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Abstract: With the emerging interest in the autonomous driving level at 4 and 5 comes a necessity to
provide accurate and versatile frameworks to evaluate the algorithms used in autonomous vehicles.
There is a clear gap in the field of autonomous driving simulators. It covers testing and parameter
tuning of a key component of autonomous driving systems, SLAM, frameworks targeting off-road
and safety-critical environments. It also includes taking into consideration the non-idealistic nature of
the real-life sensors, associated phenomena and measurement errors. We created a LiDAR simulator
that delivers accurate 3D point clouds in real time. The point clouds are generated based on the
sensor placement and the LiDAR type that can be set using configurable parameters. We evaluate
our solution based on comparison of the results using an actual device, Velodyne VLP-16, on real-life
tracks and the corresponding simulations. We measure the error values obtained using Google
Cartographer SLAM algorithm and the distance between the simulated and real point clouds to
verify their accuracy. The results show that our simulation (which incorporates measurement errors
and the rolling shutter effect) produces data that can successfully imitate the real-life point clouds.
Due to dedicated mechanisms, it is compatible with the Robotic Operating System (ROS) and can be
used interchangeably with data from actual sensors, which enables easy testing, SLAM algorithm
parameter tuning and deployment.

Keywords: autonomous vehicles; LiDAR; autonomous driving; SLAM

1. Introduction

It is a fact that we face the beginning of a new mobility era. The automotive industry
has put its interest in autonomous vehicles. The biggest technology companies such as
Nvidia, Intel, Google and new mobility startups (Uber, Aurora and Cruise) are putting their
effort into creating solutions for the autonomous car industry [1]. Autonomous driving on
SAE level 4 and 5 (see Figure 1) has been classified as one of the biggest emerging technology
trends in the Gartner Hype Cycle for Emerging Technologies 2019 [2]. Besides this glimpse
of the future, in which we no longer need to drive our personal cars, there are much
more critical areas in which reliable autonomous vehicles are vital. Here, we can mention
safety-critical domains, e.g., mine detection, firefighting and contamination. Additionally,
in other domains, which are simply not accessible to humans, e.g., Mars exploration.

Although the autonomous vehicles are considered an element shaping the future
of mobility in BMW Group Safety Assessment Report [3], the idea to create self-driving
vehicles reaches as far as to the first half of the 20th century [4]. At first, a lot of human
supervision was necessary. For example, Stanford Cart (1961) was a remotely controlled cart
equipped with a camera. They planned to use it on the moon surface and control it from the
Earth using video transmission [5]. Ten to fifteen minutes were necessary to make a move,
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which was obviously too long for real-time operation. The 1980s brought two big projects
(DAPRA–Autonomous Land Vehicle (ALV) [6] and the EUREKA–PROMETHEUS [7]).
At that stage, autonomous vehicles’ requirements were defined: autonomous operation in a
dynamic unconstrained environment, accurate environment mapping and track definition
and maintenance [6]. Additionally, PROMETHEUS aimed to improve safety, and efficiency,
as well as to decrease the pollution in everyday transport. During these times, first trials
with artificial intelligence emerged, e.g., ALVINN (Autonomous Land Vehicle In a Neural
Network) [8], which processed camera frames with a Multi-layer Perceptron and managed
to complete a distance of 400 m autonomously, keeping its track. The new millennium
brought autonomous driving to a new level. The race to create fully autonomous vehicles
has taken the form of actual competitions. DARPA funded Grand Challenge Competition
and Urban Challenge competitions. They included long stretches in difficult desert terrain
and all the maneuvers common for the urban area with respect to the safety rules. DARPA
competitions described above established the milestones in the area of self-driving cars
and directed the automotive industry.

The autonomous vehicles are highly heterogeneous. They range from personal cars
through rovers to tanks. Implementation of autonomous vehicles differs considerably for
different sectors [9]. For example, vehicles operating in the commercial sector are easier
to control due to the more inherent structure of the environment. In some of the appli-
cations (e.g., agriculture), additional structures can be added to improve the technology
competency and to minimize the risk. On the other hand, military and safety-critical
sectors can entail heterogeneous environments, often unstructured [9]. Here, a division of
environments can be introduced: off-road/on-road or urban/rural/off-road. Obviously,
operation in different conditions and terrains differs significantly and should be taken into
consideration in the design process [10]. Vehicles can also operate on different levels of au-
tonomy. These levels can be described using many different scales (e.g., SAE, classification
used by US Navy Office of Naval Research or NATO Industrial Advisory Group [9], see
Section 2.1).

To operate, autonomous systems use data gathered from multiple sensors, i.e., LiDARs
(Light Detection And Ranging), cameras, RADARs, IMUs (Inertial Measurement Unit),
and GNSS (Global Navigation Satellite System) (see Section 2.2). Data from these sensors
are used in the four main components of the autonomous system, namely localization and
mapping, understanding of the surrounding environment, path determination and vehicle
control (see Section 2.4). The accuracy of the aforementioned sensors differs, e.g., camera
data are highly sensitive to changes in lighting [11]. For that reason, for one of the most
important and challenging fundamental tasks of autonomous driving, Simultaneous Local-
ization and Mapping (SLAM) (see Section 2.5) data from LiDARs, is usually used. It is the
most reliable data acquisition mechanism for this task [11]. Often, to perform the assigned
tasks, approaches based on a fusion of multiple sensors are used, e.g., fusion of IMU and
LiDARs in the Localization and Mapping task to improve the accuracy [12]. To deliver
reliable autonomous solutions, testing of all kinds of autonomous driving algorithms is
vital. Different testing approaches are possible: real-world testing, testing on real-world
datasets, and via simulation [13]. Although the real-world testing and pre-recorded data
can offer unexpected behaviors and diversity, conducting a sufficient number of exper-
iments to cover all possible use cases and gathering large amounts of real-world data
(which is vital for testing the autonomy algorithms) is very expensive and takes a lot of
time [14]. Additionally, the labeling is non-trivial. Simulations, on the other hand, are
much more flexible due to the feasibility of creating virtual worlds. It also seems to be the
best approach for off-road and safety-critical domains testing because it does not require
gathering real data from highly heterogeneous terrains and inaccessible environments.
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Figure 1. SAE levels of Driving Automation.

The existing simulators, e.g., CARLA [15], AirSim [16] and LiDARsim [13] target
testing of the following autonomous algorithms: driving in traffic jams, keeping the
track while driving on roads, avoiding obstacles. Additionally, the papers regarding
LiDAR Point Cloud simulation, e.g., [14,17,18], focus mainly on the generation of realistic
scenes with the point cloud labeling for the purpose of object detection and recognition.
A clear gap cap can be observed that covers the testing of autonomy algorithms operating
directly on raw data, e.g., SLAM algorithms, which are considered to be one of the most
important and challenging components of the autonomous systems [19]. Additionally,
the existing approaches focus mainly on urban autonomous driving testing. They do
not cover the off-road and safety-critical domains, where GPS data (the autonomous cars
rely on it significantly in the localization process) is often not available, thus accurate
and efficient operation of SLAM algorithms is critical. It is yet another gap in the area of
autonomous driving simulations. Another inadequacy of the existing simulators is that
they use simplified sensor physics and do not consider the true non-idealistic nature of
the physical devices. The realistic character of data is vital for the purpose of accurate
algorithm verification and for the process of algorithm parameters tuning.

In this work, we build a framework which can be used to evaluate the performance
of fundamental autonomous driving algorithms operating directly on data gathered from
sensors in real time, especially the SLAM algorithms. To create realistic and heterogeneous
scenes (both the indoor and outdoor environments) and vehicles, we use Unity (mainly the
manual modeling of scenes and vehicles). We also use the C# development environment to
implement the realistic LiDAR behavior and the data collection procedure. We take into
consideration measurement errors characteristic for the actual devices (in the paper, we use
the term “noise”) and the so-called rolling shutter effect, which significantly impacts the
quality and nature of the LiDAR data (described in more detail in Section 4.2). Additionally,
we implemented additional mechanisms, which were necessary to create a realistic setup.
We use a Robotic Operating System (ROS), which is a common system used in the area
of robotics [20]. It delivers a set of tools and libraries (middleware), which facilitate
software creation in the robotics industry. It imposes to use the Publish-Subscribe model
of communication in the process of consecutive module design. It is also responsible
for establishing the format of data transmitted between the system nodes. Additionally,
it offers the tools which can be used to visualize data, e.g., laser scans or accelerometer
reads. It can also be used in the process of development and debugging of the software
elements created for the application in robotics. We use ROS to run the experiments with
the SLAM algorithm of choice, Google Cartographer (3D), which is one of the leading
SLAM algorithms (see the comparison of different SLAM algorithms in Section 2.5), which
is also compatible with ROS. To connect ROS with Unity, we create dedicated scripts that
wrap data from virtual sensors and send it via User Datagram Protocol (UDP) to a special
ROS bridge. By doing so, data from virtual sensors is compatible with ROS and can be
used interchangeably with data from actual sensors. This utility enables us to run our
autonomous driving algorithms (e.g., SLAM) on ROS, which is installed on an actual
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device, which makes our approach more practical. After testing and tuning the parameters
of our algorithm in simulation, we can easily switch to a real device operation. To evaluate
the quality of obtained LiDAR point clouds, we compare the point clouds created using an
actual device and a simulation reflecting the corresponding real-world environment. We
also evaluate the performance of the simulation using Google Cartographer [21] SLAM
algorithm (using different settings of the simulation), by comparing the errors obtained in
an actual track and the corresponding simulation.

2. Background

In the following Section, we discuss vital aspects of autonomous systems. The aim
is to describe the idea of autonomy, sensors, with which autonomous vehicles are usu-
ally equipped, the accuracy of the measurement equipment, main components of an
autonomous system and their connection to the aforementioned sensors. As the article
introduces a platform, which aims mainly at testing the key autonomous driving algo-
rithms (but it is not limited to this task), especially Simultaneous Localization and Mapping
(SLAM), we describe common algorithms (see Section 2.5), which can be used as a part of
the Localization and Mapping component of the autonomous driving system. We use one
of them, namely Google Cartographer, to verify our platform. We also describe different
testing methods of autonomous vehicles to indicate the necessity of creating an accurate
testing platform for autonomous systems.

2.1. Autonomy

A level of driving automation can be classified using levels defined by SAE Interna-
tional (a standard developing organization specializing in the automotive industry). Using
the SAE levels, we can distinguish six levels of automation, which are illustrated in Figure 1.
The SAE level 4 and 5 vehicles are high and fully autonomous cars, and they need a perfect
understanding of the surrounding environment in real time. SAE is not the only classifica-
tion that can be used. An early classification, introduced by Sheridan [22], distinguishes
ten levels of automation, starting from no assistance, in which the user is responsible
for all actions, to complete autonomy of the computer, which ignores human. US Navy
Office of Naval Research uses a similar classification, which consists of six levels describing
vehicles: human-operated, human-assisted, human-delegated, human-supervised, mixed
initiative and fully autonomous [9]. NATO Industrial Advisory Group identified four
levels of autonomy based on different industries view on autonomy degree and using
the Observe, Orient, Decide, Act (OODA) loop: remotely controlled system, automated
system, autonomous non-learning system, and autonomous learning system [9]. Other
autonomy assessment scales (multi-dimensional) were introduced by Proud et al. [23]
(8 levels of automation with description regarding all stages of the OODA loop per each
level), and Clough [24] (11 levels, also described in accordance with OODA loop).

2.2. Equipment of Autonomous Vehicles

To deploy an autonomous vehicle, in the design process, four main components must
be created, responsible for localization and mapping, understanding of the surrounding
environment, determination of path, and vehicle control. All of them use data gathered
from different sensors with which an autonomous vehicle is equipped. Sensors can be
divided into two groups: active and passive. Active sensors make the measurements based
on the reflection of the signal they sent. Unlike the active sensors, passive sensors use
signals already existing in the environment (e.g., light or energy) [25]. The whole system
should operate in various weather and light conditions. To maximize the effectiveness of
an autonomous system, multiple sensors can be used, namely LiDARs, cameras, RADARs,
IMUs, and GNSS. LiDAR is a device that emits laser beams and precisely measures the time
necessary for the reflected beam to reach a photodetector. Usually, lasers with a wavelength
of 905 nm are used. Common 3D LiDARs are equipped with 16 to 128 lasers arranged
vertically and rotating with a speed of 1200 rpm at max. Data gathered in this process is



Sensors 2021, 21, 3313 5 of 21

used to create a point cloud, which can be used to map the environment and for positioning
of the vehicle [26].

2.3. Accuracy of Sensors

All the aforementioned sensors are used by the autonomous driving algorithms
(e.g., SLAM, object recognition). However, they exhibit some limitations, especially the
camera-based approaches [27]. The advantages of using LiDARs are: higher resolution and
broader field of view than these in RADARs and ultrasonic sensors and robustness under
different conditions, including operation in light and dark environments, as well as with
and without shadows and glare [14]. In opposite to camera-based sensors, LiDARs provide
more accurate, robust, less noisy and sensitive to changes in the lighting, and for that reason,
it is the most reliable mechanism of data acquisition for the SLAM algorithm input [11].
Therefore, it is of great importance to deliver accurate models of LiDARs to enable the
generation of realistic data to test and verify novel SLAM algorithms. Nevertheless, it is
important to remember that the real world is far from idealistic. The gathered LiDAR data
still contains some noise. LiDAR data are subject to errors caused by the impact of the target
color and material, atmospheric correction, beam divergence, target size and instrumental
errors. Therefore, it is crucial to verify novel algorithms (especially those operating on
raw LiDAR data, e.g., SLAM) using accurate, non-idealistic and demanding data (real
or simulated). Gathering large amounts of heterogeneous actual data from different
environments (especially those off-road and not accessible to humans) is impractical (and
often impossible). That is why it is crucial to build simulation frameworks, which could be
used to test and verify SLAM algorithms, especially in difficult terrains.

2.4. Components of Autonomous Driving System

Four main components are vital for the autonomous system: localization and mapping,
understanding of the surrounding environment, determination of a path, and vehicle control.

Localization and mapping can be divided into global and local ones. Global Local-
ization and Mapping is usually based on Global Navigation Satellite System (GNSS) to
determine the position of the vehicle with respect to the globe. GPS data are not always
available (due to limitations in the access to satellites) and even if it is accessible, it is a
subject to measurement errors. To improve the accuracy of the algorithms or to enable the
operation when GPS signal cannot be used, data from other sensors can be used (usually
with IMU data and odometry sensors). Global localization is vital for determining the
approximate position of the vehicle. However, it can be insufficient for more complex
operations (e.g., keeping the vehicle on the determined track), for which more precision
is necessary. Here, a local system is used. Based on the input data (usually from LiDARs
and cameras), it creates a model of the surrounding, and then, using the Simultaneous
Localization and Mapping (SLAM) algorithms, enables localization of the vehicle in the
obtained model of the environment. Sensor data fusion can also improve the precision of
the localization and mapping algorithms [28].

Understanding of the surrounding environment can be divided into three main sub-
tasks: object segmentation, detection, and classification. Here, a model of the environment
obtained in the Localization and Mapping process is examined to interpret the surrounding
environment, which includes static and dynamic objects. For that purpose, data from
different sensors are used, usually LiDARs, cameras and RADARs. Semantic segmentation
aims to categorize every pixel in the gathered data [29]. Deep Learning and Convolutional
Neural Networks have proven to be successful in this area [30,31]. The next steps are
detection and classification of the particular segments (objects) of the environment. For dy-
namic objects, RADARs data are used to determine the speed of the object. Additionally,
for this task, the most popular approaches are based on Deep Learning [32,33]. Sensor data
fusion allows achieving a better data representation, thus more accurate classification [34].
Detection, localization and classification of obstacles enable the creation of occupancy grids
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containing information on the environment. Additionally, a determined class of the object,
its properties, e.g., speed, can be used to forecast its future behavior.

Path determination requires knowledge about the vehicle location, destination and
a complete understanding of the surroundings. The main target of this task is to ensure
successful and safe departure to the destination. Two types of path determination can be
differentiated: local and global ones. When the environment is known, global planning
aims to determine the best track (e.g., in terms of time, distance, safety regarding a chosen
cost function). Graphs are useful in determining such a path [35]. In the case of an un-
structured environment, global planning limits to determine the path in a correct direction
based on the information about the already completed fragments of the track. Local path
determination uses algorithms such as A* [36] or D* [37]. Other methods have also been
developed for off-road driving [38,39].

The last autonomous driving component, vehicle control, is responsible for sending
control commands to the vehicle’s subsystems to enable its appropriate driving (accelera-
tion, braking, wheel steering angle).

In the design process of an autonomous system, it is crucial to use an accurate dynamic
model of the vehicle [40]. Besides that, to establish the optimal set and arrangement of
sensors, design the proper autonomous driving algorithms and tune their parameters,
and eliminate potential flows before the deployment, testing is vital.

2.5. 3D SLAM Algorithms

SLAM is one of the fundamental and the most challenging autonomous driving algo-
rithms [19]. Different types of SLAM algorithms can be used for Localization and Mapping.
They can use data from different sensors, usually cameras or LiDARs. As mentioned before,
LiDARs provide data that is more accurate, robust, less noisy, and sensitive to changes in
the lighting. For that reason, it is the most reliable mechanism of data acquisition for the
SLAM algorithm input [11]. Some approaches use a fusion of laser and visual data [41].
These algorithms, depending on a type, can operate on 2-dimensional [12,42,43] data or
3-dimensional [44,45] data (or both [21]). In the case of LiDAR-based SLAM, the algorithm
takes as an input LiDAR point clouds. Two-dimensional LiDAR-based SLAMs are more
computationally efficient than 3D ones. However, due to the limited number of dimensions,
they are not able to provide the estimation of the vehicle’s pose on uneven ground with six
degrees of freedom (DOF) [46]. Additionally, with the limited number of features, it is hard
for this type of algorithm to adapt to long laneways, which are highly similar. Different
methods to restore 3D information from 2D point clouds can be used. Nevertheless, it
makes the configuration complicated [46]. Therefore, in this work, we focus on testing 3D
SLAM algorithms, which provide a more accurate estimation of the environment.

Google Cartographer [12,21] is a SLAM algorithm that can operate on 2-dimensional
and 3-dimensional LiDAR data. Cartographer uses two types of SLAM: the local one to
create sub-maps and current trajectory and the global one, which matches these sub-maps
and creates a global map [47]. This mechanism is used to detect loop closure, which is
a common task in the autonomous driving domain. Global optimization is responsible
for the correction of the global map in the case of loop closure detection [48]. The main
purpose of the algorithm is to calculate the coordinates of the vehicle, determine the
surrounding environment and send it to a navigation algorithm. Cartographer takes small
data packets as input and uses them to create a full 3D scan by calculating the translation
of the individual parts of this scan (to minimize the impact of the rolling shutter effect,
described in Section 4.2). Here, the scan matcher is penalized for matching the scans
in the way that they highly deviate from the prior position (it is assessed by a special
score). Penalty refers to deviations in rotation and translation. Weights of this penalty are
examples of the parameters that must be tuned for different conditions and environments.
Accurate sub-maps are vital for global optimization, thus the creation of reliable maps.
Google Cartographer can use data from different sensors and functionalities (e.g., GPS)
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and allows the user to supplement it with additional information sent in a proper format to
improve the localization and mapping process. It is also easy to integrate it into ROS [20].

HDL Graph SLAM is similar to Cartographer in some respects since both approaches
use Graph SLAM. The most important difference is that HDL does not use IMU data to
estimate odometry but instead calculates it based on the LiDAR data. Based on the Figures
presented in [49], it can be observed that the accuracy of HDL SLAM degrades with time,
so it is unpractical to use it for long paths in the unknown environment. They also claim
that they were unable to obtain a coherent model of the environment using this SLAM
algorithm on the test dataset. Additionally, HDL SLAM operates only using 3D point
clouds. In contrast, Cartographer can operate on both 2D and 3D data. In [50], it was
proven that Google Cartographer outperforms other algorithms taken into consideration.

Other 3D SLAM algorithms include LiDAR odometry and mapping (LOAM) and
normal distribution transform (NDT) SLAM. In [51], it was proven that Google Cartogra-
pher outperforms them in terms of efficiency. RTAB (Real-Time Appearance-Based) SLAM
algorithm, on the other hand, strongly depends on data from cameras, which is used to
deal with loop closure effect [52].

Google Cartographer is one of the most popular SLAM algorithm in recent research
works, therefore, it can be treated as the state-of-the-art SLAM algorithm. Thus, it is reason-
able to verify the suitability of our simulation in terms of modern SLAM algorithms testing.

2.6. Testing of Autonomous Vehicles

To verify the performance of autonomous vehicles, different testing approaches can
be used: real-world testing, testing on real-world datasets, and via simulation [13]. There is
no perfect solution for testing, because all the approaches have their advantages, but also
constraints. Real-world testing can offer unexpected behaviors and diversity but can be a
danger to safety (especially in urban environments). It is usually performed in controlled
environments. Testing on pre-recorded data also offers diversity but requires gathering
large amounts of data and exhibits the limits of real-world testing. Both approaches are
constrained by a limited number of use cases because such a testing can be very time-
consuming and costly. Additionally, the labeling (for segmentation and object recognition
tasks) of large amounts of real-world point clouds is very expensive and takes a lot of
time [14]. Real-world testing entails logistical difficulties, high infrastructure costs and
makes it impossible to conduct a statistically significant number of test cases [53]. Sim-
ulations, on the other hand, are much more flexible because of the feasibility of creating
virtual worlds. This approach seems to be the best one, especially for the off-road and
safety-critical domains testing, because it does not require gathering real data from the
highly heterogeneous terrains and inaccessible environments.

3. Related Work

Due to the emerging interest in the area of self-driving vehicles, more and more
focus is put on the simulation and generation of accurate and realistic data connected
to autonomous vehicles. Many solutions from this area are based on machine learning
algorithms (especially neural networks and Deep Learning), for which it is necessary to
provide large amounts of data for effective training. Most works, which analyze informa-
tion included in LiDAR point clouds are focused on object segmentation, classification,
and simulation of vehicle behavior during different circumstances [54–57]. Therefore, also
the simulators themselves are focused mainly on accurate object generation and not the
accurate reflection of the nature of the point clouds (noise caused by measurement errors
and phenomena characteristic for this type of data, e.g., the rolling shutter effect).

The papers regarding the simulation frameworks for the LiDAR Point Cloud gen-
eration include [13,14,17,18,53]. In [14] they present a framework, which can generate a
point cloud with point-level labels using a simulation based on an auto-driving computer
game and manually configured scenes. They also used an automatic calibration method
to mark the point clouds on the corresponding scene images. The main target of this
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research was to create a framework that can generate large amounts of annotated data
for the purpose of neural network training (especially for segmentation tasks). In [53]
they proposed the physics-based simulator of a LiDAR, targeting the highly vegetated
environments. The aim of the framework was to test off-road autonomous navigation in
complex outdoor environments by capturing the interaction of a laser beam with plants.
Paper [17] presents a simulation framework using a real environment and real traffic flows.
They use an actual LiDAR to obtain the real-world scenes and use these images in the
simulation framework. They remove the moving objects (e.g., cars and pedestrians) from
scenes and enrich them with synthetically generated obstacles. From these augmented
scenes, new point clouds are generated. Such obtained data can be used to improve the
accuracy of the object detection capabilities of an autonomous vehicle. In [18] they present
a solution for synthetic LiDAR Point Cloud generation with the automatic ground truth
annotation. In the framework, both 2D and 3D sensors can be simulated. They test the
quality of the generated data on a semantic segmentation task and present the comparative
results with other methods.

The advancements in rendering techniques allowed for the creation of autonomous
driving simulators, e.g., CARLA and AirSim [13]. In these efforts, there is a clear gap for
the simulation targeting the evaluation of the algorithms based on autonomous systems
(e.g., SLAM). The simulators above aim to test mostly algorithms such as keeping track
while driving on roads, driving in traffic jams, avoiding obstacles, etc. Airsim can be
used as a Unity plug-in; however, the current release is only experimental. Additionally,
the approach has the same limits as AirSim run on the Unreal engine (the original one).
In contrast to these frameworks, our simulator aims at testing even those algorithms
which are at the basis of autonomous systems (and this is what we put emphasis on),
such as SLAM, processing of LiDAR data (point clouds), processing of IMU data (Kalman
filter), creation of obstacle map (so-called occupancy grid), object detection, semantic
segmentation. CARLA and AirSim are also simplifying the physics assumptions and
do not reflect accurately noisy and distorted data from real-world sensors [13]. Other
simulators, such as LiDARsim [13], use real-world data to create realistic scenarios, which
is good for urban environments, but not practical and sometimes impossible for the off-
road and dangerous environments with a virtually infinite number of use cases, terrain
types and obstacles. In the paper, they also add the additional noise to data (via Artificial
Neural Networks) to make it more realistic, but this approach may be too computationally
demanding and time-consuming for a real-time simulation. Therefore, in our work, we
chose random errors in the range of accuracy of measurements of the LiDAR sensor.
All of the aforementioned simulators put focus on urban driving simulation, but what
is of even greater importance it is to deliver a simulation which will enable testing of
autonomous vehicles in highly heterogeneous environments, where there is no access for
human beings (e.g., space exploration) or this access is highly limited or dangerous (e.g.,
minefields, firefighting). Therefore, in our work, we focus on the creation of a simulation,
which will enable testing, especially in safety-critical domains. We put special attention
to make the data generated by our LiDAR simulation as realistic as possible by adding
noise and taking into consideration the phenomenon, which significantly impacts the
performance of the autonomous driving algorithms (rolling shutter effect, described in
Section 4.2). We also implement additional mechanisms to make the data obtained from our
simulation compatible with the autonomous driving software run on Robotic Operating
System installed on an actual device.

4. Methodology

In this Section, we describe the technologies and the setup used to create our simula-
tion and to verify the obtained results. We describe how we use particular technological
components, namely Unity, ROS and additional software. We discuss the importance of
the rolling shutter effect and the method we use to implement it in our simulation. We
also present the parameters that can be used to control the simulation. We describe the
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process of data collection and two types of evaluation of our framework: Point Cloud
Comparison-based and SLAM-based ones.

4.1. Experimental Setup

In our experiments, we use three main components: Unity platform or actual au-
tonomous vehicle, Robotic Operating System and additional scripts to enable the commu-
nication between the components. All the components and the connections between them
can be observed in Figure 2.

Unity is an Integrated Development Environment (IDE), which delivers a cross-
platform graphics engine and can be used to create realistic 2D and 3D computer games,
visualizations, and other interactive elements. To develop such an element, ready-to use
components from the unity asset shop can be used to build the scenery. The platform
enables the user to implement C# programs, which can modify the virtual scenes, objects,
lighting, audio and other elements. Using the Nvidia PhysX physics engine, users can
define the physical properties of objects (e.g., mass, velocity, acceleration) and define in-
teractions between them (e.g., friction) and the environment (e.g., gravity). We use these
components to create the realistic scenes of the simulation and create the virtual models
of sensors (LiDAR, IMU, GPS and wheel encoder), which are then programmed by im-
plementing the C# scripts. Data gathered using these sensors can be used by the various
algorithms: responsible for mapping and localization (SLAM), path planning (Dijkstra’s
algorithm [58]) and navigation (occupancy grid [59]). In the process of creating new al-
gorithms, one of the most important stages is validation. To evaluate the efficiency and
performance of the algorithm under observation, one can do it in a real-life environment,
though this solution is very costly. As an alternative, it is necessary to perform this task in
a virtual environment, which accurately simulates the real one. To achieve this, the test
maps were created, mimicking a real-life space and labyrinths. We also built off-road
environment maps, which allow us to validate the performance of the SLAM algorithms in
external conditions. Additionally, the geometric and physical models of real-life vehicles
were created to test the autonomy systems. To enhance the simulation functionality, a bridge
between the simulation environment and ROS was created.

Figure 2. Experimental setup.
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4.2. Simulation of the Rolling Shutter Effect

The term of the rolling shutter effect [60] is usually used in the field of photography
to describe the characteristic distortion on the pictures of the quickly moving objects,
for which the movement occurs perpendicularly to the camera axis. It is caused by the
construction of the shutter mechanism in the cameras and the line-by-line retrieval of the
images from the photosensitive matrix. A very similar effect can be observed in the LiDAR
context [61,62], though the origin, in this case, is different. The data are gathered using a
laser beam or multiple laser beams distributed vertically and a detector. This equipment set
rotates (usually 20 rps at most) and delivers the data which is used to estimate the distance.
Due to the relatively small spinning frequency of LiDARs, the time needed to acquire a
single scan is relatively long (e.g., 10 Hz for Velodyne VLP-16 spin frequency translates into
100 ms duration of a full scan). If the translational motion speed is high in comparison (a
significant movement of the vehicle is observed) to the rotational movement, the distortions
in the gathered point cloud occurs, which is caused by the translations during the full
rotation. The Velodyne LiDARs deliver the data in small packets, in which the distortion
rate is low, but in the full view, on the borders of the subsequent fields, the effect is clearly
visible. Due to these distortions, it is not possible to directly (rigidly) transform the packets
of the frame, but a continuous transformation or its approximation is necessary (or some
other technique to minimize this effect should be applied by a SLAM algorithm) [61].
Laser scan measurements are often subject to the rolling shutter effect in the case of the
significant movement of the vehicle and not taking this effect into consideration by a SLAM
algorithm can result in serious map quality degradation and pose estimation errors [62].
Figure 3 presents a slight rolling shutter effect. It is hard to observe a very visible effect
in a relatively small environment because the space is limited and a high speed cannot
be achieved, but even in such an environment, this effect can be encountered and should
be taken into consideration. In the simulation of the outside environment, where space is
not limited and high speed can be easily achieved, the impact should not be omitted if the
target is to obtain an accurate reflection of the real-life behavior.

Figure 3. A slight effect of the rolling shutter effect observed in the point cloud obtained from an
actual device (Velodyne VLP-16) driving around the laboratory.

To realistically simulate the LiDAR-obtained point clouds in the simulation, it is
important to include the simulation of the rolling shutter effect. With each update of the
physics engine, the packets with a minimal portion of data are generated, which is then
used to simulate the effect. This approach is particularly important for the simulation,
which aims to be used for the purpose of validation of new SLAM algorithms. The SLAM
algorithm used in the experiments, Google Cartographer [12], uses small portions of data
obtained from LiDAR and accelerometer readings to estimate the vehicle movement and
to adjust the subsequent data. As a result, a more accurate estimation of the rotation and
translation during the SLAM algorithm run-time can be achieved.
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4.3. Collection of Data Points

To accurately simulate an actual electronic device, it is crucial to know its construction
and the method of data acquisition used. Our implementation of the LiDAR simulation
allows us to define many parameters of a typical LiDAR: any number of laser beams and
any viewing angle, both the vertical and the horizontal ones, also the frequency of rotations
per second and the maximum error of a single distance measurement. The values of the
parameters set have been presented in Table 1. The parameter Mode in the LiDAR context
means that either the strongest beams reflected, or the last ones are taken into consideration
in the process of gathering data for each channel. In the simulation, we decided to use the
strongest beams, because these beams are the most significant and stable ones, therefore
more suitable for the real-time simulation and the SLAM algorithm input. We use a higher
Horizontal Field of View (FoV) per simulation update to accelerate the processing and
enable the real-time simulation. Additionally, an additional parameter can be defined,
concerning the rolling shutter effect. It defines the size of a point cloud data slice imitating
a scan of an actual, imperfect device. It is important to properly place the device in the
space surrounding the vehicle. It is obtained by definition of the positions with respect to
previously prepared places on a virtual 3D model.

Table 1. The parameters of and actual and simulated Velodyne VLP-16 device.

Parameter Units VLP-16 Simulation

Channels - 16 16
Min–max vertical angle degree −15–15◦ −15–15◦

Horizontal samples - 3600 3600
Min–max horizontal angle degree 0–360◦ 0–360◦

Horizontal FoV per simulation update degree 2.4◦ 15◦

Range m 100 m 100 m
Range accuracy m 0.03 m 0.03 m
Rotation rate Hz 10 10
Mode - Strongest/last Strongest

The operation of a virtual sensor (in this case, LiDAR) is strongly dependent on the
length of a physics simulation step. Distance measurements to specific points in space are
performed depending on the data delivery frequency and take place once in a simulation
update at maximum. To obtain the measurements, we use ray-tracing technology. Laser
beams are emitted in parallel and then return to a device. The measured distance is a
distance to the nearest obstacle in a virtual environment. Because these measurements take
place in a time that is usually shorter than the duration of the physics update, a full 360 deg
scan does not contain the rolling shutter effect discussed earlier. Therefore, the appropriate
parameterization of a LiDAR model allows us to provide information about the shifts of
individual scan sections to mimic a fast vehicle movement when it is necessary.

4.4. Evaluation Methodology

We evaluate the framework by comparing the results obtained using point clouds
obtained from an actual device and a corresponding simulation. In Figure 4 we present
the evaluation setup. We use two methods to generate the data: with and without the
generated noise. The evaluation consists of two stages. First, we compare the accuracy
of an artificial point cloud simulation by measuring the distance of the simulated and
real-world measurements (see Section 4.4.1). The second stage is based on the examination
of SLAM performance metrics obtained from running an algorithm on real-world data and
the simulated one (see Section 4.4.2).
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(a)

(b)

(c)
Figure 4. A real-world track (labyrinth) built for the purpose of the evaluation and the corresponding
simulation. (a) A photo of an actual track; (b) A photo of an actual track; (c) A screenshot of a
simulated track.

4.4.1. Point Cloud Comparison

To compare two point clouds and evaluate the accuracy of the simulation, we propose
an algorithm which is presented in Figure 5. Point clouds are compared at six characteristic
checkpoints marked by a measuring tape and projected to simulation. First, we remove
the insignificant points, e.g., in the examined case, all the points above the height of the
labyrinth. Depending on the point cloud, this can accelerate the algorithm by several
percent. Afterward, we iterate through the points, and for every point, we find the nearest
point in the second one and sum up a distance between these two corresponding points.
We repeat the same procedure using the second point cloud as the reference. For every
cloud, we calculate the average distance between the points, and then the average of these
values. The obtained value is the final score which describes the average distance between
the point clouds.

Figure 5. The algorithm used to evaluate the distance between the point clouds.

4.4.2. SLAM-Based Evaluation

We conduct the evaluation using SLAM algorithm provided by Google Cartographer.
To the algorithm, we input point clouds generated using an actual vehicle equipped in
LiDAR and IMU and a simulated point cloud and inertial data with or without noise. We
perform experiments ten times, and we average the results for each of two test tracks,
which we also mapped in the virtual environment:
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• Track no. 1—drive over a straight 4-meter section with 4 measuring points (the first
one is also taken into consideration, so we have 5 measurement points in total) once
in every 1 m in the test room,

• Track no. 2—a labyrinth with 5 checkpoints and a start line (Figure 6).

Figure 6. Track no. 2: A labyrinth setup with 5 checkpoints and a start line used for the evaluation.

For every estimated pose p we also have the reference pose p′ and we can calculate a
sum of squared distances between estimated and ground truth poses in moments 1 to N
using the following error function [63]:

ε(p1:N) =
N

∑
i=1

(pi 	 p′i)
2 (1)

The authors in [63] claim that the metric could be suboptimal for comparing the result
of SLAM algorithms. It is also a good manner to compare the performance of the same
algorithm on data from different sources. In our case, the error results should be as similar
as possible to the real ones because when these values are too low, the data are too idealistic
and opposite—too noisy—and as a result, the evaluation achieved in both cases is not
accurate. In other words, our aim is to generate the data on which a particular SLAM
algorithm performs in the most similar way as on the real-life data, and we evaluate it
using the error values for different measurement points.

5. Experiments and Results

The capabilities of the framework are presented in Figures 7 and 8. Figure 7 shows
the actual physical laboratory with the corresponding simulated one and the point clouds
obtained for both. Figure 8, on the other hand, shows two simulated outdoor environments
with the corresponding point clouds.

The experiments were conducted using a 16-channel Velodyne 3D LiDAR with a
horizontal and vertical field of view of 360 deg and 30 deg respectively, the full scan
frequency of 10 Hz. We built the corresponding simulation model. We arranged the point
clouds obtained in the marked points both in the simulation and the real-life setup. We
consider the simulation with the additional noise and without it. The interferences are
adjusted to the declared accuracy of measurements.
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(a) (b)

(c) (d)
Figure 7. Sample LiDAR Point Cloud extracted from a real device in a real-world observation versus
obtained from a simulation framework. (a) An actual photo of a laboratory room; (b) A screenshot
of a simulated laboratory room in Unity; (c) Extracted point cloud from a real device—Velodyne
VLP-16; (d) Extracted point cloud from a simulation.

(a) (b)

(c)
(d)

Figure 8. Sample LiDAR Point Cloud extracted from two simulated heterogeneous environments.
(a) A screenshot of a simulated rural environment; (b) A screenshot of a simulated natural environ-
ment; (c) Extracted point cloud from a simulated environment (a); (d) Extracted point cloud from a
simulated environment (b).

In Figure 9, we present the average error value between the subsequent points in the
clouds obtained from an actual device and a simulation. We use the track presented in
Figure 4. We can notice that the errors for both simulated data with and without noise are
low, approximately 6 mm and 6.5 mm, respectively, which means that the similarity in
terms of a distance between the points of the simulated and real point clouds is high. We
can clearly see that adding noise to the simulated point cloud decreases the mean error
values for all the checkpoints and additionally increases the similarity.
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Figure 9. Mean error values between points from real and simulated point clouds.

A significant part of the error value is caused by the imperfect placement of the vehicle
in the actual labyrinth and the simulated one. Obviously, this error can be reduced by a
proper alignment of the point clouds. For that purpose, we can use manual alignment or,
as an alternative, the Iterative Closest Point (ICP) algorithm. ICP algorithm is a well-known
technique to align the three-dimensional models when their initial position is given [64].
In our experiments, we decided to use manual alignment. In Figure 10 we can see that the
error values are lower than in the case without the alignment. The reason is that we reduced
the error caused by the small shifts in real and simulated environments. Nevertheless, even
without this alignment, which can be difficult for practical applications, the point clouds in
all the checkpoints are affected by an error of only a few millimeters because of the lack
of alignment.

Comparing both Figures 9 and 10, we can notice that the error bars for the checkpoints
4 and 5 were not so affected by this operation. It is because these checkpoints were
placed at the end of the labyrinth. As we can see in Figure 4, in these measurement point,
the labyrinth is opened, and the background is reachable for the LiDAR beams. We can
also notice that in the real-life setup there are some objects in the room, a wall etc. and the
simulated environment is empty. Our goal was to simulate the track, therefore we decided
not to model the surroundings.
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Figure 10. Mean error values between points from real and simulated point clouds (after alignment).
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According to the methodology described in Section 4, the SLAM accuracy tests have
been performed using the data obtained from two different types of test tracks. Additionally,
we aim to compare the results obtained from the simulation with and without the noise
included. To add the proper amount of noise to the data, we based this amount on the
information on the measurement error given by the Velodyne. The results can be observed
in Figures 11 and 12. We can observe that creating a realistic and detailed setup makes the
simulated data similar to the corresponding real data.

In Figure 11 we can observe the error results achieved using Track no. 1. The error
results of real and simulated data obtained using this track, which was a relatively simple
track—a straight line with five measuring points—are similar (both for the simulated data
with and without noise). In Figure 11a, we can notice that for the simulated data without
noise added, it is the error on real data which increases faster, and in Figure 11b it is the
opposite: the error is growing faster for the simulated data. However, it is only visible for
the two last points. For this case, the SLAM algorithm behaves similarly on simulated data
as on the real one. Therefore, both point clouds are suited to evaluate a SLAM algorithm.
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(b)
Figure 11. SLAM accuracy metric for real data and simulated data on the first track: (a) without
noise and with the rolling shutter effect (b) with added noise and the rolling shutter effect, distance
between the checkpoints—1 m.

In Figure 12 we can observe the error results achieved using Track no. 2. In this case,
the differences in the errors obtained from the simulated point clouds with and without
noise in comparison to the ones obtained from real data differ significantly. Here, we
examine a more complicated track. In Figure 12a we can clearly see that the difference
between the trends of both errors increases with time. If we wanted to use a longer track,
the generated point clouds could not be accurate enough to evaluate the performance of
the SLAM algorithm. Additionally, see Figure 13 to observe that the relationship between
the accuracy metric and the distance from the beginning persists.

(a) (b)
Figure 12. SLAM accuracy metric for real data and simulated data generated for the second track: (a)
without noise and with the rolling shutter effect (b) with added noise and the rolling shutter effect.
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Figure 13. SLAM accuracy metric for real data and simulated data generated for the second track
(obtained on this track for a vehicle travelling back and forth along this route).

Moreover, the difference between the errors obtained using simulated data with and
without the rolling shutter effect increases significantly with time. It can be observed in
Figure 14. It is not possible to match the linear trend well to the bars representing data
without the rolling shutter, as the error increase is close to the exponential one.

Figure 14. SLAM accuracy metric for simulated data generated for the second track with and without
the rolling shutter effect.

We also present the graphical results in the form of a point cloud obtained in a
simulation, in which the rolling shutter effect is visible. We decided to use the outdoor
environment instead of the indoor one, because the simulation of this effect is more
necessary for outdoor applications, in which a vehicle can reach a significant speed. It
can be seen in Figure 15. When we compare the obtained effect with the one observed in
a real-life setup (Figure 3), we can clearly see that the simulation can accurately mimic
this behavior.
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Figure 15. The rolling shutter effect visible on the point cloud obtained from a simulation.

6. Conclusions

We have created the simulator which can be used to generate the realistic LiDAR 3D
point clouds for the purpose of the SLAM algorithm evaluation. Its high accuracy, efficiency
and the fact that it was adapted to simulate the rolling shutter effect that is a characteristic
for actual devices that makes it a cost-effective alternative to using real-world setups and
actual devices. Our framework can operate in real time, which also increases its usefulness
in the area of SLAM algorithm evaluation. Due to the use of additional software elements
created in the work, our simulation is compatible with ROS. These additional software
elements enabled us to use the simulated and real-world data interchangeably in our
experiments and can significantly facilitate the deployment of the novel SLAM algorithms.

When the simulated object is an actual, imperfect electronic device, it is crucial to
know its characteristics and, equally important, the characteristics of errors generated by
this device. To create an accurate simulation, it is vital to incorporate these errors in the
model. The comparison of the point clouds obtained from an actual device and from a sim-
ulation shows that the adoption of the ‘noisy’ model of a simulation significantly increases
its similarity to the one obtained in a corresponding real-life environment. Obviously,
the accuracy and detailing of the simulation model have a crucial impact on the obtained
results quality. For more complex environments, the difference between the errors of the
SLAM algorithm calculated for real and simulated increases with the length of the test
track. Because of that, for such tracks, it is better to use the simulated point clouds with
additional noise to obtain accurate results of the SLAM evaluation.

The results obtained in the experiments have clearly shown that the rolling shutter
effect should not be omitted in the simulation, as the error of some of the SLAM algorithms
(e.g., Google Cartographer, which was used in the experiments) significantly increases
with time when the effect is not present. The results obtained from the simulation without
the rolling shutter effect suggest that the Google Cartographer SLAM algorithm performs
poorly, though it is the simulation that does not reflect the true characteristics of data and
gives misleading results. This shows that the data generated by the simulation should
reflect the characteristics of the real world, on which the SLAM algorithm will run after
deployment, to deliver an accurate verification in the testing process.

Author Contributions: Conceptualization, Ł.S. and A.D.; methodology, Ł.S.; software, Ł.S.; formal
analysis, J.D. and K.F.; data curation, Ł.S.; writing—original draft preparation, K.F., J.D., A.D. and
Ł.S.; writing—review and editing, K.F., J.D.; visualization, Ł.S. and K.F.; supervision, A.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by The National Centre for Research and Development
(DOB-2P/02/07/2017) and Ministry of Science and Higher Education (10/DW/2017/01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2021, 21, 3313 19 of 21

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deloitte. Autonomous Driving Moonshot Project with Quantum Leap from Hardware to Software & AI Focus. 2018. Available

online: https://www2.deloitte.com/content/dam/Deloitte/be/Documents/Deloitte_Autonomous-Driving.pdf (accessed on
1 October 2020).

2. 5 Trends Appear on the Gartner Hype Cycle for Emerging Technologies, 2019—Smarter with Gartner. 2019. Available
online: https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-
2019/ (accessed on 1 October 2020).

3. BMW Group. Safety Assessment Report: SAE Level 3 Automated Driving System. 2019. Available online: https://www.
bmwusa.com/content/dam/bmwusa/innovation-campaign/autonomous/BMW-Safety-Assessment-Report.pdf (accessed on
1 October 2020).

4. Kroger, F. Automated Driving in Its Social, Historical and Cultural Contexts. In Autonomous Driving: Technical, Legal and Social
Aspects; Springer: Berlin/Heidelberg, Germany, 2016; pp. 41–68. [CrossRef]

5. Moravec, H.P. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Ph.D. Thesis, Department of
Computer Science, Stanford University, Stanford, CA, USA, 1980.

6. Leighty, R. DARPA ALV (Autonomous Land Vehicle) Summary; Defense Technical Information Center: Fort Belvoir, VA, USA, 1986.
7. Williams, M. PROMETHEUS—The European research programme for optimising the road transport system in Europe. In Pro-

ceedings of the IEE Colloquium on Driver Information, London, UK, 1 December 1988; pp. 1/1–1/9.
8. Pomerleau, D.A. ALVINN: An Autonomous Land Vehicle in a Neural Network. In Advances in Neural Information Processing

Systems 1; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1989; pp. 305–313.
9. Williams, A.P.; Scharre, P.D. Autonomous Systems: Issues for Defence Policymakers; NATO Allied Command Transformation: Norfolk,

VA, USA, 2015.
10. Tang, I.; Breckon, T.P. Automatic road environment classification. IEEE Trans. Intell. Transp. Syst. 2010, 12, 476–484. [CrossRef]
11. Ren, Z.; Wang, L.; Bi, L. Robust GICP-based 3D LiDAR SLAM for underground mining environment. Sensors 2019, 19, 2915.

[CrossRef]
12. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE

International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.
13. Manivasagam, S.; Wang, S.; Wong, K.; Zeng, W.; Sazanovich, M.; Tan, S.; Yang, B.; Ma, W.C.; Urtasun, R. LiDARsim: Realistic

LiDAR Simulation by Leveraging the Real World. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11167–11176.

14. Yue, X.; Wu, B.; Seshia, S.A.; Keutzer, K.; Sangiovanni-Vincentelli, A.L. A lidar point cloud generator: From a virtual world to
autonomous driving. In Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, Yokohama, Japan,
11–14 June 2018; pp. 458–464.

15. Dosovitskiy, A.; Ros, G.; Codevilla, F.; López, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning, CoRL, Mountain View, CA, USA, 13–15 November 2017.

16. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics; Springer: Cham, Switzerland, 2018; pp. 621–635.

17. Fang, J.; Yan, F.; Zhao, T.; Zhang, F.; Zhou, D.; Yang, R.; Ma, Y.; Wang, L. Simulating LIDAR point cloud for autonomous driving
using real-world scenes and traffic flows. arXiv 2018, arXiv:1811.07112.

18. Wang, F.; Zhuang, Y.; Gu, H.; Hu, H. Automatic generation of synthetic LiDAR point clouds for 3-d data analysis. IEEE Trans.
Instrum. Meas. 2019, 68, 2671–2673. [CrossRef]

19. Filatov, A.; Filatov, A.; Krinkin, K.; Chen, B.; Molodan, D. 2D slam quality evaluation methods. In Proceedings of the 2017 21st
Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 6–10 November 2017.

20. Nüchter, A.; Bleier, M.; Schauer, J.; Janotta, P. Improving Google’s Cartographer 3D mapping by continuous-time slam. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 543. [CrossRef]

21. Cartographer—Cartographer Documentation. Available online: https://google-cartographer.readthedocs.io/ (accessed on
1 March 2021).

22. Sheridan, T.B. Telerobotics, Automation, and Human Supervisory Control; MIT Press: Cambridge, MA, USA, 1992.
23. Proud, R.W.; Hart, J.J.; Mrozinski, R.B. Methods for Determining the Level of Autonomy to Design into a Human Spaceflight Vehicle: A

Function Specific Approach; Technical Report; National Aeronautics and Space Administration Houston TX Lyndon B Johnson
Space Center: Houston, TX, USA, 2003.

24. Clough, B.T. Metrics, Schmetrics! How the Heck Do You Determine a UAV’s Autonomy Anyway; Technical Report; Air Force Research
Lab: Wright-Patterson AFB, OH, USA, 2002.

25. Wevolver. 2020 Autonomous Vehicle Technology Report. 2019. Available online: https://www.wevolver.com/article/2020
.autonomous.vehicle.technology.report (accessed on 1 October 2020).

https://www2.deloitte.com/content/dam/Deloitte/be/Documents/Deloitte_Autonomous-Driving.pdf
https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019/
https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019/
https://www.bmwusa.com/content/dam/bmwusa/innovation-campaign/autonomous/BMW-Safety-Assessment-Report.pdf
https://www.bmwusa.com/content/dam/bmwusa/innovation-campaign/autonomous/BMW-Safety-Assessment-Report.pdf
http://doi.org/10.1007/978-3-662-48847-8_3
http://dx.doi.org/10.1109/TITS.2010.2095499
http://dx.doi.org/10.3390/s19132915
http://dx.doi.org/10.1109/TIM.2019.2906416
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W3-543-2017
https://google-cartographer.readthedocs.io/
https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report
https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report


Sensors 2021, 21, 3313 20 of 21

26. Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.; Langer, D.; Pink, O.; Pratt, V.; et al. Towards
fully autonomous driving: Systems and algorithms. In Proceedings of the IEEE Intelligent Vehicles Symposium, Baden-Baden,
Germany, 5–9 June 2011; pp. 163–168. [CrossRef]

27. Kim, P.; Chen, J.; Cho, Y.K. SLAM-driven robotic mapping and registration of 3D point clouds. Autom. Constr. 2018, 89, 38–48.
[CrossRef]

28. Jung, S.H.; Taylor, C.J. Camera trajectory estimation using inertial sensor measurements and structure from motion results. In
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Kauai, HI, USA,
8–14 December 2001.

29. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation. In
Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March
2018.

30. Deepika, N.; Variyar, V.S. Obstacle classification and detection for vision based navigation for autonomous driving. In Proceedings
of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India,
13–16 September 2017.

31. Siam, M.; Elkerdawy, S.; Jagersand, M.; Yogamani, S. Deep semantic segmentation for automated driving: Taxonomy, roadmap
and challenges. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC),
Yokohama, Japan, 16–19 October 2017.

32. Patel, K.; Rambach, K.; Visentin, T.; Rusev, D.; Pfeiffer, M.; Yang, B. Deep learning-based object classification on automotive radar
spectra. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019.

33. Capellier, E.; Davoine, F.; Cherfaoui, V.; Li, Y. Evidential deep learning for arbitrary LIDAR object classification in the context
of autonomous driving. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019;
pp. 1304–1311.

34. Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-task multi-sensor fusion for 3D object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7345–7353.

35. Dang, T.; Khattak, S.; Mascarich, F.; Alexis, K. Explore locally, plan globally: A path planning framework for autonomous robotic
exploration in subterranean environments. In Proceedings of the 2019 19th International Conference on Advanced Robotics
(ICAR), Belo Horizonte, Brazil, 2–6 December 2019.

36. Hansen, E.A.; Zhou, R. Anytime heuristic search. J. Artif. Intell. Res. 2007, 28, 267–297. [CrossRef]
37. Ferguson, D.; Stentz, A. Using interpolation to improve path planning: The Field D* algorithm. J. Field Robot. 2006, 23, 79–101.

[CrossRef]
38. Hu, X.; Chen, L.; Tang, B.; Cao, D.; He, H. Dynamic path planning for autonomous driving on various roads with avoidance of

static and moving obstacles. Mech. Syst. Signal Process. 2018, 100, 482–500. [CrossRef]
39. Li, X.; Tang, B.; Ball, J.; Doude, M.; Carruth, D.W. Rollover-Free Path Planning for Off-Road Autonomous Driving. Electronics

2019, 8, 614. [CrossRef]
40. Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.; Dolan, J.; Duggins, D.; Galatali, T.; Geyer, C.; et al. Autonomous

driving in urban environments: Boss and the urban challenge. In The DARPA Urban Challenge; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 1–59.

41. Chan, S.H.; Wu, P.T.; Fu, L.C. Robust 2D indoor localization through laser SLAM and visual SLAM fusion. In Proceedings of the
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018.

42. Ren, R.; Fu, H.; Wu, M. Large-scale outdoor slam based on 2d lidar. Electronics 2019, 8, 613. [CrossRef]
43. Wen, J.; Qian, C.; Tang, J.; Liu, H.; Ye, W.; Fan, X. 2D LiDAR SLAM back-end optimization with control network constraint for

mobile mapping. Sensors 2018, 18, 3668. [CrossRef]
44. Koide, K.; Miura, J.; Menegatti, E. A portable three-dimensional LIDAR-based system for long-term and wide-area people

behavior measurement. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419841532. [CrossRef]
45. Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for

large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [CrossRef]
46. Li, M.; Zhu, H.; You, S.; Wang, L.; Tang, C. Efficient laser-based 3D SLAM for coal mine rescue robots. IEEE Access 2018,

7, 14124–14138. [CrossRef]
47. Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117.

[CrossRef]
48. Ji, X.; Zuo, L.; Zhang, C.; Liu, Y. Lloam: Lidar odometry and mapping with loop-closure detection based correction. In Proceedings

of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019.
49. Milijas, R.; Markovic, L.; Ivanovic, A.; Petric, F.; Bogdan, S. A Comprehensive LiDAR-based SLAM Comparison for Control of

Unmanned Aerial Vehicles. arXiv 2020, arXiv:2011.02306.
50. Filipenko, M.; Afanasyev, I. Comparison of various slam systems for mobile robot in an indoor environment. In Proceedings of

the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018.
51. Dwijotomo, A.; Abdul Rahman, M.A.; Mohammed Ariff, M.H.; Zamzuri, H.; Wan Azree, W.M.H. Cartographer SLAM Method

for Optimization with an Adaptive Multi-Distance Scan Scheduler. Appl. Sci. 2020, 10, 347. [CrossRef]

http://dx.doi.org/10.1109/IVS.2011.5940562
http://dx.doi.org/10.1016/j.autcon.2018.01.009
http://dx.doi.org/10.1613/jair.2096
http://dx.doi.org/10.1002/rob.20109
http://dx.doi.org/10.1016/j.ymssp.2017.07.019
http://dx.doi.org/10.3390/electronics8060614
http://dx.doi.org/10.3390/electronics8060613
http://dx.doi.org/10.3390/s18113668
http://dx.doi.org/10.1177/1729881419841532
http://dx.doi.org/10.1002/rob.21831
http://dx.doi.org/10.1109/ACCESS.2018.2889304
http://dx.doi.org/10.1109/MRA.2006.1678144
http://dx.doi.org/10.3390/app10010347


Sensors 2021, 21, 3313 21 of 21

52. Labbe, M.; Michaud, F. Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans.
Robot. 2013, 29, 734–745. [CrossRef]

53. Goodin, C.; Doude, M.; Hudson, C.R.; Carruth, D.W. Enabling off-road autonomous navigation-simulation of LIDAR in dense
vegetation. Electronics 2018, 7, 154. [CrossRef]

54. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object
segmentation from 3D lidar point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018.

55. Wen, C.; Yang, L.; Li, X.; Peng, L.; Chi, T. Directionally constrained fully convolutional neural network for airborne LiDAR point
cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 162, 50–62. [CrossRef]

56. Börcs, A.; Nagy, B.; Benedek, C. Instant object detection in lidar point clouds. IEEE Geosci. Remote Sens. Lett. 2017, 14, 992–996.
[CrossRef]

57. Ma, L.; Li, Y.; Li, J.; Tan, W.; Yu, Y.; Chapman, M.A. Multi-scale point-wise convolutional neural networks for 3D object
segmentation from lidar point clouds in large-scale environments. IEEE Trans. Intell. Transp. Syst. 2021, 22, 821–836. [CrossRef]

58. Wang, H.; Yu, Y.; Yuan, Q. Application of Dijkstra algorithm in robot path-planning. In Proceedings of the 2011 Second
International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, 15–17 July 2011; pp. 1067–
1069. [CrossRef]

59. Moras, J.; Cherfaoui, V.; Bonnifait, P. Credibilist occupancy grids for vehicle perception in dynamic environments. In Proceedings
of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 84–89. [CrossRef]

60. Liang, C.; Chang, L.; Chen, H.H. Analysis and Compensation of Rolling Shutter Effect. IEEE Trans. Image Process. 2008, 17,
1323–1330. [CrossRef] [PubMed]

61. Velas, M.; Spanel, M.; Sleziak, T.; Habrovec, J.; Herout, A. Indoor and outdoor backpack mapping with calibrated pair of velodyne
LiDARs. Sensors 2019, 19, 3944. [CrossRef] [PubMed]

62. Droeschel, D.; Behnke, S. Efficient continuous-time SLAM for 3D lidar-based online mapping. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018.

63. Kümmerle, R.; Steder, B.; Dornhege, C.; Ruhnke, M.; Grisetti, G.; Stachniss, C.; Kleiner, A. On measuring the accuracy of SLAM
algorithms. Auton. Robot. 2009, 27, 387. [CrossRef]

64. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D
Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001.

http://dx.doi.org/10.1109/TRO.2013.2242375
http://dx.doi.org/10.3390/electronics7090154
http://dx.doi.org/10.1016/j.isprsjprs.2020.02.004
http://dx.doi.org/10.1109/LGRS.2017.2674799
http://dx.doi.org/10.1109/TITS.2019.2961060
http://dx.doi.org/10.1109/MACE.2011.5987118
http://dx.doi.org/10.1109/ICRA.2011.5980298
http://dx.doi.org/10.1109/TIP.2008.925384
http://www.ncbi.nlm.nih.gov/pubmed/18632342
http://dx.doi.org/10.3390/s19183944
http://www.ncbi.nlm.nih.gov/pubmed/31547399
http://dx.doi.org/10.1007/s10514-009-9155-6

	Introduction
	Background
	Autonomy
	Equipment of Autonomous Vehicles
	Accuracy of Sensors
	Components of Autonomous Driving System
	3D SLAM Algorithms
	Testing of Autonomous Vehicles

	Related Work
	Methodology
	Experimental Setup
	Simulation of the Rolling Shutter Effect
	Collection of Data Points
	Evaluation Methodology
	Point Cloud Comparison
	SLAM-Based Evaluation


	Experiments and Results
	Conclusions
	References

