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Immunoregulation in human malaria:  
the challenge of understanding asymptomatic infection
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Asymptomatic Plasmodium infection carriers represent a major threat to malaria control worldwide as they are 
silent natural reservoirs and do not seek medical care. There are no standard criteria for asymptomatic Plasmo-
dium infection; therefore, its diagnosis relies on the presence of the parasite during a specific period of symptomless 
infection. The antiparasitic immune response can result in reduced Plasmodium sp. load with control of disease 
manifestations, which leads to asymptomatic infection. Both the innate and adaptive immune responses seem to play 
major roles in asymptomatic Plasmodium infection; T regulatory cell activity (through the production of interleu-
kin-10 and transforming growth factor-β) and B-cells (with a broad antibody response) both play prominent roles. 
Furthermore, molecules involved in the haem detoxification pathway (such as haptoglobin and haeme oxygenase-1) 
and iron metabolism (ferritin and activated c-Jun N-terminal kinase) have emerged in recent years as potential bio-
markers and thus are helping to unravel the immune response underlying asymptomatic Plasmodium infection. The 
acquisition of large data sets and the use of robust statistical tools, including network analysis, associated with well-
designed malaria studies will likely help elucidate the immune mechanisms responsible for asymptomatic infection.

Key words: asymptomatic infection - immune response - biomarkers - networks

doi: 10.1590/0074-02760150241
Financial support: FIOCRUZ (407734/2012-0), CNPq (478527/2013-6) 
MB-N is a senior investigator from CNPq. 
+ Corresponding author: mbarral@bahia.fiocruz.br
Received 29 June 2015
Accepted 23 October 2015

It is estimated that two-three billion people are at risk 
of contracting malaria, and nearly one million people die 
from this disease each year (WHO 2014). The spectrum 
of malarial disease can range from severe complications 
to a mild symptomatic infection to an asymptomatic car-
rier infection. Such distinct manifestations result from 
a combination of factors, including parasite virulence, 
host susceptibility, host immune response, disease toler-
ance mechanisms, and environmental factors (Andrade 
& Barral-Netto 2011, Medzhitov et al. 2012). 

Although there is no standard definition of asymp-
tomatic plasmodial infection (API), individuals with 
API harbour the parasite as evidenced by positive para-
sitaemia. However, these individuals do not develop any 
symptoms during a defined period of time (Andrade & 
Barral-Netto 2011, Lindblade et al. 2013). API is an sig-
nificant obstacle to malaria eradication efforts and rep-
resents a serious healthcare problem for the following 
reasons: (i) serve as parasite reservoirs, which allow ma-
larial disease to be maintained within a population over 
time as they can still transmit Plasmodium sp. to unin-
fected persons (Gouagna et al. 2004, Alves et al. 2005, 
Schneider et al. 2007, White 2008), (ii) asymptomatic 
carriers represent a serious risk to blood bank safety as 

API carriers can transmit malaria through blood trans-
fusions (Najem & Sulzer 2003, Fugikaha et al. 2007, 
Scuracchio et al. 2011, Anthony et al. 2013, Brouwer 
et al. 2013), and (iii) human immunodeficiency virus 
(HIV)-infected individuals with API sometimes exhibit 
increased viral load, which may enhance HIV transmis-
sion and accelerate disease progression and severity in 
endemic countries (Verhoeff et al. 1999, Whitworth et 
al. 2000, French et al. 2001, Kublin et al. 2005).

API can be attributed to several factors, including 
differences among Plasmodium sp. and host protective 
mechanisms. API is frequently associated with older 
people living in endemic areas as they are likely to have 
greater exposure to malaria and its vector in endemic set-
tings over time, thus acquiring a partial immunity (An-
drade et al. 2009, Ladeia-Andrade et al. 2009, Mendonça 
et al. 2013). In the same context, individuals who have 
had several previous episodes of symptomatic malaria 
are more likely to become asymptomatic carriers upon 
Plasmodium sp. infection (Andrade et al. 2009, Barbosa 
et al. 2014). Therefore, the immune response underlying 
asymptomatic infection still needs to be elucidated. 

Individuals from endemic regions can acquire partial 
immunity to malarial parasites, and antidisease immuni-
ty may prevent the development of clinical symptoms of 
disease despite the presence or the number of parasites. 
Antiparasitic immunity (after a certain age) against Plas-
modium sp. suppresses parasite load (Day & Marsh 1991, 
Trape et al. 1994, Daubersies et al. 1996). The immune 
response in API is often described as disease resistance, 
which is associated with a reduction in pathogen burden; 
therefore, this protective mechanism reduces tissue dam-
age and immunopathology related to malarial infection 
(Medzhitov et al. 2012). In contrast, some individuals 
can control disease manifestation despite not being able 
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to reduce levels of parasitaemia; this phenomenon is de-
scribed as disease tolerance (Medzhitov et al. 2012).

Immunity to malaria does not necessarily prevent 
infection; however, it does limit parasite density and 
symptoms (Tran et al. 2013). API individuals can remain 
infected for long periods even though asymptomatic 
subjects can develop symptomatic disease if they have 
a dysregulated immune response (Barbosa et al. 2014). 
Several studies have reported very low parasitaemia 
in individuals with API (Perkins et al. 2005, Minigo et 
al. 2009, Andrade et al. 2010b, Villasis et al. 2012), and 
many of them exhibited subpatent infections (i.e., infec-
tions undetected by microscopy) (Barbosa et al. 2014). 
Asymptomatic carriers who are not diagnosed with con-
ventional malaria are a major challenge for malaria erad-
ication in low-endemicity settings (Bousema et al. 2014). 
Taken together, these data illustrate the interaction be-
tween malarial immunity, parasitaemia, exposure, and 
malaria outcomes in endemic areas (Fig. 1). 

The immune system seems to play a major role in 
malaria outcomes, and our object herein is to uncover the 
partial protective immune response to infection in API 
to unravel the mechanisms of disease resistance. Here, 
we review both innate and adaptive immune responses 
to Plasmodium infection as well as new approaches to 
understand API immunity.

Although not the main focus of this review, it is im-
portant to highlight that pathogen-related infections can 
modulate the immune response of individuals with ma-
laria. In this context, asymptomatic infections have been 
reported to be composed of multiple genetically distinct 
Plasmodium sp. clones; multiclonal infections may be a 
marker of immunity and confer protection against ma-
laria by inducing a broader immune response and toler-
ance to infection (Ntoumi et al. 1995, Felger et al. 1999, 
Smith et al. 1999, Rono et al. 2013). Regarding others 
pathogens, hepatitis B co-infection has been associated 
with Plasmodium vivax asymptomatic infection and may 
also boost the protective immune response (Andrade et 
al. 2011). Additionally, individuals co-infected with P. 
vivax and hepatitis B virus (HBV) have an increased 
HBV viraemia yet a decreased malaria parasitaemia 
(Andrade et al. 2011). These patients also have lower lev-
els of pro-inflammatory tumour necrosis factor (TNF) 
and a lower interferon (IFN)-γ/interleukin (IL)-10 ratio 
with higher levels of regulatory IL-10 (Andrade et al. 
2011). Pre-existent filarial infection also seems to atten-
uate immune responses associated with severe Plasmo-
dium falciparum malaria and protects against anaemia 
(Dolo et al. 2012). Co-infections with Ascaris lumbricoi-
des or Schistosoma hematobium exhibit a trend towards 
a protective effect, whereas infections with hookworm 
or Schistosoma mansoni lead to aggravation of pathol-
ogy and a higher incidence of malaria (Adegnika & 
Kremsner 2012, Lemaitre et al. 2014).

Haemoglobinopathies, including haemoglobin S 
(HbS), haemoglobin C (HbC), and α-thalassaemia, have 
been associated with protection from malaria (Mendonça 
et al. 2012a). API children with HbS and persistently posi-
tive smears exhibit a reduced median time for conversion 
to smear-negative responses (spontaneous clearance) than 

do children without the haemoglobinopathy (Billo et al. 
2012). Mechanisms by which haemoglobinopathies may 
attenuate the pathogenesis of malaria caused by P. falci-
parum include modulation of the inflammatory response 
and enhancement of cell-mediated and humoural immune 
responses through pathways that may include haeme oxy-
genase-1 (HO-1), reduced levels of cerebral chemokines, 
increased levels of nitric oxide, and higher IgG seroreac-
tivity to P. falciparum antigens (Taylor et al. 2013). Other 
host erythrocyte polymorphisms also seem to influence 
the susceptibility to malaria. It has been demonstrated 
that α+-thalassaemia (Oppenheimer et al. 1984, Enevold 
et al. 2007), southeast Asian ovalocytosis (Cattani et al. 
1987, Foo et al. 1992), glucose-6-phosphate dehydroge-
nase (Mombo et al. 2003), and blood group O polymor-
phisms (Facer & Brown 1979, Martin et al. 1979, Shimizu 
et al. 2005) are associated with protection from malaria by 
reducing parasitic densities.

Innate immunity

It has been reported that neutrophil antibody-de-
pendent respiratory burst (ADRB) activity is correlated 
with acquired disease resistance to malaria in endem-
ic regions (Joos et al. 2010). In this study, individuals 
with high ADRB indexes were 17-fold less susceptible 
to malaria attacks than those without high ADRB ac-
tivity, and this ADRB activity was dependent on intact 
merozoites and IgG opsonins but not on parasitized 
erythrocytes or complement (Joos et al. 2010). Interest-
ingly, the production of reactive oxygen species (ROS) 
by neutrophilic ADRB in response to P. falciparum an-

Fig. 1: understanding the natural evolution of malaria outcomes by 
parasitaemia, immunity, and period of exposure in endemic areas. In 
endemic settings, the natural evolution of malaria is initiated when un-
infected individuals become infected for the first time, usually children 
who then develop a severe form of the illness. It is known that subjects 
with severe malaria have high parasitaemias and overall low protective 
immunity against malaria. In subsequent malarial infections, individ-
uals initiate a more robust immune response against the parasites and 
exhibit lower levels of parasitaemia and milder forms of this disease. 
After many years of exposure to malaria and its vector, older people 
become resistant to malaria by exhibiting higher levels of antiparasitic 
immunity. Adapted from Andrade and Barral-Netto (2011).
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tigen-specific IgGs was extracellular and indicated a key 
role for CD32/FcγRII; however, the production of ROS 
in response to whole merozoites was almost completely 
within the cell, suggesting that the underlying mecha-
nism was phagocytosis (Kapelski et al. 2014). The innate 
response to infected red blood cells (RBC) is also related 
to the functional activity of monocytes (MO) through 
their phagocytic activity, parasite killing through anti-
body-dependent cellular inhibition (ADCI), and supply-
ing of peripheral tissues with macrophage and dendritic 
cells (DCs) (Chimma et al. 2009). Further, individuals 
with the CD14hiCCR2+CX3CR1+ MO subset and the 
highest mean levels of ADCI activity had lower blood 
parasitaemia levels, suggesting an antiparasitic activity 
associated with protection against malaria (Chimma et 
al. 2009). The induction and maintenance of B and T-cell 
responses requires functional DCs; these cells also have 
an important role in malaria immunity, and it was re-
cently described that DCs from individuals with asymp-
tomatic Plasmodium infection have higher expression of 
human leukocyte antigen-DR, which is required for an-
tigen presentation (Kho et al. 2015). In a similar manner 
in a rodent model, DCs from nonlethal infections were 
fully functional and capable of secreting cytokines and 
stimulating T-cells compared to DCs from lethal infec-
tions, suggesting a major role for this cell in disease out-
come and immunity (Wykes et al. 2007). Cells of the 
innate immune response are the first line of human de-
fence against pathogens and may be important in control 
of the parasitaemia underlying cases of API. 

Adaptive immunity

The innate immune system also helps direct the re-
sponse of adaptive immune cells (B and T-cells) in rec-
ognising and binding diverse antigens through a reper-
toire of cell surface receptors (Palm & Medzhitov 2009). 
It has been demonstrated that CD4+ and CD8+ T-cells 
are important for malarial immunity in humans as well 
as in mouse models (Nussenzweig et al. 1967, Clyde et 
al. 1973, Schofield et al. 1987, Romero et al. 1989, Ro-
drigues et al. 1993, Tsuji et al. 1998, Hoffman & Dool-
an 2000, Stephens et al. 2005, Overstreet et al. 2008, 
Schmidt et al. 2008, Roestenberg et al. 2009, 2011, Ste-
phens & Langhorne 2010, Friesen et al. 2010). In a clini-
cal trial of the RTS,S/AS01E antimalarial vaccine, CD4+ 
T-cell production of TNF, with or without IFN-γ, was 
a potential immunologic correlate of protection against 
disease in individuals from an endemic area (Olotu et al. 
2011). CD4+ cells from individuals with fewer previous 
episodes of malaria were more inflammatory and had 
greater TNF production, whereas responses from CD4+ 
T-cells from subjects with more frequent previous epi-
sodes of malaria were more typical of regulatory T-cells 
in that they produced IL-10 (Jagannathan et al. 2014). In 
this report, the absence of pro-inflammatory CD4+ T-
cells producing TNF was associated with asymptomatic 
infection (Jagannathan et al. 2014). Thus, it suggests that 
IL-10 production by T-helper 1 T-cells may help prevent 
immunopathology by dampening the pro-inflammatory 
response (TNF) and preventing the development of clin-
ical disease (Jagannathan et al. 2014). 

T regulatory (Treg) cells (CD4+CD25+FOXP3+) ap-
pear to mediate their effects by direct cell contact or by 
induction of the regulatory cytokines IL-10 or transform-
ing growth factor (TGF)-β (Thornton & Shevach 2000, 
Powrie et al. 2003). Treg cells are induced following P. 
falciparum and P. vivax infection and are associated 
with a burst of TGF-β production and decreased pro-
inflammatory cytokine production (Walther et al. 2005, 
Gonçalves et al. 2010). Nevertheless, exposed asymptom-
atic controls (with or without parasitaemia) in a malaria-
endemic region of Indonesia had a lower frequency of 
Treg cells (CD4+CD25+Foxp3+CD127lo) than did patients 
with uncomplicated and severe malaria, suggesting a role 
for Treg reduction in malaria protection (Minigo et al. 
2009). Intriguingly, increased expression of TNFRII, a 
marker of Treg activation, was found in Treg cells from 
API subjects when compared with uninfected individu-
als, a feature that might be important for survival of the 
parasites in asymptomatic carriers; however, TNFRII 
expression was not measured in patients with mild or se-
vere malaria (Wammes et al. 2013). Congolese children 
with asymptomatic infection have a higher prevalence of 
polymorphisms in regulatory genes (STAT6 and IL10RA), 
which may influence Treg cells and malaria protection 
(Koukouikila-Koussounda et al. 2013).

The humoural response is also important for ma-
laria protection because passive transfer of IgG from 
immune African adults to children and nonimmune 
adults with acute malaria rapidly reduces parasitaemia 
and abrogates fever (Cohen et al. 1961, Sabchareon et 
al. 1991). Not all exposure to malaria results in the gen-
eration of memory B-cells (MBCs) and IgG antibodies 
against P. falciparum are short-lived and fail to boost 
upon re-infection. Thus, immunological memory is a 
challenge in many vaccine trials (Dorfman et al. 2005, 
Bejon et al. 2006). Previous studies have described an 
atypical MBC population (characterised by the expres-
sion of FcRL4 and hyporesponsiveness) that is expanded 
in P. falciparum-exposed adults and children from Mali 
when compared with healthy United States of America 
controls, suggesting that this atypical population may 
contribute to the delayed acquisition and short-lived 
nature of malarial B-cell immunity (Weiss et al. 2009). 
Recently, it was described that atypical MBCs appear 
to differentiate from classical MBCs, and express a 
repertoire of inhibitory receptors and a deficient B-cell 
receptor signalling, which leads to impaired B-cell pro-
liferation, cytokine production, and antibody secretion 
(Portugal et al. 2015). Other B-cells subtypes also seem 
to influence malaria resistance as Portugal et al. (2012) 
demonstrated that the percentage of activated MBCs and 
plasma cells was higher in the resistant Fulani ethnic 
group compared to those in the susceptible Dogon ethnic 
group, suggesting a role for B-cells in the protective im-
munity observed in the Fulani individuals. Individuals 
with asymptomatic infection tend to have higher titres of 
P. falciparum antigen-specific IgG than do individuals 
with other malaria outcomes. This higher response has 
been described as specific to several antigens, such as P. 
falciparum rifin on the surface of RBCs, recombinant 
protein fragments of P. falciparum rhoptry-associated 
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protein-1, P. falciparum merozoite protein (C-terminal 
10 kD), P. falciparum CLAG 9 (composed of 3 subunits 
named RhopH1, RhopH2, and RhopH3), and malaria-
infected erythrocyte variant surface antigens, includ-
ing P. falciparum erythrocyte membrane protein 1, P. 
falciparum merozoite surface protein 1 3D7 (MSP142), 
P. falciparum VarO rosetting variant, and P. falciparum 
erythrocyte binding-like and reticulocyte binding-like 
proteins (Alifrangis et al. 1999, Braga et al. 2002, Ab-
del-Latif et al. 2003, Kinyanjui et al. 2004, Villasis et 
al. 2012, Costa et al. 2013, Moormann et al. 2013, Sagna 
et al. 2013). Further, high antibody levels against glyco-
sylphosphatidylinositols, the anchor molecules of some 
membrane proteins of Plasmodium species, is also ob-
served more frequently in children with asymptomatic 
infections than in children with symptomatic infections 
in The Gambia (de Souza et al. 2002). Asymptomatic 
malaria carriers were also associated with high antibody 
levels against human brain antigens and Escherichia coli 
proteins as a result of polyclonal immunoglobin reactivity 
(Fesel et al. 2005). Furthermore, our group described that 
higher titre of IgG antibody against Anopheles darlingi 
mosquito saliva is also associated with immunity in as-
ymptomatic P. vivax individuals from the Brazilian Ama-
zon Region as a result of higher exposure to the malaria 
vector (Andrade et al. 2009). The intense production of 
antibodies in asymptomatic malaria carriers represents an 
active immune response and highlights the role of the hu-
moural immune response in mediating disease resistance.

Biomarkers

A biomarker is any parameter that can be used as an 
indicator of a particular disease state or other physiological 
state and can be generally classified as either biomarkers 
for diagnosis or for disease severity (Andrade & Barral-
Netto 2011). In the context of API, biomarkers can help 
investigators understand disease pathology by measur-
ing important parameters in various immune pathways 
and may also be useful as markers of prognosis in either 
clinical or silent infection after Plasmodium sp. exposure 
(Laishram et al. 2012). In recent years, our group and oth-
ers have been searching for human genetic factors and 
plasma measures related to the immune response associ-
ated with asymptomatic infection. However, none of these 
factors was sufficiently powerful to be a prognostic surro-
gate marker of clinical protection or disease susceptibility 
(Andrade & Barral-Netto 2011, Mendonça et al. 2012b).

Laboratory measures are commonly used in medical 
practice as organ dysfunction parameters; individuals 
with asymptomatic P. vivax malaria have lower levels of 
aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), indirect bilirubin, and serum creatinine 
as well as higher levels of Hb than do individuals with 
mild or severe symptomatic P. vivax malaria (Andrade et 
al. 2010b). TNF is a pro-inflammatory cytokine that has 
attracted special interest because of its ambiguous activ-
ity in host defence and in the pathogenesis of cerebral 
malaria and other severe complications (Kwiatkowski 
2000). An increased TNF concentration is associated 
with symptoms of mild malarial pathogenesis (i.e., fever) 
as well as severe forms of infection, such as cerebral ma-

laria (Kwiatkowski et al. 1990, Karunaweera et al. 1992). 
However, TNF-α has also been associated with the pres-
ence of potent antiparasitic activity as persistently ele-
vated levels of this cytokine lead to rapid improvement 
of fever and reduction of parasitaemia (Mordmüller et 
al. 1997, Depinay et al. 2011). It is also noteworthy that 
patients with asymptomatic P. vivax malaria have lower 
levels of pro-inflammatory TNF and IFN-γ and higher 
levels of IL-10, a trend which is proportional to disease 
severity (asymptomatic, mild, and severe) and which may 
explain the immunological control of clinical disease. 
However, parasite burden control may involve a more 
complex host response in addition to the moderation of 
TNF levels (Andrade et al. 2010b, Mendonça et al. 2013). 
In another setting in the Brazilian Amazon, it was found 
that asymptomatic carriers of low P. vivax parasitaemias 
also had lower levels of TNF and IFN-γ than did symp-
tomatic P. falciparum or P. vivax subjects (Gonçalves et 
al. 2012). Furthermore, certain combinations of geno-
types in inflammatory-related genes (DDX39B, TNF and 
IL6) are associated with a decreased risk of mild malaria 
compared to asymptomatic infection by reducing plasma 
levels of IL-6 and TNF (Mendonça et al. 2014).

The immune and organ dysfunction response during 
malaria may be a result, at least in part, of the harmful 
effects of free haem in the human host (Gozzelino et al. 
2010). During parasite-induced intravascular haemolysis, 
great amounts of Hb are liberated; in the presence of su-
peroxide and other ROS, Hb releases its haem prosthetic 
group (Bunn & Jandl 1968, Hebbel et al. 1988, Pamplona 
et al. 2007, Ferreira et al. 2008). Free haem is a harm-
ful molecule and can cause cytotoxicity, inflammation, 
oxidative stress, and even cell death (Ferreira et al. 2008, 
Gozzelino & Soares 2011). Free haem levels exhibit a 
linear increase according to disease severity in asymp-
tomatic P. vivax-infected subjects with the lowest haem 
plasma concentrations (Andrade et al. 2010a). In addi-
tion, haem is also elevated with malaria severity by P. fal-
ciparum, especially for cerebral malaria and acute renal 
failure subjects (Dalko et al. 2015). In addition to enhanc-
ing pro-inflammatory mechanisms, free haem during P. 
vivax malaria also impairs prostaglandin E2 (PGE2) and 
TGF-β production through superoxide dismutase (SOD)-
1-dependent mechanism (Andrade et al. 2010a). SOD-1 
is also elevated proportionally with disease severity in 
malaria patients and is useful for distinguishing mild and 
asymptomatic P. vivax cases by ROC curve analysis (An-
drade et al. 2010c). In addition, asymptomatic carriers 
have higher concentrations of regulatory cytokines such 
as TGF-β and PGE2 compared with mild and severe P. 
vivax patients, and TGF-β and PGE2 are negatively cor-
related with SOD-1, which may be an additional defence 
mechanism against disease manifestation (Andrade et al. 
2010a). In P. falciparum malaria, bicyclo-PGE2 is also el-
evated in asymptomatic patients compared with patients 
who have symptomatic disease (Perkins et al. 2005).

Over time, the human host has evolved protective 
mechanisms against the deleterious effects of free haem 
in the circulation. When Hb is released from ruptured 
RBC upon Plasmodium sp. infection, it is scavenged by 
haptoglobin (Hp) and prevents the release of haem. The 



949Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(8), December 2015

complex Hp-Hb is recognised by CD163 on the macro-
phage and hepatocyte surfaces in the spleen and liver, 
respectively (Philippidis et al. 2004, Quaye 2008). Free 
haem can also be scavenged by haemopexin, albumin, 
α1-microglobulin, and high and low-density lipoproteins 
(Bunn & Jandl 1966, Miller & Shaklai 1999, Paoli et 
al. 1999, Allhorn et al. 2002, Fasano et al. 2007, Tolo-
sano et al. 2010). Different Hp phenotypes are known 
to have different binding affinities for cell-free Hb 
(Hp1.1>Hp1.2>Hp2.2) and CD163 (Hp2.2>Hp1.2>Hp1.1) 
(Kristiansen et al. 2001). Our group has reported that 
individuals with the Hp2 allele are more likely to have 
symptomatic P. vivax malaria, and this group also has 
higher levels of Hp when compared with those of pa-
tients with asymptomatic infection. This probably repre-
sents a compensatory mechanism against the low bind-
ing affinity of Hp2 to free Hb (Mendonça et al. 2012b). 
The Hp2.2 phenotype has also been associated with a 
higher susceptibility to P. falciparum infection in the 
Dogon ethnic group living in Mali (Perdijk et al. 2013). 
Furthermore, soluble CD163 (sCD163) (marker of recep-
tor activation) is also lower in asymptomatic patients 
when compared with that in symptomatic subjects, and 
a cut-off value of sCD163 may be used to distinguish be-
tween symptomatic and disease-free individuals (Men-
donça et al. 2012b). In Mali, sCD163 was increased in P. 
falciparum infected individuals compared to uninfected 
subjects (Perdijk et al. 2013). Inside the cell, haem is de-
graded by HO-1 to produce carbon monoxide (CO), la-
bile iron, and biliverdin. In murine models, HO-1 affords 
protection against cerebral malaria by reducing neuroin-
flammation (including CD8+ T-cell brain sequestration), 
and exposure to CO may reduce severe complications 
(Pamplona et al. 2007). HO-1 also seems to be one of the 
mechanisms by which sickle cell disease confers protec-
tion against experimental malaria (Ferreira et al. 2011). 
HO-1 plasma levels are higher in symptomatic cases (as 
compared to asymptomatic individuals) as a regulatory 
defence, and a microsatellite polymorphism (GT)n in 
HMOX1 regulates the expression of this enzyme (Men-
donça et al. 2012b). In addition, high HO-1 levels and 
this microsatellite polymorphism were associated with 
severe malaria, including death, in another study (Wal-
ther et al. 2012). However, other studies also have dem-
onstrated conflicting results and no association between 
this HMOX1 microsatellite polymorphism and malaria 
severity (Kuesap et al. 2010, Hansson et al. 2015).

Iron is produced by haem catabolism and also ob-
tained by dietary uptake; this metal is necessary for com-
plete Plasmodium development (Gozzelino et al. 2010). 
However, intracellular labile iron is dangerous because it 
converts to a free radical unless it is scavenged by fer-
ritin, which acts as a vital antioxidant molecule in several 
experimental models (Balla et al. 1992, Cozzi et al. 2000, 
Berberat et al. 2003). Ferritin serum levels are decreased 
and associated with anaemia in a population from the 
Brazilian Amazon exposed to P. vivax malaria; symp-
tomatic individuals from this group infected with P. vivax 
have lower levels of ferritin, which are directly propor-
tional to the hepatic damage score (Cardoso et al. 1994, 
Gozzelino et al. 2012). It has been reported that ferritin 

promotes disease resistance to malaria by preventing la-
bile intracellular iron from sustaining pro-apoptotic c-Jun 
N-terminal kinase activation, and this tolerance requires 
the expression of HO-1 (Gozzelino et al. 2012). Interest-
ingly, malarial tolerance mediated by ferritin production 
is independent of the parasitaemia rate and represents a 
host defence strategy to limit the fitness costs of infection 
irrespective of pathogen burden (Medzhitov et al. 2012).

New approaches to understanding asymptomatic 
infection

In recent years, large amounts of data have become 
available as a result of the progress in technological meth-
ods, such as multiplex measurements, genome-wide ge-
notyping, microarrays, RNAseq, and multicolour flow 
cytometry (Tran et al. 2012). Genome-wide studies al-
lowed the discovery of important loci related to malaria 
resistance and low parasitaemia. Linkage of asymptomat-
ic parasitaemia to 5q31-q33 has been reported in humans 
(Rihet et al. 1998, Timmann et al. 2007) and, recently, 
chromosomes 6p21.3 and 17p12 were correlated with re-
sistance in individuals from Burkina Faso (Brisebarre et 
al. 2014). Equally important, the field of engineered hu-
moural immunity (with the production of human mono-
clonal antibodies) has allowed a better understanding of 
the malaria immune response by facilitating several labo-
ratory methods (i.e., multiparameter flow cytometry).

To understand this large volume of information, new 
approaches for data analysis have become more wide-
spread and multivariate (clusters, principal component 
analysis, etc.), artificial neural, Bayesian, and network 
analysis methods are some tools that can be used to char-
acterise a molecular signature of resistance or suscepti-
bility to malaria (Jayavanth & Singh 2003, Kiang et al. 
2006, da Cunha et al. 2010, Bachtiar et al. 2013). Many 
studies have attempted to identify molecular signatures 
associated with severe P. falciparum malaria, but few 
have focused on the mechanisms behind asymptomatic 
Plasmodium infection (Timmann et al. 2007, 2012, Jal-
low et al. 2009, Milet et al. 2010). Using a network ap-
proach, our group recently described the interactions 
among cytokines, chemokines and other inflammatory 
proteins associated with different P. vivax malaria out-
comes (Mendonça et al. 2013). Network analysis allows 
a better understanding of the inflammatory profile from 
different malaria groups by allowing easy visualisation of 
interactions between several markers and identification 
of patterns of association that may indicate susceptibility 
or disease tolerance signatures. Using network analysis, 
it has been demonstrated that patients with asymptomatic 
P. vivax malaria have an overall reduction in pro-inflam-
matory cytokines (TNF, IFN-γ, IL-6) and markers of tis-
sue damage (ALT, AST, creatinine, bilirubin, and others) 
and augmented levels of regulatory cytokines (TGF-β 
and IL-10) when compared with those of the symptom-
atic groups (mild and severe malaria) (Mendonça et al. 
2013). Furthermore, IL-4 had the highest number of 
interactions between all the markers in the asymptom-
atic group, suggesting a possible role for this cytokine 
in mediating P. vivax malaria tolerance (Mendonça et al. 
2013). Others studies have also used the same network 
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analysis for placental malaria and malarial anaemia, but 
none analysed asymptomatic infection (Ong’echa et al. 
2011, Sikora et al. 2011). In this context, cohort studies 
with a large sample size and an extensive bioinformatics 
approach are highly necessary to better understand the 
interactions among the immune response pathways as-
sociated with asymptomatic infection tolerance.

Concluding remarks

It is noteworthy that API is related to clinical dis-
ease tolerance (i.e., absence of symptomatology) but is 
not associated with immunity and inflammatory tol-
erance. Asymptomatic P. vivax infection is an active 
and acquired state, and it can control parasitaemia and 
limit organ dysfunction by an as yet poorly understood 
immune mechanism. Asymptomatic individuals car-

rying the parasite are natural reservoirs representing a 
challenge for malaria eradication, primarily in low and 
moderate-endemic countries. The use of mass drug ad-
ministration or mass screening and treatment schemes 
is controversial (Tada et al. 2012). Overall, biomarkers 
related to the haem pathway and iron metabolism have 
emerged in recent years as potential clues to unravel the 
immune response of API. Despite this progress, there is 
no reliable marker of prognosis in API. Immune cells, es-
pecially Tregs and B-cells, seem to play an important role 
in protection from disease manifestation. Furthermore, it 
has been observed that the immune response in individ-
uals with asymptomatic infection is usually associated 
with a lower pro-inflammatory and a higher regulatory 
production of biomarkers and host genetic alterations 
that may contribute to malaria tolerance. Nevertheless, 

Fig. 2: the immune response underlying asymptomatic infection. Aspects of the immune response of asymptomatic malaria carriers were compared 
to symptomatic patients. This response was didactically divided into immune cells including T regulatory (Treg) cells, CD4+ T-cells, B-cells, neu-
trophils, and monocytes (MOs) and biomarkers related to inflammation [interleukin (IL)-10, transforming growth factor (TGF)-β, prostaglandin E2 
(PGE2), interferon (IFN)-γ, and tumour necrosis factor (TNF) and the haeme pathway [haeme, soluble CD163 (sCD163), haeme oxygenase-1 (HO-
1), and superoxide dismutase (SOD)-1]. Additionally, molecular networks in the context of asymptomatic infection illustrate the use of methods of 
data integration in immunology. ADCI: antibody-dependent cellular inhibition; ADRB: antibody-dependent respiratory burst.
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the acquisition of large-scale biological data along with 
the use of robust bioinformatics tools, including a net-
work approach, will help investigators to understand the 
immune response behind asymptomatic infection. The 
major topics described here are summarised in Fig. 2. 
Longitudinal studies of sequential episodes of malaria in 
the same individual are necessary to better understand 
the immune response of individuals with API who are 
able to clear their parasitaemia compared with those who 
are more likely to have a symptomatic disease or remain 
symptomless despite the presence of Plasmodium sp. 
With this understanding, better medical management of 
API carriers, the development of malarial vaccines, and 
strategies for malaria eradication will be facilitated.
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