
objectives. In particular, this task is relevant in the context
of generative models to transform data from the simulator to
the intra-operative domain [7,12]. In our recent work [22],
we show that suture detectionmodels can be used tomutually
improve generative domain transformation in endoscopy.

Conclusion

In this work, we tackle the task of suture detection for endo-
scopic images by formulating it as a multi-instance sparse
heatmap-regression problem. We extend our previous work
[24] and improve upon the previously reported baselines.We
introduce a novel Gaussian filter layer and a differentiable
convolutional Soft-Argmax layers. We compare multiple dis-
tribution functions and present two variants of the model that
outperform the baselines. Suture detection is an important
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Table 4 Comparison of evaluation with three different radii around
the ground-truth point, for the best performing models on (a) OR cross-
validation dataset A.1, (b) additional ORTest dataset A.2, (c) Simulator

cross-validation dataset B.1. Highest values for each metric are high-
lighted in bold

Experiment Mask distribution Radius PPV TPR F1

(a) Cross-validation on OR data (A.1) (Higher is better)

Variant 1 Gauss, σ1 = 3 6px 67.2100 ± 11.0821 39.5225 ± 10.2259 0.4798 ± 0.0427

Variant 1 Gauss, σ1 = 3 8px 69.1575 ± 10.80 39.5225 ± 10.23 0.4946 ± 0.05

Variant 1 Gauss, σ1 = 3 10px 70.0500 ± 10.59 41.3800 ± 11.14 0.5014 ± 0.05

Experiment Mask distribution Radius PPV TPR F1

(b) Results on additional OR data test set (A.2)

Variant 1 Gauss, σ1 = 3 6px 73.3200 ± 2.94 30.4550 ± 3.76 0.4290 ± 0.04

Variant 1 Gauss, σ1 = 3 8px 75.7525 ± 2.68 30.4550 ± 3.76 0.4433 ± 0.04

Variant 1 Gauss, σ1 = 3 10px 76.4100 ± 2.86 31.74 ± 3.91 0.4471 ± 0.04

Experiment Mask distribution Radius. PPV TPR F1

(c) Cross-validation on simulator data (B.1)

Variant 1 Gauss, σ1 = 2 6px 83.2840 ± 3.76 72.4860 ± 8.56 0.7734 ± 0.06

Variant 1 Gauss, σ1 = 2 8px 84.0475 ± 3.95 69.9425 ± 7.70 0.7689 ± 0.06

Variant 1 Gauss, σ1 = 2 10px 85.1800 ± 4.06 72.0200 ± 7.46 0.7790 ± 0.05

Fig. 5 Samples of prediction from a Cross-validation on the OR dataset A.1 b Cross-validation on the Sim dataset B.1. Green—True Positive,
Orange—False Negative, Red—False Positive

task that can further be used towards supporting the learning
of related objectives for endoscopic image analysis.
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