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Multiple diseases (acute or chronic events) occur together in a patient, which refers to

the disease comorbidities, because of the multi ways associations among diseases.

Due to shared genetic, molecular, environmental, and lifestyle-based risk factors, many

diseases are comorbid in the same patient. Methods for integrating multiple types of

omics data play an important role to identify integrative biomarkers for stratification of

patients into groups with different clinical outcomes. Moreover, integrated omics and

clinical information may potentially improve prediction accuracy of disease comorbidities.

However, there is a lack of effective and efficient bioinformatics and statistical software

for true integrative data analysis. With the availability of the wide spread huge omics,

phenotype and ontology information, it is becoming more and more practical to help

doctors in clinical diagnostics and comorbidity prediction by providing appropriate

software tool. We developed an R software POGO to compute novel estimators of the

disease comorbidity risks and patient stratification. Starting from an initial diagnosis,

omics and clinical data of a patient the software identifies the association risk of disease

comorbidities. The input of this software is the initial diagnosis of a patient and the output

provides evidence of disease comorbidities. The functions of POGO offer flexibility for

diagnostic applications to predict disease comorbidities, and can be easily integrated

to high–throughput and clinical data analysis pipelines. POGO is compliant with the

Bioconductor standard and it is freely available at www.cl.cam.ac.uk/ mam211/POGO/.∼
Keywords: comorbidity, multi-omics, ontology, multiplex network, data integration

Introduction

Exploring disease-disease associations by using multi-omics and clinical information is expected to
improve our current knowledge of disease relationships, which may lead to further improvements
in disease diagnosis, prognosis and treatment (Park et al., 2009). Recent research has increasingly
demonstrated that many seemingly dissimilar diseases have common molecular mechanisms and
strong associations among them (Yu andWang, 2015). Because of the associations among diseases,
multiple diseases (acute or chronic events) occur together in a patient, which is called disease
comorbidities. Comorbidities relationships exist among diseases whenever they impact the same
patients significantly more than expected by chance (Žitnik et al., 2013). It represents the co–
occurrence of diseases or presence of different illness or medical conditions simultaneously or one
after another in the same patient (Hidalgo et al., 2009; Park et al., 2009). The set of sequential
disease associations, which refers to disease trajectories, uncovers time based disease comorbidity
associations. They can also form the basis for understanding mathematical properties of
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co-morbidity networks (Hidalgo et al., 2009; Jensen et al., 2014).
Comorbidity associations can be due to direct or indirect causal
relationships and the shared risk factors among them (Tong and
Stevenson, 2007). If two diseases have comorbidity association,
the incidence of one of them in an individual may increase
the likelihood of another disease occurring. Certain diseases,
such as diabetes and obesity often co-occur in the same patient,
sometimes one being considered a significant risk factor for the
other (Lee et al., 2008). Disease comorbidities are increasingly
placing a greater burden on individuals, societies and health care
services. It is an important factor for better risk stratification of
patients and treatment planning.

Diseases with similar molecular, environmental, and lifestyle
risk factors may be comorbid in individuals or may be risk
factors for another disorder (Davis et al., 2010). Shared genetic,
environmental and lifestyle factors have similar consequences,
increasing the co-occurrence of associated diseases in the same
individual. So, a person diagnosed for a combination of disorders
and exposed to particular environmental, lifestyle and genetic
risk factors may be at a increased risk of developing several other
genetically and environmentally associated diseases (Barabási
et al., 2011). It is now well accepted that phenotypes are
determined by genetic material under environmental influences.
For instance, many well-known and influential lifestyle factors
such as smoking, diet, and alcohol intake are actively related to
diabetes type 1 and type 2, and obesity (Astrup, 2001). Moreover,
many complex diseases, such as cancer and diabetes, are affected
by an integrated effect of environment and epistasis among many
genes (Davis et al., 2010).

Recent evidence has exhibited that microRNAs play key
roles in the evolution and progression of human diseases.
Functionally related microRNAs tend to be associated with
phenotypically similar diseases (Lu et al., 2008). Recently,
genome-wide association studies (gwas) proved to be useful as
a method for exploring phenotypic associations with diseases
(Lewis et al., 2011). Single-nucleotide polymorphisms (SNPs),
a variation of a single nucleotide, are assumed to play a major
role in causing phenotypic differences between individuals. It
has become possible to assess systematically the contribution
of common SNPs to complex diseases. Copy number variations
(CNVs; which involve loss, duplication or rearrangement of
long stretches of DNA in individual’s genome) can cause
various phenotypic abnormalities (Zhang et al., 2009). CNVs
are significantly associated with the risk of complex human
diseases including inflammatory autoimmune disorders, diabetes
etc. (Bae et al., 2011). The development of type 2 diabetes has
also been known to be influenced by molecular, lifestyle and
environmental factors (Kahn et al., 2006).

Most of the research works focussed on a particular data
type, for example gene expression, to find profiles that are
associated with particular disease, prognosis and drug response.
The integrative analysis of various omics data has become
increasingly widespread because each approach has intrinsic
caveats. For instance, important information may be missing
because of false negatives or may be misleading because of false
positives. In addition, by analyzing different types of data in
isolation we may miss important information that results from

the coordinated activity of biological components at various
levels. Some studies indicated that these limitations can be
mitigated by integrating two or more omics datasets. Several
studies (Goh et al., 2007; Lee et al., 2008; Lu et al., 2008; Hu
and Agarwal, 2009; Liu et al., 2009; Park et al., 2009; Schadt,
2009; Jiang et al., 2010; Suthram et al., 2010) reported on
the role of a single omic or phenotypic measure to represent
disease-disease associations (such as shared pathways or gene
ontology). But, one needs to study diverse sources of evidence
including miRNA-based relationships, shared environmental
factors, ontology, SNPs, CNVs and phenotypicmanifestations for
better understanding.

Since, diseases may share many different types of associations
with varying levels of risk for disease comorbidities, a singular
view of associations between diseases is not enough to predict
comorbidities. As more and more ontology, phenotype,
omics and environmental data sets become publicly available,
it is beneficial to improve our understanding of human
diseases and diseases comorbidities based on these new
system-level biological data. Combination of multiple types
of omics, phenotype and ontology data identifies integrative
biomarkers for the stratification of patients with clinical
outcome. Further, behavioral and environmental aspects
should also be considered in order to realize disease-disease
associations. Therefore, it is clear that method and tool for
stratifying patients and prediction of disease comorbidities in
order to reliably predict prognosis or success of treatments are
of critical importance in the field of medicine. We propose
a computational framework that integrates all available,
heterogeneous and relevant data including miRNA-target
interactions, miRNA-disease association, phenotype similarities
of diseases, GO (gene ontology), SNPs, CNVs and known
disease-environmental associations to capture the complex
relationships between phenotypes, genotypes and clinical
comordibidity. Therefore, the underlying goal of this chapter is
to integrate diverse sets of omics, environmental and phenotypic
data, and to develop the comprehensive models of interaction
between the disease associated factors for the prediction
of the patient specific disease comorbidity, and to develop
comorbidity map.

In the case of a complex or even in an unknown case
of diseases, physicians may get assistance to take decision
quickly and efficiently by using effective software tool. We
developed an R software tool POGO to compute statistically
significant associations among diseases, to predict disease
comorbidity risk and to develop comorbidity maps, which
are useful for the physicians and informative for the patients.
To perform the computation of the comorbidity risk, this
software uses clinical, gene expression, miRNA, SNPs, CNVs,
ontology, phenotypic, and environmental data. The inputs of
this software is the initial diagnostic result of the patient. The
goal of this software is to construct comorbidity maps that
incorporate disease interactions, omics, phenotypic and ontology
information, and environmental influences. It is a user-friendly
and interactive personalised disease and disease comorbidity
prediction software. It provides different comorbidity assessment
and stratification; integration of omics information with

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 June 2015 | Volume 3 | Article 28

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Moni and Liò POGO

POGO output data could be used to predict more accurate
survival probability of patients. The functions included in
POGO offer flexibility for applications, and can be easily
integrated into highthroughput analysis pipelines for translation
medicine.

Implementation

POGO provides a number of processing options to find
comorbidity maps of a patient. R bioconductor annotation data
packages “org.Hs.eg.db,” “HPO.db,” and “GO.db” are used for the
annotation and mapping between gene symbol, Entrez id, HPO
term, OMIM id and GO term (Gentleman et al., 2004). POGO is
dependent on “DOSE” and “GOSemSim” bioconductor packages
for the mapping with different annotation (Yu and Wang, 2015).
We used the mapping manually constructed by Goh et al. (2007)
and Park et al. (2009) to convert OMIM IDs to ICD-9 codes.
A set of differential expressed gene symbols/Entrez ids/OMIM
id/miRNA ids/HPO terms/GO terms/3 or 5 digit ICD-9-CM
code of any disease can be used as input of POGO functions. Flow
diagram of POGO software is shown in Figure 1.

GO–disease Association
GO enables us to analyse disease association by adopting
semantic similarity measures to expand our knowledge of the
relationships among different diseases. We downloaded the
ontology file and annotations of Homo sapiens from the Gene
Ontology database1 in April 2014. In total, we collected 171,888
annotations between 13,166 genes and 10,787 GO terms. We
developed a function comorbidityGO for the computation
of GO based disease comorbidity in an ontology sense. It is a
GO-based enrichment analysis function to measure association
among diseases and to explore their functional associations from
gene sets. We implemented a semantic similarity measurement
to quantify the association between gene ontology and their
associated diseases. The semantics of GO terms are encoded into
a numeric format and the different semantic contributions of the
distinct relations are considered. Moreover, hypergeometric test
is applied to a gene set to calculate the significance of a GO term,
and the significant GO term sets are selected according to their
p-values. Gene set enrichment analysis are used for predicting

1http://www.geneontology.org.

FIGURE 1 | Overview framework of POGO software. (1) POGO takes

as input preliminary diagnosis data of a patient and check the validation

of the input. (2) It preprocesses and updates required databases,

performs statistical computation (hypergeometric and semantic similarity

tests), and calculates relative risk between diseases. (3) Comorbidity

scores and disease network are provided as a result to the user. (4)

Multiplex model is applied for data integration to produce integrated

comorbidity network as (5). (6, 7) Visualization of the comorbidity map

and survival probability of patient considering comorbidity. Env is used

to indicate environment.
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the significance of gene–disease and disease–disease associations.
comorbidityGO function operates by using either of the
following input: GO id, disease OMIM id, a list of gene symbols,
Entrez gene ids or ICD-9 code of the patient disease. This
function provides disease comorbidity associations and network
based on the GO. comorbidityGO requires two parameters:
id list and id type. An example and its output is given in
Figure 2.

1 > comorbidityGO( "189907" , "OMIM" )

2
3 OMIM GO EVIDENCE ONTOLOGY PATH SYMBOL ENTREZID ICD9CM

4 189907 GO:0000122 IEA BP 04950 TCF2 6928 250

5 189907 GO:0001714 IEA BP 04950 BCKDHB 594 270.3

6 189907 GO:0005634 IDA CC 04950 TCF2 6928 189

7 189907 GO:0044212 IEA MF 04950 TCF2 6928 593.9

8 ... ...

Phenotype–disease Association
POGO integrated HPO database that has integrated HPO terms
to represent patients phenotypic abnormalities (Robinson et al.,
2008). The OMIM (McKusick, 2007) is also incorporated with
POGO, and associated to HPO by annotations from http://www.
human-phenotype-ontology.org. The associations are generated
using the information about the phenotypes of a particular
syndrome and the corresponding genes that are known to
cause this syndrome when mutated. With the development of
omics techniques, the number of uncovered gene-phenotype

associations has increased notably over the last few years. In
our approach, phenotypes are linked with diseases through
associating phenotype-gene with gene-disease bipartite graphs
by applying neighborhood-based methods. All the paths from
a phenotype to a disease are explored by considering causative
genes to assign a weight based on frequency and linked
the phenotype to the disease in a new phenotype-disease
bipartite graph. Then, we introduced a Bidirectionally-induced
Importance Weight prediction method to phenotype-disease
bipartite graph in order to approximate the weights of
the edges of diseases with phenotypes, by considering link
information from both sides of the phenotype-disease bipartite
graph. The construction of the phenotype network is based
on the phenotypic similarity score among different disease
phenotypes. In the phenotype network, the association between
any two different disease phenotypes was fixed when their
phenotypic similarity score exceeded the significance threshold.
For visualization, POGO includes links between disease pairs for
which the co-occurrence is notably greater than the random
expectation based on phenotype prevalence of the diseases.
The function comorbidityHPO of POGO package is able
to take input an OMIM id/3 or 5 digit ICD-9-CM code of
a disease or a list of gene symbols/Entrez ids and provides
comorbidity pattern of diseases based on the phenotype disease
associations. comorbidityHPO requires two parameters: id
list and id type. An example and its output is given in
Figure 3.

FIGURE 2 | Output figure and statistics of >comorbidityGO

("189907", "OMIM"). The OMIM disease id of the “Diabetes mellitus,

insulin-dependent” is 189907, which is used as input to the comorbidityGO.

We show disease comorbidity for the Diabetes mellitus through the

GO-disease associations. The size of the nodes represents the degree of

associations. ICD-9 codes are used to represent disease categories.
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1 > comorbidityHPO( "79001" , "Entrez" )

2
3 ENTREZID SYMBOL OMIM PATH GO

4 79001 VKORC1 122700 NA GO:0005789

5 79001 VKORC1 122700 NA GO:0005789

6 79001 VKORC1 607473 NA GO:0005789

7 79001 VKORC1 608547 NA GO:0047057

8 79001 VKORC1 608547 NA GO:0047057

9 ... ...

10
11 HPID HPName

12 HP:0000118 Phenotypic abnormality

13 HP:0012200 Abnormality of prothrombin

14 HP:0001892 Abnormal bleeding

15 HP:0003256 Abnormality of the coagulation cascade

16 HP:0010989 Abnormality of the intrinsic pathway

17 ... ...

Disease–SNPs Association
At present there are only a few databases of genetic variations
associated with diseases. Despite the needs for analyzing SNP
and disease association, most of the existing databases are based
only on functional variants at specific locations on the genome,
or deal with only a few genes correlated with disease. There
is no integrated resource to widely support genes, SNPs, and
disease associated information. Therefore, we integrated data
from different databases (dbSNP Sherry et al., 2001, HGVbase
Fredman et al., 2002, JSNP Hirakawa et al., 2002, GAD Becker
et al., 2004 and OMIMMcKusick, 2007) and literature Yang et al.,
2008 for studying SNPs-diseases associations. We integrated
the information to present the interrelationships among SNPs
located in genes, genes associated with diseases, and SNPs
associated with diseases. It can aid the understanding of the genes
which cause diseases and the impact of SNPs on diseases. For
associated information among genetic variation and diseases, we
built a database, SNP, which is a combined database of genes,
genetic variation and diseases for the utilization in POGO. Two
diseases are connected if they share at least one SNP that is
statistically significant dysregulated to the disease related gene.
Our software is designed to capture the relationships between
SNPs associated with disease and disease-causing genes. POGO
computes disease-disease association by adopting semantic
similarity measures and hypergeometric test. Neighborhood
based benchmark method is used to identify the comorbidity
pattern among diseases (Goh et al., 2007). We built the associated
network as a bipartite graph; each common neighbor node is
selected based on the Jaccard coefficient method (Goh et al.,
2007). comorbiditySNP function of POGO takes as input any
of these three options: a list of gene symbols, a list of Entrez
gene ids, SNPs ids or an OMIM id. This function provides
disease comorbidity associations and network based on the
SNPs-gene-disease associations. comorbiditySNP requires
two parameters: id list and id type. An example and its output
is given in Figure 4.

1 > inputList<-c("TNFSF11", "TNFRSF11B", "TNFRSF11A", "A2M", "TGFBR3")

2 > comorbiditySNP(inputList, "Symbol")

3
4 SYMBOL OMIM ENTREZID PATH

5 TNFRSF11A 174810 8792 04060

6 TNFRSF11A 602080 8792 04060

7 TNFRSF11A 603499 8792 04060

8 TNFRSF11B 239000 4982 04060

9 TNFRSF11B 239000 4982 04060

10 ... ...

11
12 GO SNPID DiseaseName

13 GO:0043123 rs884205 Bone mineral density

14 GO:0002250 rs3018362 Pagets disease

15 GO:0043123 rs694419 Serum albumin level

16 GO:0007165 rs2062375 Osteoporosis

17 GO:0007165 rs12679857 Type 1 diabetes

18 ... ...

Disease–environment Association
The analysis of environment-disease associations is important
to investigate the molecular mechanism of a disease. POGO
integrated “etiome,” human disease etiological factors database
(Liu et al., 2009), and developed a function comorbidityENV
to predict the comorbidity risk based on disease environment
association (Liu et al., 2009). Integrating genetic, nutritional,
behavioral and environmental factors results in the “etiome,”
which they defined as the comprehensive compendium of disease
etiology (Liu et al., 2009). They used natural language processing
to look for annotations in articles, and thus creating associations
between diseases and environmental information. “etiome” has
been developed with the identified 3342 environment related
factors that are associated with 3159 complex diseases (Liu
et al., 2009). They also identified 1100 genes associated with
1034 diseases from the genetic association studies database
GAD (Becker et al., 2004). GAD has 863 diseases information
with both genetic and environmental etiological factors.
By using all these information, POGO is able to develop
comorbidity map by incorporating relations between the diseases
themselves as well as relations to environmental factors. This
software identifies the disease–disease associations using the
associations among environment and their associated diseases.
Hypergeometric test is used for extracting associations among
environment and diseases; graph topological structure is used
to measure the similarity between diseases (Wang et al., 2007).
comorbidityENV function takes as input any of the following
options: a list of gene symbols, a list of Entrez gene ids
or an OMIM id. This function provides disease comorbidity
associations and network based on the gene-environment-disease
associations. comorbidityENV requires two parameters: id
list and id type. An example and its output is given in
Figure 5.

1 > comorbidityENV( "SDHB" , "Symbol" )

2 SYMBOL OMIM ENTREZID PATH GO EVIDENCE

3 SDHB 115310 6390 00020 GO:0005515 IPI

4 SDHB 115310 6390 00020 GO:0005515 IPI

5 SDHB 115310 6390 00020 GO:0005515 IPI

6 SDHB 612359 6390 05016 GO:0051539 ISS

7 SDHB 612359 6390 05016 GO:0051539 ISS

8 ... ...

9
10 ONTOLOGY DiseaseName EnvironmentImpact

11 MF Bone Neoplasms Bone Cysts

12 MF Bone Neoplasms Bone Marrow Transplantation

13 MF Bone Neoplasms HIV Infections

14 MF Bone Neoplasms Kidney Transplantation

15 MF Bone Neoplasms Heart Transplantation

16 ... ...
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FIGURE 3 | Output figure and statistics of > comorbidityHPO

("79001", "Entrez"). The Entrez disease id “79001” is used as input

to the comorbidityHPO. We show an example of disease comorbidity

map for this gene through the phenotype-disease associations. Here the

square nodes represent the phenotypes and spheres represent OMIM

disease ids.

FIGURE 4 | Output figure and statistics of >comorbiditySNP

(c("TNFSF11", "TNFRSF11B", "TNFRSF11A", "A2M", "TGFBR3"),

"Symbol").We show an example of disease comorbidity through the

SNPs-gene-disease associations. Here the square nodes represent the genes

symbols, circles represent SNPs ids, and spheres represent diseases names.

The size of the nodes represents the degree of associations.
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miRNA–disease Association
MicroRNA (miRNA) performs its regulatory function through
its target genes. Two diseases are connected if they share at
least one gene and/or one miRNA that is statistically significant
dysregulated (Goh et al., 2007). miRNAs with similar functions
tend to be associated with diseases with similar phenotypes, and
vice versa (Lu et al., 2008). Based on these hypothesis, we used
a framework to identify miRNA-disease associations through the
direct identified association from the miRNA-disease association
database and indirect association from the combined database
of miRNA-target and gene-disease associations. POGOmakes use
of microRNA-target databases, miR2Disease (Jiang et al., 2009),
HMDD (Li et al., 2014), and gene-disease association databases,
OMIM (McKusick, 2007), to explore the mRNA and miRNA
association between diseases. We filtered out invalid miRNA-
disease associations with incorrect disease names or miRNA
names. We used National Library of Medicine2 to obtain the
correct disease names. We used miRBase to get the correct
miRNA names (Kozomara and Griffiths-Jones, 2011). For a
miRNA-disease pair, firstly, POGO maps the causal genes of
the disease. It uses a p-value to measure the significance of
the association between the miRNA and the disease. OMIM
diseases ids are mapped with ICD-9-CM codes based on the
literature (Park et al., 2009). Neighborhood based benchmark
method is used to identify the comorbidity pattern among
diseases. We build the associated network as a bipartite graph;
each common neighbor node is selected based on the Jaccard
coefficient method (Goh et al., 2007). comorbiditymiRNA
function of POGO takes as input any of the following options:
a list of gene/miRNA symbols, a list of Entrez gene ids, an
ICD-9 code, an GO id or an OMIM id. This function provides
disease comorbidity associations and network based on the
disease-miRNA associations. comorbiditymiRNA requires
two parameters: id list and id type. An example and its output
is given in Figure 6.

1 > comorbiditymiRNA( "TNFRSF11A" , "Symbol" )

2
3 ENTREZID miRNAID DiseaseName SYMBOL

4 8792 hsa-miR-432 Duchenne muscular dystrophy (DMD) TNFRSF11A

5 8792 hsa-miR-324-3p primary biliary cirrhosis (PBC) TNFRSF11A

6 8792 hsa-miR-324-3p lupus nephritis TNFRSF11A

7 8792 hsa-miR-432 miyoshi myopathy (MM) TNFRSF11A

8 8792 hsa-miR-664 multiple sclerosis TNFRSF11A

9 8792 hsa-miR-432 nemaline myopathy (NM) TNFRSF11A

10 ... ...

11
12 GO EVIDENCE ONTOLOGY OMIM PATH

13 GO:0002250 IMP BP 174810 5323

14 GO:0002250 IMP BP 174810 5323

15 GO:0009897 IDA CC 174810 4060

16 GO:0009897 IDA CC 602080 5323

17 GO:0002250 IMP BP 602080 4380

18 GO:0002250 IMP BP 612301 5323

19 ... ...

CNV–disease Association
Copy number variants are hypothesized to cause diseases
through several mechanisms. Sometimes, the combination of
two or more copy number variants can produce a complex

2http://www.nlm.nih.gov/.

disease. Additionally, complex diseases might occur when
copy number variants are combined with other genetic and
environmental factors (McCarroll and Altshuler, 2007). Diseases
might be caused by copy number variants due to both additional
copies of sequence (duplications) and losses of genetic material
(deletions). We used Database Genomic Variants (DGV3)
database and developed a function comorbidityCNV
to predict the comorbidity risk based on CNVs-disease
association (MacDonald et al., 2014). POGO makes use of DGV
and OMIM (McKusick, 2007) to explore the genetic association
between diseases. Two diseases are connected if they share
similar copy number variations. OMIM diseases ids are mapped
with ICD-9-CM codes based on the literature (Park et al., 2009).
Neighborhood based benchmark method is used to identify
the comorbidity pattern among diseases (Goh et al., 2007). We
build the associated network as a bipartite graph; each common
neighbor node is selected based on the Jaccard coefficient
method (Goh et al., 2007). comorbidityCNV function of
POGO takes as input any of the following options: a list of gene
symbols, a list of Entrez gene ids or an OMIM id. This function
provides disease comorbidity associations and network based
on the disease-CNV associations. comorbidityCNV requires
two parameters: id list and id type. An example and its output is
given in Figure 7.

1 > comorbidityCNV("602228", "OMIM")

2
3 SYMBOL OMIM ENTREZID PATH GO EVIDENCE

4 TCF7L2 602228 6934 04310 GO:0005515 IPI

5 TCF7L2 602228 6934 04310 GO:0005515 IPI

6 TCF7L2 602228 6934 04310 GO:0005515 IPI

7 TCF7L2 602228 6934 04310 GO:0005515 IPI

8 TCF7L2 602228 6934 04310 GO:0005515 IPI

9 ... ...

10
11 ONTOLOGY CNV.ID Chr Start End VarSubtype

12 MF nsv7211 10 108617417 118351740 Inversion

13 MF nsv7553 10 114845707 114890646 Loss

14 MF esv2074123 10 114876971 114877374 Deletion

15 MF nsv24033 10 114877162 114877217 Loss

16 MF nsv527837 10 114888608 114911079 Loss

17 ... ...

Integrated Comorbidity Prediction Using
Multiplex

As a single source of genomic data is prone to bias,
incompleteness and noise, integration of different genomic data
sources is designed to accomplish reliable disease comorbidities
prediction. Systematic integration and comparison of multiple
layers of information is required to provide deeper insights
into biological systems. We incorporated a multiplex network
model into POGO to integrate multiple omics, environmental
and phenotypic information. To leverage the potential of
multi-omics studies, exploratory data analysis methods that
provide systematic integration and comparison of multiple
layers of omics information are required. We applied our
multiplex method of integrating different types of data

3http://dgv.tcag.ca/.
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FIGURE 5 | Output figure and statistics of >comorbidityENV("SDHB", "Symbol"). The gene symbol “SDHB” is used as input to the comorbidityENV.

We show disease comorbidity map for this gene input through the disease-environmental associations. The size of the nodes represents the degree of associations.

by modeling similarities between diseases in a multiplex
network. The multiplex network allows us to model diseases
by representing each data type as a layer in the multiplex.
Importantly, this allows us to capture the interactions between
the various types of data, such as the interdependence of
mRNA expression and signaling pathways with clinical
information of the disease comorbidities. We developed a
function comorbidityMultiplex to predict the integrated
comorbidity risk. comorbidityMultiplex function takes
as input any number of layers information. This function
provides integrated comorbidity associations and network. As
an example of integrating with this function we considered three
different types of data for three layers of our multiplex network:
mRNA-disease, pathway-disease and clinical association
information. An example and its output is given in Figure 8.

1 > input = c("S1.txt", "S2.txt", "S3.txt")

2 > sv<-c(1, 1, .5) #strength value of each layer

3 > comorbidityMultiplex(input, sv)

4 ... ...

5 $aggG

6 ICD.155 ICD.157 ICD.199 ICD.286 ICD.287 ICD.571 ICD.572 ICD.574

7 ICD.155 0.0 20.0 14.0 12.0 9.5 12.0 22.5 2.0

8 ICD.157 20.0 0.0 12.5 5.5 14.0 3.0 5.0 2.5

9 ICD.199 14.0 12.5 0.0 2.0 7.5 2.0 3.0 1.5

10 ICD.286 12.0 5.5 2.0 0.0 16.5 4.5 7.5 1.5

11 ICD.287 9.5 14.0 7.5 16.5 0.0 6.5 7.5 1.5

12 ICD.571 12.0 3.0 2.0 4.5 6.5 0.0 27.5 2.5

13 ICD.572 22.5 5.0 3.0 7.5 7.5 27.5 0.0 2.5

14 ICD.574 2.0 2.5 1.5 1.5 1.5 2.5 2.5 0.0

15 ... ...

In this example, we considered association information of 10
diseases, which are the output of other functions of POGO. The
ICD-9 code of the 10 diseases are 155, 157, 199, 286, 287, 571, 572,
574, 576, and 782. POGO identified disease-disease comorbidity
associations network based on the gene-disease association and
pathway-disease association, which are shown in Figures 8A,B

respectively. It is notable that there is no shared pathway for the
disease 572 with the 9 other diseases. The comorbidity network
based on the clinical information is shown in Figure 8C. We
used all these three association networks for the input of our
multiplex network (see Supplementary Tables S1–S3). In this
case, the multiplex network is comprised of three layers, each
with 10 nodes. In each layer, each node has a weighted undirected
edge connecting it to every other node in the same layer. In
addition, each disease is connected to itself in every other layer
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by the strength of interaction between the data types. So the
multiplex network created using POGO is formed of three layers
using the mRNA, pathway and clinical data. Each layer provided
information on the same diseases. This result is a 30 × 30
multiplex matrix, since a multiplex matrix is formed of n × h
rows and columns where n is the number of patients and h is
the number of layers. Our software POGO can find the disease
comorbidities by integrating all the descriptive layers, taking into
account the properties of the multiplex. All these three categories
association data are used as input of our multiplex network and
predicted the integrated disease comorbidities network as shown
in the Figure 8D.

Comorbidity Mapping
Patient medical records contain important clarification regarding
the co-occurrences of diseases affecting the same patient.
Two diseases are connected if they are co-expressed in a
significant number of patients in a population (Hidalgo et al.,
2009). To estimate the correlation starting from disease co-
occurrence, we need to quantify the strength of the comorbidity
risk. We used two comorbidity measures to quantify the
strength of comorbidity associations between two diseases: (i)
the Relative Risk (fraction between the number of patients
diagnosed with both diseases and random expectation based on
disease prevalence) as the quantified measures of comorbidity
tendency of two disease pairs; and (ii) φ-correlation (Pearsons
correlation for binary variables) to measure the robustness of
the comorbidity association (Moni and Lio, 2014). We used the
relative risk RRij and φ-correlation φij of observing a pair of
diseases i and j affecting the same patient. The RRij allows us
to quantify the co-occurrence of disease pairs compared with
the random expectation. When two diseases co-occur more
frequently than expected by chance, we will get RRij > 1 and
φij > 0. The two comorbidity measures are not completely
independent of each other. We included links between disease
pairs for which the co-occurrence is notably greater than the
random expectation based on population prevalence of the
diseases. Clinical information is from the http://www.icd9data.
com in the ICD-9-CM format and collected from Hidalgo et al.
(2009). The function comorbidityMap of POGO package is
able to take input an OMIM id/3 or 5 digit ICD-9-CM code
of a disease or a list of gene symbols/Entrez ids and provides
comorbidity map of the patient based on the relative risk and φ-
correlation. comorbidityMap requires two parameters: id list
and id type. An example and its output is given in Figure 9.

1 > comorbidityMap("042", "ICD9")

2 ICD.9.D1 ICD.9.D2 Prevalence.D1 Prevalence.D2 Co.occurrenceD1D2 RRij

3 "011" "018" 16646 639 110 134.842507

4 "011" "031" 16646 3693 807 171.170619

5 "011" "042" 16646 1067 64 46.984060

6 "011" "112" 16646 141325 752 4.168058

7 "011" "117" 16646 9094 179 15.418178

8 ... ...

9
10 CI1 CI2 phi t

11 131.740584 138.0174686 0.0334998 12.600646

12 170.628511 171.7144495 0.1024054 38.700702

13 45.141791 48.9015140 0.0148728 5.591768

14 4.153894 4.1822713 0.0118565 4.457522

15 15.199244 15.6402660 0.0136184 5.120042

16 ... ...

Methods

Diseases are connected when they share at least one significant
dysregulated gene/miRNA/SNP/CNV/GO/phenotype or
environmental factor. Let a specific set of associated diseases
D and a set of significant biomarker genes G, gene-disease
associations attempt to find whether gene g ∈ G is associated
with disease d ∈ D. If Gi and Gj are the sets of significant
up and down dysregulated genes associated with diseases i
and j respectively then the number of shared dysregulated
genes (n

g
ij) associated with both diseases i and j is as

follows:

n
g
ij = N(Gi ∩ Gj) (1)

We calculated the similarity between a pair of diseases based
on the number of entities (gene, SNP, CNV, miRNA, HPO
or environmental factor) that shared between them. For an
instance, in case of gene-disease association, we generated a
list of genes known to be associated with each disease, and
the disease similarity (association) was calculated based on how
many genes are shared between a pair of diseases. The similarity is
defined as

Sim(i, j) =
N(Gi ∩ Gj)√

N(Gi) ∗
√

N(Gj)
, (2)

where N(Gi) and N(Gj) are the number of genes linked to
disease i and j respectively, and N(Gi ∩ Gj) is the number
of genes associated to both disease i and j. SNP-sharing,
CNV-sharing, miRNA-sharing, HPO-sharing and environmental
factors were also generated with the same approach used for
gene-sharing.

Hypergeometric test is implemented for enrichment analysis
(Subramanian et al., 2005). It is used to assess whether the
number of selected genes or ontology associated with disease
is larger than expected. To determine whether any disease
annotate a specified list of genes at frequency greater than
what would be expected by chance, POGO calculates a p-
value using the hypergeometric distribution. Significance of
the enrichment analysis is assessed by the hypergeometric test
and the p-value is adjusted by false discovery rate (FDR).
The hypergeometric p-value is calculated using the following
formula:
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FIGURE 6 | Output figure and statistics of >

comorbiditymiRNA( "TNFRSF11A", "Symbol" ). The gene

Symbol TNFRSF11A is used as input to the comorbiditymiRNA.

We show the comorbidities originated using the miRNA-disease

associations information. The size of the nodes represents the

degree of associations.

p− value = 1−
k− 1
∑

i= 0

(M
i

)(N−M
n− i

)

(N
n

)
(3)

where N is the total number of reference genes,M is the number
of genes that are associated to the disease of interest, n is the size
of the list of genes of interest and k is the number of genes within
that list which are associated to the disease. In case of GO term
the p-value reports the likelihood of finding n genes annotated
with a particular GO term in the set of interest by chance alone,
given the number of genes annotated with that GO terms in the
reference set. A biological process, molecular function or cellular
location which are represented by a GO term is called enriched if
the p-value is less than 0.05.

The co-occurrence indicates the number of common
miRNAs/genes/ontology/SNPs/CNVs between two diseases.
We applied the Jaccard index or Jaccard similarity coefficient,
which is known as a standard method for comparing the
similarity between two sets of entities. Each common neighbor
is calculated based on the Jaccard Index method to calculate the
strength of co-occurrence, where association score for a node
pair is as:

Assi,j =
N(Gi ∩ Gj)

N(Gi ∪ Gj)
(4)

We improved the performance of the association scores based
on the Adamic and Adar measure (Adamic and Adar, 2003),
which weights the impact of neighbor disease nodes inversely
with respect to their total number of connections as follows:

AssScore(i, j) =
∑

n∈N(Gi∩Gj)

1

log(degree(n))
(5)

This inverse frequency technique is based on the principle that
rare relationships are more specific and have more impact on the
disease association.

Finally POGO calculates disease-disease interaction score. The
score refers to the strength of the interaction between the diseases
based on the protein interaction. The interaction score (φij) is
assigned for each disease pair i and j as follows:

φij = log(n
g
ij ∗ N + Z)− log(NGi ∗ NGj + Z) (6)

Here, NGi and NGj are the total number of genes for the disease,

i and j, respectively. n
g
ij is the total number of common genes

between the two diseases. N is the size of entire proteins involved
in the disease protein network. Z is a constant (Z = 1) introduced
to avoid out-of bound errors, if NGi = NGj = n

g
ij = 0.
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FIGURE 7 | Output figure and statistics of > comorbidityCNV

("602228", "OMIM"). The OMIM disease id of the “Type 2 Diabetes

mellitus” is 602228, which is used as input to the comorbidityCNV.

We show disease comorbidity for the “Type 2 Diabetes mellitus”

through the CNVs-disease associations. Here the light red color nodes

represent the OMIM disease ids and light green color nodes represent

the CNVs ids. The size of the nodes represents the degree of

associations.

FIGURE 8 | Disease comorbidities network are constructed by

applying the multiplex network model. Each disease is denoted by the

ICD-9-CM code. (A) is a comorbidity association network based on the gene

disease association data. (B) is a comorbidity association network based on

the pathway disease association data. (C) is a comorbidity association

network based on the clinical information. (D) is a comorbidity association

network based on the integrated multiplex network output of the input of

(A–C) as layers of the model.
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FIGURE 9 | Output figure and statistics of >comorbidityMap

("042", "ICD9"). The icd-9-CM code of the HIV is 042, which is

used as input to the comorbidityMap. We show disease comorbidity

for the HIV infection (042) with other diseases, whose ICD-9-CM codes

are 042.0 (with specified infections), 042.1 (causing other specified

infections), 042.2 (with specified malignant neoplasms), 042.9 (acquired

immunodeficiency syndrome, unspecified), 043 (HTLV-III/LAV infection),

043.1 (HTLV-III/LAV infection causing specified diseases of the central

nervous system), 043.3 (HTLV-III/LAV infection causing other specified

conditions), 043.9 (acquired immunodeficiency syndrome-related complex

with or without other conditions), 044 (Other HTLV-III/LAV conditions),

044.9 (HTLV-III/LAV infection, not otherwise specified), 088

(arthropod-borne diseases), 117 (mycoses), 121.3 (fascioliasis), 130

(toxoplasmosis), 130.0 (meningoencephalitis due to toxoplasmosis), 130.8

(multisystemic disseminated toxoplasmosis), 136 (unspecified infectious

and parasitic diseases), 136.3 (pneumocystosis), 137.1 (late effects of

central nervous system tuberculosis), 176 (Kaposi’s sarcoma), 299

(pervasive developmental disorders), 321 (type 2 diabetes mellitus),

363.10 (disseminated chorioretinitis), 429 (ill-defined descriptions and

complications of heart disease), 795 (nonspecific abnormal cytological,

histological, immunological, and dna test findings), and 795.8 (abnormal

tumor markers). POGO uses color rectangle to classify different disease

codes and the size of the rectangle is used to represent the severity of

that disease.
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The expected result of φij is positive, when the disease pair is
over-represented and negative, when the disease pair is under-
represented. Co-occurrence also indicates the number of shared
patients. So, we used weighting scheme to avoid the bias based
on disease prevalence. The mutual information weight W(di, dj)
between two diseases di and dj is defined as

W(di, dj) = log

(

p(di, dj)

p(di) ∗ p(dj)

)

(7)

where the numerator is the observed co-occurrence (joint
probability) and the denominator is the random expectation of
co-occurrence (product of marginal probabilities).

The use of semantic similarity between biological processes
to estimate disease association could enhance the identification
and characterization of disease association besides identifying
novel biological processes involved in the diseases. Graph-
based methods using the topology of GO graph structure is
used to compute semantic similarity. We adapted the approach
for computing the functional similarity of GO terms from
Wang et al. (2007, 2010). Semantic values of GO term are
measured according to the DAG of corresponding disorders.
Semantic similarity for any pair of GO term is calculated based
on disease semantic value. Formally, a GO term a can be
represented as a graph DAGa = (a,Ta,Ea), where Ta is the
set of all GO terms in DAGa, including term a itself and all
of its ancestor terms in the GO graph, and Ea is the set of
corresponding edges that connect the GO terms in DAGa. To
encode the semantic of a GO term in a measurable format
to enable a quantitative comparison, Wang firstly defined the
semantic value of term a as the combined contribution of
all terms in DAGa to the semantics of term a (Wang et al.,
2007). Terms closer to term a in DAGa contribute more to its
semantics (Wang et al., 2010). Thus, the contribution of a GO
term t in DAGa is defined to the semantics of GO term a as
the S value of the term t related to term a, Sa(t), which can be
calculated as:

Sa(t) =
{

Sa(a) = 1 if t= a
Sa(t) = max{we ∗ Sa(t′)|t′ ∈ children of (t)} if t 6= a

(8)
where we is the semantic contribution factor for edge e (e ∈ Ea)
linking term t with its child term t

′
. It is assigned between 0

and 1 according to the types of associations. Term a contributes
to its own is defined as one. Then the semantic value of GO
term a, SV(a) and the semantic value of GO term b, SV(b) are
calculated as:

SV(a) =
∑

t∈Ta
Sa(t), SV(b) =

∑

t∈Tb

Sb(t) (9)

Thus, for the given two GO terms a and b, the semantic similarity
between these two terms is defined as:

Ssim(a, b) =
∑

t∈Ta∩Tb

Sa(t)+ Sb(t)

SV(a)+ SV(b)
(10)

where Sa(t) is the semantic value of term t related to GO term
a and Sb(t) is the semantic value of GO term t associated to GO
term b. The semantic similarity between two sets of GO terms A
and B is calculated as

Sim(A,B) = 1

|A| + |B|

(

∑

a∈A
Sim(a,B)+

∑

b∈B
Sim(b,A)

)

(11)

where |A| and |B| represent the numbers of terms in sets A and B
respectively.

To obtain more insight into the shared risk factors mechanism
of associated human genetic diseases, mapping was implemented
from disease phenotype to gene based on the disease-gene
association.With the integration of huge numbers and diverse set
of experimental data, prediction of gene-phenotype interactions
has emerged as a very productive subfield with great importance
for the understanding of human disease. Given a specific set of
human phenotype D, a set of human genes G and evidence E,
these approach attempt to find whether gene g ∈ G is associated
with phenotype d ∈ D. It is notable that E could be gene-disease
associations obtained through genetic studies. To quantitatively
explore the phenotypic similarity between different phenotype
records Pi and Pj, according to Zhang et al. (2010) we defined
the association measure as cosine of the angle between their
corresponding phenotype feature vectors using the following
formula:

Sim(Pi, Pj) =
∑N

k= 1 wk,i ∗ wk,j
√

∑N
k= 1(wk,i)2 ∗

√

∑N
k= 1(wk,j)2

(12)

whereN is the total mapping concepts,wk,i andwk,j were the k-th
term, weight in phenotype record Pi and Pj, respectively.

For each of the phenotype clusters, mapping was implemented
from disease phenotypes to their associated disease genes based
on the disease-gene association list in the GAD and OMIM
databases. Therefore, we can get the corresponding gene subsets
mapped to different phenotype clusters. OMIM disease ids were
mapped to the hierarchy of HPO to retrieve the matched HPO
terms. Then, a new HPO similarity is calculated for each pair of
phenotypes by Jaccard similarity Index

SimHPO = |P1 ∩ P2|
|P1 ∪ P2| (13)

where P1 and P2 are the set of the matched HPO terms of the two
phenotypes, respectively.

The way to assign terms to objects is to add annotations. In
our case, the entities represent genes and terms corresponding to
phenotypes (HPO terms) or biological processes (GO terms). The
specificity of the terms associated with genes allows us to calculate
the most significant relationships between them, which use to be
related to its proximity to the root.

Each disease is generally mapped to multiple phenotypic
features. In order to compute associations between two diseases,
d1 and d2, we adapt a method previously developed for
estimating protein similarity with GO (Pesquita et al., 2008),
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where each feature of d1 is matched with the most similar
feature of d2 and the average is taken over all such pairs of
features:

sim(d1 → d2) = avg

[

∑

s∈d1
max
t∈d2

sim(s, t)

]

(14)

Equation (14) is not symmetric with respect to d1 and d2, the final
similarity metric is defined as the mean of Equation (14) taken in
both orientations:

sim(d1, d2) = 1

2
∗ sim(d1 → d2)+ 1

2
∗ sim(d2 → d1) (15)

This metric is used to indicate the similarity between
two disorders, each of which is mapped to multiple HPO
terms.

Multiplex Network Model for Data Integration
We developed multiplex network model to integrate diverse set
of omics and clinical data to predict disease comorbidities. It
is a special type of multilayered network which is called the
multiplex network, in which the same nodes are present in all
layers, i.e., V1 = V2 = ...... = VM = V and where nodes can
only have interlayer connections to their counterpart nodes, i.e.,
Eαβ = (v, v); v ∈ V for all α, β ∈ 1, ...,M, α 6= β (Boccaletti
et al., 2014).

Let’s consider that we have a set of associated diseases. Each
pair of diseases has different types of associated data describing
them in some way. In each data type, diseases have some level

FIGURE 10 | Multiplex formed by three input layers, each representing

a data type, and four nodes, each representing a disease. The 4th layer

is an output layer, which is an integrated layer of the 3 input layers.

of association to each other and each data type has a level of
dependency or interaction. Each layer in the multiplex represents
a particular type of data with each node representing a disease
in each layer of the multiplex. The edges between nodes in
each layer represent a measure of association between diseases
in corresponding to the level of similarity between diseases for
the particular data type which the layer represents. The strength
of interaction between each data type can be modeled by a
weight connecting each layer in the multiplex. Figure 10 shows
an example with three layers (data types) and four diseases.
In this case we can model the association among diseases in
a multiplex network that can be represented in a matrix as
follows:

M =











A1 ω12I . . . ω1hI

ω21I A2 . . . ω2hI

...
...

. . .
...

ωh1I ωh2I . . . Ah











, (16)

where h is the number of layers,Ai is the adjacencymatrix of layer
i, ωij is the interlayer interaction strength from layer i to j and I is
the corresponding identitymatrix. The strength between layers in
the multiplex, ω, represents a measure of dependency or strength
of interaction between the layers. The edge weights between
nodes represent a measure of similarity between nodes in the
same layer, normalized between zero and one. Therefore, it is
natural for the values of ω to represent a measure of dependence
between zero and one, where zero and one indicate independence
and total dependence between the layers respectively. In our
case the strength of interaction is undirected and symmetric, i.e.,
ωi,j = ωj,i.

To compute an overall disease similarity between patients
given all sets of data, we can find the disease similarity by
aggregating the descriptive layers in some way, taking into
account the properties of the multiplex. Estrada and Gómez-
Gardeñes (2014) defined the aggregate network, Ĝ, of a multiplex
network as follows. Let G1 = (V1,E1),G2 = (V1,E2), ...,Gh =
(V1,Eh) be the set of layers in the multiplex. Then Ĝ = (V̂, Ê)
where V̂ = V1 and Ê = ∪h

i=1Ei. In other words, the aggregate
is defined as the union of all edges across all layers of the
multiplex. In the literature, the aggregate of a multiplex is often
defined in this way. This method can aggregate layers of a
multiplex in which the layers are unweighted graphs. However,
it is not sufficient for a weighted graph, particularly a complete
weighted graph. In addition, the strengths between layers are not
accounted for.

Let’s consider that the edge weights between nodes provides a
normalized measure of similarity between zero and one. We can
define the weight of a path between two nodes in the multiplex to
be the product of the edges between each node in each step of the
path. Since the weight between nodes is a measure of similarity or
information shared between the nodes, it follows that the weight
of the path provides a measure of information flowing through
the path.

There are a number of ways we can provide a new measure
of similarity between two nodes given the properties of the
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multiplex network. One way would be to take the mean of
the direct paths connecting each patient to and from another
patient in each and every layer. We defined this mathematically
as follows:

Rdirect =
∑h

i = 1(M|piqi +
∑h

j = 1,j 6= iM
2|piqj )

h2
, (17)

Where h is the number of layers in the multiplex, M|piqi is the
element in the multiplex matrix representing the weight between
node p and q in layer i andM2|piqj is the element in the square of
the multiplex network, representing the weight of the path from
node p in layer i to node q in layer j. Another way would be to take
the maximum or minimum information shared directly between
two nodes.

Rdirectmin
=

h
min
i= 1



M|piqi +
h
∑

j = 1,j 6= i

M
2|piqj



 (18)

Rdirectmax
= h

max
i= 1



M|piqi +
h
∑

j= 1,j 6= i

M
2|piqj



 (19)

In many situations, a pair of nodes in a network does not
communicate only through the shortest-path routes connecting
both nodes, but also through all possible routes connecting
both nodes. The number of these possible routes can be
enormous. Moreover, the information can also go back
and forth before connecting the pair of nodes. Network
communicability, which was introduced by Estrada and Gómez-
Gardeñes (2014), attempts to quantify such correlation effects in
the communication between nodes in complex networks. Estrada
and Gomez-Gardenes defined communicability as a measure that
“quantifies the number of possible routes that two nodes have
to communicate with each other.” In multiplex networks, the
communicability, C, between two nodes p and q, is a weighted
sum of all walks from p to q.

Cpq = I + M + M
2

2 !
+ . . . =

k
∑

k= 0

M
k

k !

∣

∣

∣

∣

pq

. (20)

Hence, the communicability between nodes p and q is given by:

Cpq = [e(AL + VLL)]pq = [eM]pq, (21)

where the p, q-th entry in the minor, C, defines the
communicability broadcasted from node p in layer i to
node q in layer j. Therefore, the communicability broadcasted
and received by the nodes in the multiplex is given by:

C = e(AL + VLL) =











C11 C12 . . . C1h
C21 C22 . . . C2h
...

...
. . .

. . .

Ch1 Ch2 . . . Chh











(22)

Since all nodes are present in each layer of the multiplex, we
can calculate the integrated communicability from node p and
q in all layers in the multiplex by taking the harmonic mean
of the communicability between them in each minor in the
matrix C.

Ĉpq =
h

h
∑

i= 1

1

[Ci,i]pq
+

h
∑

j,k= 1,j 6= k

1

[Cjk]pq

. (23)

Hence, the integrated communicability matrix is formed by:

Ĉ =











0 Ĉ12 . . . Ĉ1h

Ĉ21 0 . . . Ĉ2h
...

...
. . .

. . .

Ĉh1 Ĉh2 . . . 0











, (24)

where Ĉij represents the interaction of layer i with layer j.
Therefore, this multiplex networkmodel is applicable to integrate
omics and clinical information of a number of diseases or patients
in an efficient way.

Evaluation

We incorporated verified data from different data source with
our software. Data integration reduces noise associated with each
experimental limitation, thus increases sensitivity and specificity
to detect true association relationships which results in less
number of false positives. By integrating different types of
omics and clinical data can produce more reliable predictions
with increased sensitivity and specificity for detecting true
functional disease comorbidity associations. This can help in
finding the hidden connections between complex diseases. Such
connections between complex diseases reflect common biological
pathways and biological functions that may become manifest
in the form of comorbidity. For an example, we show a
comparative representation of dysregulated genes and lifestyle
impact on the disease comorbidity in Figure 11. Here, panel A
( see Figure 11A) represents an example of only dysregulated
genetic influences on diseases with good lifestyle. Panel B (see
Figure 11B) shows an example of only bad lifestyle influences
on diseases with no genetic variation. Panel C (see Figure 11C)
represents the combined impacts of lifestyle and dysregulated
genes on diseases. Here, we observed that the combined impact
of both lifestyle and dysregulated genes influences more and
multiway on the diseases and disease comorbidities. It is
conceivable that by integrating the data ranging from genotype
to multiple levels of phenotypes, more precise and robust
stratification of the patients with clinical outcome difference can
be achieved.

Discussion

Development of methods combining omics, ontology and
clinical information could assist clinical decision making and
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FIGURE 11 | Comparative representation of dysregulated genes

and lifestyle impact on the disease comorbidity. (A) Represents

an example of only dysregulated genetic influences on diseases with

good lifestyle. (B) Shows an example of only bad lifestyle influences

on diseases with no genetic variation. (C) Represents the combined

impacts of lifestyle and dysregulated genes on diseases. Here, the

circular red nodes nodes represent diseases name, triangular blue

nodes represent genes symbols and square green nodes represent

lifestyle factors. The size of the nodes represents the degree of

associations.

represent a large step toward personalized medicine. Proactive
and personalized medicine will bring fundamental changes to
health care, taking carefully targeted preventative or therapeutic
action at the earliest indications of risk or disease. In order to
facilitate the necessary changes, better tool is needed for assessing
risk and optimizing treatments, which in turn require better
understanding of disease interdependencies, genetic influence,
and translation into a patient’s future. However, most software
is designed to make a prediction about a single disease or
a class of some specific diseases based on the single omics
or clinical information. Phenomizer is a web-based system
that produces a ranked list of hereditary diseases, taking a
set of clinical features (Köhler et al., 2009). This system only
considers the phenotypic annotation to diseases, and semantic
similarity metrics to measure phenotypic similarity between
query phenotypes and disease phenotypes with the use of
the HPO (Robinson and Mundlos, 2010). Another software
DGFinder which is used to assess candidate genes in interested
chromosome regions for their possibility relating to a given
disease (Yuan et al., 2010). It integrated a dataset containing
1045 genes related to 305 diseases. Hidalgo et al. analyzed
comorbidity associations using the medical records (Hidalgo
et al., 2009). There are some online information retrieval tools,
such as AmiGO4 and QuickGO5, to collect gene annotation data
from various databases and manually discover the correlations
or similarities of gene products by their biological functions
(Binns et al., 2009). FindZebra (Dragusin et al., 2013) is a vertical

4http://www.godatabase.org.
5http://www.ebi.ac.uk/ego/.

search engine for rare diseases. This system does not consider
the genetic effects on disease or phenotypic effects on genes
rather it presents a list of disease documents for a given query of
symptoms. CARE uses collaborative filtering methods to predict
each patient’s disease risks based only on their own medical
history and that of similar patient’s information (Davis et al.,
2010). Recently, a tool KnIT has been developed for the complete
medical literature knowledge integration (Spangler et al., 2014).
DisGeNET is a coherent tool that analyses and interprets human
gene network to disease network (Bauer-Mehren et al., 2010). It
is able to display gene-disease association networks as bipartite
graphs and provides gene centric and disease centric views of the
data.

An R package “comorbidities” is able to categorize ICD-9-CM
codes based on published 30 comorbidity indices using Deyo
adaptation of Charlson index and the Elixhauser index (Deyo
et al., 1992; Elixhauser et al., 1998). Our previous R package
comoR that provides relative risk, φ-correlation, associated genes
and pathway between the comorbidity diseases (Moni and Lio,
2014). It is limited to gene expression and pathway molecular
data. To our knowledge, there is no available complete software
tool for the prediction of disease comorbidities maps based on
themultiple omics, gene ontology, phenotype and environmental
influences. So, we developed POGO, another R package that
implements different statistical approach for the prediction of
disease comorbidity maps by integrating diverse set of data.
This software could provide comorbidity mapping among all
diseases using ontology, miRNA, SNPs, CNVs, phenotypic and
environmental information. This software also incorporated
a prediction model that explores the past medical patient
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history to determine the risk of patients to develop future
diseases.

Patient’s omics data is becoming important for clinical
decision making, including disease risk assessment,
disease diagnosis and subtyping, drug therapy and dose
selection (Ullman-Cullere and Mathew, 2011). In the near
future, physician will have to consider omics implications to
patient care throughout their clinical work flow, including
electronic prescribing of medications. In the not-so-distant
future, as we move in to an era of personalized and preventive
medicine, healthy individuals may be tracked by multiple
layers of omic and clinical data in an effort to track potential
disease progression. Our software tool incorporated an
integrated framework to establish the associations between
genetic diseases and ontology information, which may help
to uncover the molecular mechanisms of genetic diseases.
The identified disease patterns from POGO could be useful
for further investigations with regards to their diagnostic
utility or help in the prediction of novel therapeutic targets.
Therefore, POGO could be helpful for the personalized medicine
system. They are able to detect many diseases at the earliest
detectable phase, weeks, months, and maybe years before
symptoms appear. POGO could easily be integrated into pipelines
for high-throughput analysis, such as Galaxy, and other
gene expression data mining, protein interactions validation,
predicting causal relationships among phenotypes and miRNA-
regulated network interpretation. The underlying hypothesis
behind this line of research is that once we catalog all disease-
disease relations through the omics, ontology, phenotypic
and environmental influence, we will be able to predict the
susceptibility of each individual to future diseases using various
molecular biomarkers, ushering us into an era of predictive
medicine.

Thus, a combination of genetic, ontology and population-
level data and information could be analyzed by this software
tool to establish and study novel hypotheses about unknown
disease mechanisms and disease comorbidity. Understanding
how different diseases relate to each other will not only provide
us with a global view of disease associations, but also provide
potentially new insights into the etiology, classification, and
design of novel therapeutic interventions. This has led to the
advent of stratified medicine, which translates advances in basic
research by targeting etiological mechanisms underlying diseases.
Method and tool for stratifying (classifying) patients in order
to reliably predict prognosis or success of treatments are of
critical importance in the field of medicine. However, with the
identification of the new omics and clinical information, we
need to update the integrated databases of the POGO. Using
the temporal data explored by the time dimension approach,
POGO could be extended to predict the time of expected disease
diagnosis in addition to the likelihood of occurrence. The result is
a patient stratification could be based on more complete profiles
than the primary diagnosis. Therefore, POGO is useful for the
stratified medicine.

Conclusion

Integration of multi-omics, ontology and phenotypic
information is important for comorbidity prediction and
patient stratification. Therefore, our methodological framework
and software for integrating genetic and clinical data could be
applicable in clinical decision making for personalized medicine.
We expect that this combined approach may increase accuracy
and decrease effort for disease comorbidity diagnosis. POGO
software tool provides robust approaches to study disease
comorbidity mappings by integrating omics, phenotype and
ontology information, which can be easily integrated into
pipelines for high-throughput and clinical data analysis, and
to predict causal inference of a disease. This software tool will
help to gain a better understanding of the complex pathogenesis
of disease risk phenotypes and the heterogeneity of disease
comorbidities. Moreover, the disease comorbidity patterns
identified using this software tool could be useful for diagnostic
utility or to help in the prediction of novel therapeutic targets.
Thus, this software tool could be applicable in personalized
medicine and clinical bioinformatics. So our software tool for
comorbidity diagnosis and patient stratification could result in
effective aids to the health practice. This will not only result in
improving health outcomes of the patient, but also in reducing
the health care costs.

Availability and Requirements

The software package POGO has been written in the platform
independent R programming language. It requires R version 2.16
or newer to run. The software is freely available at www.cl.cam.
ac.uk/~mam211/POGO/ and will appear in Comprehensive R
Archive Network (CRAN) at (http://cran.r-project.org/).
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