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WhatAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:is Candida auris skin colonization?

The recently emergent fungal pathogen Candida auris frequently persists on skin of patients

and can cause invasive disease with mortality rates over 50% [1,2]. It is the first fungal patho-

gen to be labeled as an urgent global public health threat due to its high capacity for person-to-

person spread and its ability to produce recalcitrant, drug-resistant infection [1–5]. Since iden-

tification in 2009, C. auris has rapidly spread around the world, now accounting for 20% to

30% of Candida bloodstream infections in some healthcare settings [6,7]. Prior to development

of invasive disease, C. auris colonizes patients, proliferating on the skin and at other nonsterile

sites [4,6]. Of patients colonized with C. auris, approximately 95% involve the skin [8]. In a

study of critically ill patients admitted to an intensive care unit, C. auris bloodstream infection

developed in approximately 25% of patients within 60 days following skin colonization [8].

This pathogenicity pattern distinguishes C. auris from other Candida species, including Can-
dida albicans, which typically reside as commensals in the gastrointestinal tract prior to the

development of disseminated disease.

C. auris frequently colonizes the axilla and groin, sites typically sampled in the screening of

patients for resistant bacteria, including methicillin-resistant Staphylococcus aureus [9–11].

However, a broader investigation of residents in a skilled nursing facility identified C. auris
colonization across 10 different body sites, with frequent colonization of 2 or more areas [12].

While the investigators similarly detected C. auris from axilla and groin samples, other coloni-

zation sites included the nares, fingertips, palms, toe webs, and perianal skin. C. auris appears

to persist at a variety of patient skin sites for many months. With a breach of the skin barrier,

C. auris can enter the bloodstream and produce invasive disease. Such breaches commonly

occur in hospitalized patients who routinely undergo vascular catheter placement, gastrostomy

tube insertion, and/or other surgical procedures, all of which correlate with invasive C. auris
infection [4,13]. In addition, the skin of colonized patients (intact or desquamated) regularly

contacts shared medical equipment and other surfaces, which appear to contribute to contin-

ued nosocomial transmission [2,4,14].

What models currently exist to study C. auris skin colonization?

Murine models, widely employed for study of fungal pathogenesis, have also been developed

for examination of C. auris on skin, largely examining ear pinnae and/or shaved back sites

(Fig 1) [15,16]. Huang and colleagues show that C. auris readily colonizes the ear pinnae of

immunocompetent C57Bl/6NTac mice without causing signs of inflammation or infection

[15]. Imaging and microbiologic analysis reveal a reservoir of C. auris residing in deeper skin

layers and within hair follicles [15]. The observation may help explain how patients can remain

persistently colonized with C. auris despite negative testing of the skin surface. Consistent with
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clinical observations of colonization, other clades of C. auris also readily colonize murine pin-

nae, in contrast to C. albicans, which is much less efficient in colonization. In this model, con-

trol of C. auris colonization appears dependent on IL-17 receptor signaling that is triggered by

several lymphoid cell populations, including T-cells and innate lymphoid cells. T-cell and ILC-

deficient mice exhibited greater C. auris skin colonization that persisted for longer than wild-

type mice, pointing to the importance of these immune cells in controlling C. auris coloniza-

tion. In a similarly designed study, Ghannoum and colleagues found C. auris to colonize the

ear pinnae and shaved backs of BALB/c mice without inducing signs of inflammation or evi-

dence of invasive disease [16]. They developed the model to analyze treatment efficacy for topi-

cal antifungals, as was shown for proprietary formulations of terbinafine and clotrimazole. The

group has also adapted a guinea pig skin model of C. auris infection for study of antifungal effi-

cacy [17].

Ex vivo models for both human and porcine skin appear to recapitulate the high capacity of

C. auris to colonize patients [18–20]. In these models, skin remains viable in tissue culture

media for days and C. auris replicates on the epidermal surface [18–20]. C. auris similarly colo-

nizes the surface of both human and porcine skin, forming robust multilayer biofilms [18,20].

C. auris appears to colonize the outer epidermal layers without invading deeper tissues. A vari-

ety of C. auris isolates, including those from different geographic clades, demonstrate compa-

rable capacities to colonize ex vivo skin and grow to burdens over 10-fold greater than C.

albicans. This does not appear to be due to enhanced thermotolerance of C. auris, as both spe-

cies grow similarly at 37˚C [21]. Porcine skin exhibits anatomical resemblance to human skin

Fig 1. Modeling C. auris skin colonization. C. auris spreads rapidly in healthcare settings and proliferates on patient skin, leading to severe disease. Skin

colonization can be modeled using ex vivo human and porcine skin, in vivo using mice, and with reconstructed human epidermis. Each of these models has its

own advantages and limitations. C. auris biofilm growth on the surface of ex vivo human skin was imaged by scanning electron microscopy. Created with

BioRender.com.

https://doi.org/10.1371/journal.ppat.1010730.g001
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and is frequently employed for skin modeling [22,23]. Humans and swine have comparable

skin thicknesses and layers, while rodent skin is much thinner and more loosely attached to

subcutaneous tissue [22]. Mice also differ in aspects of immune response and wound repair

mechanisms [24]. However, murine models offer an expansive number of genetically modified

animals and are more widely available for in vivo study due to size and cost.

In addition to these in vivo and ex vivo models, Brown and colleagues has described a

model of reconstructed human epidermis for study of C. auris-infected wounds. Transcrip-

tional studies revealed changes to host gene expression in a C. auris colonized wound as well

as up-regulated C. auris virulence genes in this 3D coculture system [25]. This skin model is

useful as a commercially available system that utilizes human cells and can be used to uncover

fungal phenotypes as well as host responses.

What have we learned from these models?

Animal models have helped us understand how C. auris persists on the skin of patients despite

routine bathing and decolonization attempts [2,12,26]. Although C. auris exhibits in vitro sus-

ceptibility to one of the most commonly used hospital antiseptics, chlorhexidine, multiple

studies demonstrate that patients can remain colonized following daily topical application of

this agent [2,4,12,26]. This phenomenon has been analyzed using both ex vivo porcine skin

and in vivo mouse models. When used as a topical prophylactic regimen on the skin of mice,

chlorhexidine can prevent C. auris colonization [15]. However, this preventative activity

decreases when animals are challenged with a high burden of C. auris and organisms can colo-

nize the skin. Similarly, chlorhexidine treatment of mice with established colonization reduces

the viable burden (2 log reduction) but does not completely sterilize the site [15]. Chlorhexi-

dine treatment of porcine skin with C. auris colonization also reduces fungal burden, but by a

more modest amount (0.5 log reduction) [19]. This is in contrast to in vitro conditions where

similar chlorhexidine treatment leads to a 2 log reduction and typically eliminates in vitro

regrowth. In both murine and porcine models, C. auris appears to reside in deeper tissues,

such as the hair follicles [15,19]. While chlorhexidine can reduce the burden of C. auris on

skin, it does not appear to eradicate the organism, allowing for fungal regrowth and persistent

colonization, mirroring clinical observations. Other antiseptics including isopropanol, tea tree

oil, and lemongrass oil can improve the activity of chlorhexidine against C. auris on porcine

skin [19]. However, it is unclear if these combinations would improve decolonization attempts

in healthcare settings.

Skin models illustrate the heightened capacity of C. auris to colonize skin compared to

other species in the genus. While other Candida spp. can colonize skin, healthcare-associated

outbreaks due to these species are rare. In mouse and porcine skin models, C. auris proliferates

to burdens 10- to 100-fold greater than C. albicans. Phylogenetically C. auris is closely related

to Candida haemulonii and Candida duobushaemulonii. On both human and porcine skin, C.

haemulonii and C. duobushaemulonii exhibit significant growth defects compared to C. auris,
despite their close genetic similarity [20]. These findings parallel clinical observations that

demonstrate C. auris has an enhanced capacity for growth on patient skin compared to other

Candida species and underscore the utility of these models for mechanistic and therapeutic

study of C. auris colonization.

How can these models be used for future study?

While C. auris skin colonization is not marked by tissue invasion, wounding represents a

mode for organisms to enter deeper tissues and cause invasive disease. Common examples of

wounds in the hospital setting include surgical incisions, burn wounds, and vascular catheter
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insertions. Understanding the interface of C. auris colonization and wound infection may

shed light on strategies to prevent invasive disease. Mechanical wounding can be incorporated

into the mouse, guinea pig, human, and porcine skin models of C. auris colonization models

[25,27,28]. To mimic the wounding produced by catheter insertion, animal models of vascular

catheter infection, such as a rat model, can be utilized for study of C. auris [28]. These and

other models will be important for further dissection of C. auris growth in the setting of noso-

comial skin wounding.

The importance of the skin microbiome in health and disease has become increasingly rec-

ognized over the past several decades. C. auris outbreaks also highlight the need to understand

the skin mycobiome in this context. Huang and colleagues utilized metagenomic sequencing

to characterize the skin microbiome of skilled nursing facility patients during a C. auris out-

break [9]. They found the patients in the outbreak facility were more likely to harbor a variety

of Candida spp., when compared to individual residing in a non-outbreak facility, whose

mycobiomes were more likely to be dominated by Malassezia. In addition, the patients colo-

nized with C. auris exhibited dysbiotic skin microbiomes with abundant nosocomial patho-

gens, including Acinetobacter, Klebsiella, and Enterococcus. Investigation using skin

colonization model systems may shed light on how these organisms or other skin microbiota

influence C. auris, including potential antagonistic or synergistic interactions between

organisms.

While skin models have helped elucidate the process of C. auris colonization, much remains

unknown about this recently emerged pathogen. As C. auris continues to spread and cause dis-

ease in healthcare settings worldwide, understanding the mechanisms of skin colonization and

pathogenicity remains critical. Continual development and use of skin models are important

to further our understanding of C. auris growth in this niche.
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