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Abstract 

Background:  Accurate segmentation of anatomical structures in medical images is 
a critical step in the development of computer assisted intervention systems. How-
ever, complex image conditions, such as intensity inhomogeneity, noise and weak 
object boundary, often cause considerable difficulties in medical image segmentation. 
To cope with these difficulties, we propose a novel robust statistics driven volume-
scalable active contour framework, to extract desired object boundary from magnetic 
resonance (MR) and computed tomography (CT) imagery in 3D.

Methods:  We define an energy functional in terms of the initial seeded labels and two 
fitting functions that are derived from object local robust statistics features. This energy 
is then incorporated into a level set scheme which drives the active contour evolving 
and converging at the desired position of the object boundary. Due to the local robust 
statistics and the volume scaling function in the energy fitting term, the object features 
in local volumes are learned adaptively to guide the motion of the contours, which 
thereby guarantees the capability of our method to cope with intensity inhomogene-
ity, noise and weak boundary. In addition, the initialization of active contour is simpli-
fied by select several seeds in the object and/or background to eliminate the sensitivity 
to initialization.

Results:  The proposed method was applied to extensive public available volumet-
ric medical images with challenging image conditions. The segmentation results of 
various anatomical structures, such as white matter (WM), atrium, caudate nucleus 
and brain tumor, were evaluated quantitatively by comparing with the correspond-
ing ground truths. It was found that the proposed method achieves consistent and 
coherent segmentation accuracy of 0.9246 ± 0.0068 for WM, 0.9043 ± 0.0131 for liver 
tumors, 0.8725 ± 0.0374 for caudate nucleus, 0.8802 ± 0.0595 for brain tumors, etc., 
measured by Dice similarity coefficients value for the overlap between the algorithm 
one and the ground truth. Further comparative experimental results showed desirable 
performances of the proposed method over several well-known segmentation meth-
ods in terms of accuracy and robustness.

Conclusion:  We proposed an approach to accurate segment volumetric medical 
images with complex conditions. The accuracy of segmentation, robustness to noise 
and contour initialization were validated on the basis of extensive MR and CT volumes.
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Background
Active contour models (ACMs) have been studied extensively in recent decades and 
widely used in image segmentation with promising results [1, 2]. Compared with the 
classical image segmentation methods, such as region-growing, edge detection and arti-
ficial neural network (ANN), ACMs have several desirable advantages. For example, the 
models can provide smooth and closed contours as segmentation results with sub-pixel 
accuracy [3], and meanwhile they can easily integrate with various prior knowledge [4]. 
A comparative study of major ACMs can be found in [5]. Generally, there are two major 
classes of ACMs: edge-based models [6, 7] and region-based models [8, 9].

Typical edge-based models drive active contour toward the object boundary using 
image gradient information. These models are very sensitive to noise and weak object 
boundary. These drawbacks limit their applications for medical images, which typically 
contain noise induced by the image acquisition process and fuzzy boundary caused by 
low contrast or partial volume effect [10]. In contrast to edge-based schemes, region-
based models have better performances in the presence of noise and weak boundary due 
to the utilization of certain region descriptors. However, most of the region-based mod-
els [11, 12] rely on the assumption of intensity homogeneity in each of the regions that 
compose the image domain, and therefore they usually fail to segment medical images 
with non uniform intensity.

In fact, real-world images are often distorted by intensity inhomogeneity and/or noisy 
weak object boundary. For medical images, such as MR and CT images, imperfect image 
conditions are usually caused by imperfections of imaging devices or imaging artifacts 
introduced by the movement of the object being imaged. In particular, due to the effects 
of non uniform magnetic fields and partial voluming, the intensity inhomogeneity and 
weak boundary often appear in MR images. Moreover, in order to fully utilize the infor-
mation given by the volumetric medical images, it needs to segment the volumetric 
image data directly in three dimension in some circumstance. The acquisition sequences 
which compose the volumetric image can also introduce intensity inhomogeneity that 
appears as an intensity variation across the image slices. Accuracy in volumetric medical 
image segmentation is therefore hard to achieve.

In the past several years, many efforts were put into complex medical image segmenta-
tion [13–15], in meeting the variety of needs of clinical diagnosing and therapy, including 
local region-based, graph-based, atlas-based, etc. Among these methods, local region-
based method is a widely used technique for segmentation of complex medical images. 
Local information can be extracted from local regions of inhomogenous images and be 
incorporated into the energy functional [16–18]. For example, Li et al. [19] proposed a 
data fitting energy by approximating image intensities in local regions at a controllable 
scale and then integrated it into a variational level set formulation for image segmenta-
tion. Lankton et  al. [20] developed a natural framework that allows any region-based 
segmentation energy to be re-formulated in a local way and evolve a contour based on 
local information. This method was later improved by Mille J. [21]. However, common 
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limitations of all these local region-based methods are that they generally are sensi-
tive to initial contour and high levels of noise. Some hybrid methods are also proposed 
that integrate local region-based level set methods with a good deal of image process-
ing techniques, such as clustering [22], global intensity fitting [23, 24], local statistical 
function [25], hierarchical voxel analysis in multi-resolution [26], patch-based sparse 
representation techniques [27] and signed pressure force (SPF) function [28], improv-
ing the segmentation performance of local region-based methods. The coefficients of 
these methods are, however, sometimes difficult to adjust, which limits their practical 
applications.

As proposed in [29], the bias field accounts for the intensity inhomogeneity, which 
can be corrected along with tissue segmentation based on an expectation-maximization 
(EM) algorithm. Therefore this method can deal with intensity inhomogeneity. Some 
related methods were later proposed in [30, 31], which have certain capability of han-
dling intensity inhomogeneity. However, due to the complicated and non-linear inten-
sity inhomogeneity, these methods may fail to get accurate segmentation results for the 
images in which the bias fields are hard to estimate.

Graph-based techniques have achieved good performances for natural image segmen-
tation, such as graph cuts [32–34], random walker [35], isoperimetric graph partitioning 
[36] and normalized Cuts [37], which map the image elements onto a mathematically 
sound graph, and then segmentation proceeds by the flexible and efficient tools from 
graph theories [38]. As for the complex medical image segmentation in the presence of 
imperfect image conditions, Liu et  al. [39] and Petersen et  al. [40] make use of novel 
graph-based segmentation methods to extract non-intersecting columns that are appli-
cable for surfaces with high curvature or complex shapes, such as human airway walls. 
Huang et al. [41, 42] provided a robust graph-based segmentation algorithm to extract 
breast tumors in ultrasound images with speckles and low contrast. Li et al. [43] devel-
oped a graph-theoretic approach to efficient segment object boundaries in volumetric 
data sets. Song et al. [44] presented an inhomogeneity correction method by adaptively 
adjusting the edge weights in graph cuts for brain MRI segmentation. However, many 
popular graph-based segmentation methods are restricted by image size in practice due 
to the increasingly computational and memory burdens as more nodes and edges are 
added to the graph. Especially for volumetric medical images, which can contain billions 
of voxels, segmentation on volumetric graph defined over such large volumes of data 
would be intractable [45].

As an extension of graph-based methods, atlas-based methods make use of spa-
tial prior information, which can be generated from manual or automated segmenta-
tion of training images, to guide the segmentation of the target images [46]. In order 
to compensate for the potential biases and errors, individual atlases can be further 
fused as multi-atlas [47–49]. Atlas-based methods often exhibit good performances for 
many physiological structure segmentation tasks even in the presence of reduced tis-
sue contrast and increased noise [50, 51]. However, they are challenged by the problem 
of pathology segmentation due to the considerable variation of these pathologies across 
patients in terms of shape, size, and localization.

Machine learning methods, in particular, random forest (RF) methods have recently 
enjoyed the increased attentions in the complex medical image segmentation [52, 53]. 
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They are inherently suited for handling a large number of multi-class image data with 
high image feature dimension, and achieve promising results for some tissue segmen-
tation tasks [54]. For example, Li Wang et  al. [55] proposed a RF-based multi-source 
integration framework for segmentation of infant brain images by fully capturing both 
local and contextual image information. Tustison et  al. [56] incorporated the optimal 
symmetric multimodal templates into the concatenated random forests for supervised 
brain tumor segmentation. One of the few drawbacks of the RF-based methods is that an 
unsophisticated depth of the decision tree will likely lead to under-fitting or over-fitting.

Besides, most of the above-mentioned methods perform segmentation in 2D whose 
scalability to 3D are not tested. Segmentation algorithms that focus on volumetric data 
are potentially more efficient and perform better in complex tissue areas [57, 58]. For 
instance, Gu et al. [59] initialized a 3D active surface model inside the airway regions 
and thereafter allowed this model to evolve under predefined external and internal 
forces automatically to reach the airway wall. Ukwatta et al. [60] developed a new cou-
pled min-cut/max-flow formulation for 3D segmentation of the femoral artery lumen 
and outer wall from black-blood MR images. Yaqub et al. [61] investigated the role of 
feature selection and weighted voting within the random forest classification framework 
for 3D volumetric segmentation. Chandra et al. [62] integrated the weighted shape pri-
ors into the deformable models for hip joint segmentation in 3D MR images. Jiang et al. 
[63] proposed a 3D brain tumor segmentation method by learning the population- and 
patient-specific feature sets of multimodal MR images. Compared with 2D segmentation 
techniques, more image information can be fed into the 3D segmentation algorithms, 
and more complex image conditions are imposed at the same time, which makes the 3D 
segmentation a challenge problem. Furthermore, most of the 3D segmentation methods 
are designed for segmenting specific anatomical structures and lack the ability of seg-
menting multi-class structures.

Recently, the probability distribution function (PDF) based description has attracted 
rapidly growing interest [64, 65]. This approach introduces alternative similarity meas-
urements into the level set framework base on PDFs extracted from the regions on the 
two sides of the evolving contour [66, 67]. This strategy has been proven to be efficient 
for describing the images with complex local information [68].

Related works

The region‑scalable fitting (RSF) model

In order to cope with intensity inhomogeneity, Li et al. [19, 69]. proposed the RSF model 
by utilizing the image intensity information in local regions. By introducing a kernel 
function, they defined the following energy functional:

(1)

εFit(C , f1, f2) = �1

∫
[
∫

outside(C)
Kσ (x − y)

∣

∣I(y)− f1(x)
∣

∣

2
dy

]

dx

+ �2

∫
[
∫

inside(C)
Kσ (x − y)

∣

∣I(y)− f2(x)
∣

∣

2
dy

]

dx

+ ν|C|
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where Kσ is a Gaussian kernel with standard deviation σ, f1 and f2 are two spatially vary-
ing fitting functions that locally approximate the intensities on the two sides of the con-
tour C, respectively.

This energy can be expressed by a level set formulation, and then the image segmenta-
tion problem can be converted to minimizing the energy functional F(φ, f1, f2) by solving 
the level set evolution equation as follows: 

with 

Due to the localization property of the kernel function, local intensity information is 
extracted to guide the evolution of the active contour, which thereby enables the RSF 
model to achieve promising results. However, because of many local minimums of the 
energy functional which are introduced by such localization property, the segmentation 
results are sensitive to contour initialization.

The local robust statistics (LRS) model

Gao [70] proposed a local robust statistics based conformal metric and the conformal 
area driven multiple active contour framework, to simultaneously segment multiple 
objects from 3D medical imagery. Let I : Ω → ℜ where Ω ⊂ ℜd and d ∈ {2, 3} be the 
image to be segmented, Ci ⊂ Ω be the family of evolving closed contour. The variable x 
in f(x) is a point in Ω. Without interactions among contour, they proposed the following 
energy functional: 

where in the first term the seed groups are characterized by the probability density func-
tion pi(f(x)) of the robust statistics feature vectors f(x) whose variance can be adjusted 
according to the intensity inhomogeneity of the target and the second term is the surface 
area. Moreover, the pc is the cut-off probability density used to prevent the contour leak-
age [71] and is fixed at 0.1 as suggested there. The smoothness factor λ is nonnegative 
constant.

With the interaction among curves, the energy functional in Eq. 3 is updated as 

(2)
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where the third term estimates the speeds of the curves except Ci and the exponential 
term in the third term controls the influence range of the speed. By minimizing the 
energy functional, the contours evolve towards the objects boundaries.

Such evolution is a curve expansion scheme which tries to maximize the area the sur-
face encloses. Because the interactions between the contours are incorporated into the 
evolution, the contour leakage is effectively reduced. Whereas, an unsophisticated pc 
term in Eq.  4 may stop the contour evolving before the interactions happening, if the 
intensities in both sides of the curves are inhomogeneous. Moreover, without taking 
similarity of adjacent points into account, the segmentation results of the LRS model for 
images with inhomogeneity are not sufficiently satisfying. For example, Fig. 1 shows the 
initial seeds and the segmentation results for a brain volumetric MR image with intensity 
inhomogeneity and weak object boundary [72]. It can be seen from Fig. 1b that a lower 
intensity inhomogeneity hypothesis in parameter setting causes the contour leakage, 
while some detailed regions are still under-segmented. On the other hand, if a higher 
intensity inhomogeneity is hypothesized, the under-segmentation is severe, as shown in 
Fig. 1c.

In this paper, we propose a novel volume-scalable ACM via PDF based description of 
local robust statistics for volumetric medical image segmentation. Specifically, we first 
define a feature vector with volume-scalable robust statistics in order to make better use 
of volumetric image information, which are presented by the initial seeds and the local 
volumes on the two sides of the evolving contour, rather than just using image inten-
sity. A kernel function controls the volume-scalability of the robust statistics with a scale 
parameter, which allows the use of local statistics information around the center voxels 
at a flexible scale. We then define a volume-scalable fitting energy functional in terms of 
two fitting functions that derived from feature vectors afore mentioned. This energy is 
then incorporated into a variational level set formulation with a level set regularization 
term and a smooth term. In the associated curve evolution, the motion of the active con-
tour is driven by the two fitting functions, induced by the robust statistics information in 
local volumes at a certain scale. As a result, the proposed model can be used to segment 
volumetric medical images with intensity inhomogeneity as well as noisy weak object 
boundary.

Fig. 1  Results of the LRS model. a An axial slice of the original volumetric image and the initial seeds (shown 
in red). b, c The segmentation results with lower intensity inhomogeneity hypothesis and higher intensity 
hypothesis in parameter setting, respectively. The red contour is generated by the LRS model, while the blue 
contour represents expert manual segmentation, and the green contour is where the algorithm ones coin-
cide with the manual ones
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Methods
Our approach for the segmentation of volumetric medical images is based on a new 
energy functional. In this section, we first describe the original robust statistics fitting 
energy formulation of the functional in local volumes at multi-scales. Then, we intro-
duce a reformulation as variational level set model.

Volume‑scalable robust statistics feature vector learning

Denote the vector valued image to be segmented as I : Ω → ℜd where Ω ⊂ ℜ3 is the 
image domain, and d ≥  1 is the dimension of the vector I(x). Let L : Ω → {0, 1} be a 
label map in the image domain Ω, which separates Ω into the target object volume: 
Ω1 = {x ⊂ Ω : L(x) = 1} and the background volume: Ω2 = {x ⊂ Ω : L(x) = 0}. In par-
ticular, ΩSeeds_1 and ΩSeeds_2 indicate the user provided seeded target object volume and 
seeded background volume, respectively.

In images with complex conditions, general information about the target/background 
given by the label map in 2D, such as image intensity and location of the target, are not 
descriptive enough. For fully utilizing the information provided by the initial label map 
in 3D, not only the locations of the seeds, but also some sample voxels contained in seed 
volumes are taken into account in this work. Hence, more information can be extracted 
at each voxel and a feature image f : Ω → ℜDf  is formed. Then, images are segmented 
with the feature image assisted. In this work, we choose local robust statistics [73] to 
construct the feature vectors for their insensitivity to image noise and computational 
efficiency.

Numerically, in computing the robust statistics in local volumes at a controllable scale 
and assigning different weights to the data for voexls according to their distance to the 
central voxel, we define the weighting neighborhood using a non-negative kernel func-
tion K such that K(u) ≤ K(v) for |u| > |v| and ∫K (x)dx = 1

There are various choices for the kernel function. In this work, we use the Gaussian 
kernel

with a scale parameter σ > 0.
Then, within the kernel controlled neighborhood B(x) ⊂ Ω of voxel x, we define the 

feature vector f (x) ∈ ℜDf  for each voxel x ∈ Ω by combining several volume-scalable 
robust statistics. More explicitly, we denote

as the volume-scalable intensity mean value within B(x). In addition, for bypassing the 
influence of outliers when calculating the local intensity range, the distance between 
the first and third kernel function weighted quartiles, namely the volume-scalable inter-
quartile range VSIQR(x), is calculated as the second feature. Furthermore, the intensity 
variance is a good character for the local volume but again it is sensitive to outliers. To 
improve the robustness, the weighted intensity variance is chosen to be the third feature 
and is calculated as

(5)Kσ (u) =
1

(2π)n/2σ n
e−|u|2

/

2σ 2

(6)VSMEAN (x) :=
Kσ (x) ∗ I(x)

Kσ (x) ∗ 1
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Consequently, the feature vector f(x) is defined as

It is necessary to elaborate on the meaning of the feature vector in the following. First, 
f(x) is a weighted statistics of the voxels y in the neighborhood of the center voxel x, 
with Kσ

(

x − y
)

 as the weight assigned to each voxel y via convolution operation. Due to 
the localization property of the kernel function, the voxels that are close to the center 
voxel and give more contribution to the robust statistics are assigned high weight. On 
the contrary, the voxels that are far away from the center voxel are assigned low weight. 
Therefore, the feature vector f(x) is dominated by the voxels y in a neighborhood of x. 
Second, the feature vector is volume-scalable in the following sense. The feature vec-
tor approximate the image character in a volume centered at the voxel x, whose size 
can be controlled by the kernel function. In particular, the Gaussian kernel with a large 
σ specify a large neighborhood of the voxel x, while the Gaussian kernel with a small 
σ specify a small volume centered at x. In this sense, we say that the feature vector is 
volume-scalable.

Voxel characterization using the PDFs of the feature vectors

With the volume-scalable feature vectors defined in Eq. 8, each voxel x can be character-
ized by combining the PDFs of the feature vectors derived in the seeded volumes with 
that derived in a neighborhood around voxel x. The characterization of voxel x is then 
described as follows: 

where in the first term the z is the seed voxel belongs to seed volume ΩSeeds_i and the 
second term is a weighted average of the probability distribution p in a neighborhood 
of voxel x, whose size is controlled by the scale parameter η of the kernel function Kη 
given by Eq. 5. Moreover, the μi in the probability density approximate image characters 
in local volume Ωi which will be formulated in Section “Energy minimization”. Note that 
the choices to model the probability distribution p in Eq. 9 are flexible. In this work, we 
use the Gaussian distribution, whose variance can be adjusted according to the WIV of 
the voxels which were used to characterize the voxel x.

The ω in Eq. 9 is a positive constant (0 ≤ ω ≤ 1), and it balance the importance of user 
selected seeds and the local volumes. This can be illustrated by a 2D example shown 
in Fig.  2. The initial seeded foreground region ΩSeeds_1 and seeded background region 
ΩSeeds_2 are plotted in red and blue points, respectively. The yellow and green regions 
represent the intermediate local foreground region Ω1 and local background region Ω2, 
respectively. It can be seen that when a specific object is desired, the voxel x should be 

(7)
WIV (x) :=

(

Kσ (x) ∗ (I(x)− VSMEAN (x))2

Kσ (x) ∗ 1

)
1
2

(8)f (x) = (VSMEAN (x),VSIQR(x),WIV (x))T ∈ ℜ3

(9)

Pi(x) = (1− ω)
1

|ΩSeeds_i|

∑

z∈ΩSeeds_i

p
(

f (x)− f (z)
)

+ ω

∫

Ωi

Kη(x − y)p
(

µi(x)− f (y)
)

dy, i = 1, 2
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characterized mainly by the seeded region and the parameter value ω should be chosen 
small enough. The selection of the parameter ω is discussed in “Discussion” section.

Definition of volume‑scalable robust statistics fitting energy for single voxel

With the user provided label map L, for a given voxel x ∈ Ω, we define the following 
volume-scalable robust statistics fitting (VSRF) energy: 

where λ1 and λ2 are positive constants, P1 and P2 are two values defined in Eq. 9 that 
characterize image voxels with seeded volumes and neighbor volumes. Kη is the kernel 
function given by Eq. 5, which control the size of a local volume centered at the voxel x. 
Then, the statistic character of voxels in the neighbor volume of voxel x are effectively 
involved in the above fitting energy. In this sense, the robust statistics fitting energy is 
also volume scalable.

Contrasting to the ordinary region based schemes where the fitting energy is mini-
mized, here we try to maximize the fitting energy ɛxVSRF in Eq. 10. Essentially, if in cer-
tain volume the label L is exactly separating the object from the background and the 
fitting values P1 and P2 optimally approximate the local robust statistics character of vox-
els with different labels, the value of fitting energy ɛxVSRF is big. Therefore, partial object 
boundary can be achieved. However, in the following discussion the energy term will be 
integrated with regularization terms which need to be minimized. For unification, the 
maximization needs to be converted to the minimization. There are various approaches 

(10)εVSRFx (L,P1,P2) =

2
∑

i=1

�i

∫

Ωi

Kη(x − y)Pi(y)dy

Fig. 2  Characterization of a center voxel x. Voxel x is characterized by the voxels in a neighborhood around 
voxel x and in the seeded regions, respectively
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to perform the conversion. In this work, the maximization of the energy in Eq.  10 is 
extended by simply adding a negative sign, obtaining a new fitting energy given by 

Definition of energy functional for entire volumetric data

Now, we define the following energy functional:

where the fitting energy ɛxVSRF is integrated over all the center voxels x in the 3D image 
domain Ω. By minimizing the integral, we can obtain the entire object boundary. We 
will give a level set formulation of the energy functional in the next subsection.

Volume‑scalable level set formulation

Let φ be the level set function and H(·) be the Heaviside function, and then the fitting 
energy ɛxVSRF (L, P1, P2) can be expressed as 

Thus, we define the following energy functional: 

As in most level set methods [11, 74], we introduce a level set regularization term and 
a smoothness term in our variational level set formulation. The level set regularization 
term can be defined as 

and the smoothness term can be defined as 

Then, we define the entire energy functional 

where ν and μ are positive constants.

(11)εVSRFx (L,P1,P2) = −

2
∑

i=1

�i

∫

Ωi

Kη(x − y)Pi(y)dy.

(12)εVSRF (L,P1,P2) =

∫

Ω

εVSRFx (L,P1,P2)dx

(13)

εVSRFx (φ,P1,P2) = −�1

∫

Kη(x − y)P1(y)H
(

φ(y)
)

dy

− �2

∫

Kη(x − y)P2(y)
(

1−H
(

φ(y)
))

dy

(14)

εVSRF (φ,P1,P2) = −�1

∫
(
∫

Kη(x − y)P1(y)H
(

φ(y)
)

dy

)

dx

− �2

∫
(
∫

Kη(x − y)P2(y)
(

1−H
(

φ(y)
))

dy

)

dx

(15)P(φ) =

∫

1

2
(|∇φ(x)| − 1)2dx

(16)L(φ) =

∫

Ω

|∇H(φ(x))|dx

(17)F(φ,P1,P2) = εVSRF (φ,P1,P2)+ νL(φ)+ µP(φ)
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Contour evolution with level set energy functional minimization

Keeping φ fixed and minimizing the energy functional F(φ, P1, P2) in Eq. 17 with respect 
to the functions P1 and P2, we deduce the following optimal expressions for the func-
tions P1 and P2 that minimize F(φ, P1, P2): 

With 

Keeping P1 and P2 fixed, we minimize the energy functional F(φ, P1, P2) in Eq. 17 with 
respect to φ using first variation of F by solving the gradient descent flow of φ as follows: 

where δ is the Dirac delta function, and e1 and e2 are the functions 

in which P1 and P2 are given by Eq. 18.
In the proposed method, the segmentation problem can be solved by evolving the 

level set equation Eq. 20. The first term in Eq. 20 makes sure that the active contour can 
evolve toward object boundary. The second and third term maintain the smoothness of 
the zero level contour and the regularity of the level set function, respectively.

Results
All the spatial partial derivatives of φ can be discretized with a finite differences scheme 
as developed in [75]. The temporal derivative is discretized as a forward difference with 
a semi-implicit Gauss–Seidel method [76]. In order to learn the object features and start 
contour evolution, the initial label map is needed, and this can be done with ease by 
drawing some seeds/strokes in some slices of the volumetric image. Accordingly, the 
level set function ф can be simply initialized as a signed distance function. Then, the 
level set function ф is updated iteratively after the update of the fitting functions P1 and 

(18)

P1(x) = (1− ω)
1

|ΩSeeds_1|

∑

z∈ΩSeeds_1

p
(

f (x)− f (z)
)

+ ω

∫

Kη(x − y)p
(

µ1(x)− f (y))H(φ(y)
)

dy,

P2(x) = (1− ω)
1

|ΩSeeds_2|

∑

z∈ΩSeeds_2

p
(

f (x)− f (z)
)

+ ω

∫

Kη(x − y)p
(

µ2(x)− f (y)
)(

1−H
(

φ(y)
))

dy

(19)

µ1(x) =

∫

Kη(x − y)f (y)H
(

φ(y)
)

dy
∫

Kη(x − y)H
(

φ(y)
)

dy
,

µ2(x) =

∫

Kη(x − y)f (y)
(

1−H
(

φ(y)
))

dy
∫

Kη(x − y)
(

1−H
(

φ(y)
))

dy

(20)
∂φ

∂t
= δ(φ)(�1e1 − �2e2)+ νδ(φ) div

(

∇φ

|∇φ|

)

+ µ

(

∇2φ − div

(

∇φ

|∇φ|

))

(21)ei(x) =

∫

Kη(x − y)Pi(y)dy, i = 1, 2
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P2 at every time step. The volume rendering was implemented using the “Model Maker” 
module in 3D Slicer [77].

The proposed method has been extensively tested with synthetic and real volumetric 
medical imagery segmentation datasets. Unless otherwise specified, we set the following 
default values for the parameters in our method: 

The influence of different key parameters on the segmentation results of the proposed 
method will be discussed in “Discussion” section.

We first show the results for four synthetic brain volumetric MR images with slice 
thickness 1 mm and image size 180 × 180 × 216, which are downloaded from BrainWeb 
[78–81], in Fig.  3. These images have the same WM but different degrees of intensity 
inhomogeneity and different levels of noise. We draw the initial seeds on the images in 
the first column to learn the object features and start contour evolution. Although we 
only show some strokes with free locations in one slice of the volumetric images, indeed, 
the seeds can be drawn anywhere inside the volumetric images. The details about the 
initial contours will be shown in Fig. 7. The final contours in three standard views are 

σ = 0.5, η = 3.0, �1 = 1.0, �2 = 2.0, timeStep ∆t = 0.1, ω = 0.4, µ = 1.0, and ν = 0.

Fig. 3  Performances of our method for synthetic images with different degrees of intensity inhomogeneity 
and noise. Column 1 one axial slice of the original brain volumetric MR images and the initial seeded labels 
(red strokes). Columns 2, 3 and 4 segmentation results (green contours) in axial, sagittal, and coronal views. 
Column 5 the 3D surface model of the segmentation results
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shown in the middle three columns and the last column gives 3D surface models of the 
segmented objects.

The first row in Fig. 3 shows the segmentation result for the image with 20 % degree 
of intensity non-uniformity (INU). It can be seen that our method can handle inten-
sity inhomogeneity well and successfully extracts the object boundaries. The second 
row shows the segmentation result of the image with 40  % degree of INU. As can be 
observed, despite the severe intensity inhomogeneity in the image, our method is able to 
produce satisfactory segmentation result.

In order to test the robustness of our method to noise, we generated the third and 
forth rows in Fig. 3 by adding zero mean Gaussian noise into the 20 % INU contami-
nated image in the first row with standard deviation (STD) of 10 and 30, respectively. 
Reinforced by the robust statistics features, our method is robust to noise contamina-
tion, which is confirmed by the segmentation results shown in the third and forth rows. 
In the third row, it can be seen that although the STD of the Gaussian noise is 10 which 
is high relative to the image contrast ranging from 0 to 200, the algorithm can still seg-
ment the image very well. In the forth row, the STD of added noise increases to 30, and 
some part of the object boundary is blurred heavily by the strong noise. In this case, 
although the segmentation result is not as good as before, the algorithm still captures the 
WM correctly, which demonstrates the advantage of our method in terms of the robust-
ness to the noise.

By visual inspection, the proposed method achieves desirable performances for these 
synthetic images with various INU degree and noise level, which is also confirmed by the 
HD values as provided in Table 1.

Intensity inhomogeneity and noisy weak object boundary often occur in real medi-
cal images, which render it a nontrivial task to segment the target from the background 
accurately. Figure 4 shows the results of the proposed method for five typical volumetric 
medical images with complex image conditions. In particular, the brain MR image in the 
first row has been used in Fig. 1, by which we have demonstrated that the LRS model 
fails to segment the images due to the unsophisticated parameter setting and the inten-
sity inhomogeneity.

The first row shows the result for a brain MR image which is corrupted severely by 
intensity inhomogeneity. In this image, some parts of the WM have even lower inten-
sities than parts of the gray matter (GM) have. The second row shows the result for a 
MR image of caudate nucleus [82]. Due to the poor contrast with the surrounding tis-
sues, it is difficult to extract the caudate nucleus from the background. The third row 
shows the result for a MR image of a brain with meningioma [83]. As can be seen in 
this image, parts of the meningioma boundaries are blurred. The forth and the bottom 
rows show the results for a MR image of left atrium [84] and a CT image of liver tumors 

Table 1  The HD values of  segmenting the WM, under  various conditions, comparing 
with the ground truth

INU degree  
and noise STD

20 % INU  
and 0 STD

40 % INU  
and 0 STD

20 % INU  
and 10 STD

20 % INU 
and 30 STD

HD (mm) 1.76 7.65 3.9 10.06
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[85], respectively. Both of the images are contaminated with weak object boundaries 
due to partial volume effect and low contrast, respectively. Our method has successfully 
extracted the object boundaries in these challenging images, as shown in the last column 
of Fig. 4. The advantage of the proposed method in terms of accuracy is also confirmed 
by the average DSC values for WM, caudate nucleus, left atrium and liver tumors on 
all subjects within each above-mentioned dataset. The meningioma is not included in 
calculating the average DSC value because there is only one subject in this dataset. Spe-
cifically, the average DSC value are 0.9246 ±  0.0068 (WM), 0.8725 ±  0.0374 (caudate 
nucleus), 0.9205 ± 0.0146 (left atrium) and 0.9043 ± 0.0131 (liver tumors), respectively.

Figure  5 shows the brain tumor segmentation of a real volumetric brain MR image 
with obvious intensity inhomogeneity and weak object boundary. Brain tumor image 
data used in this work were obtained from the MICCAI 2012 Challenge on Multi-
modal Brain Tumor Segmentation organized by B. Menze, A. Jakab, S. Bauer, M. Reyes, 
M. Prastawa, and K. Van Leemput. The challenge database contains fully anonymized 

Fig. 4  Segmentation results of our method for real volumetric medical images. Column 1 original images; 
columns 2 and 3 the intermediate 3D surface models; column 4 the 3D surface model of the final segmenta-
tion results
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images from the following institutions: ETH Zurich, University of Bern, University of 
Debrecen, and University of Utah [86].

For this image from single modality, we aim at segmenting the brain tumor and the 
edema volumes integrally. From left image to the right one are the axial slice extracted 
from the original volumetric MR image, the results obtained by two well-known 2D 
methods: the RSF model and the SBGFRLS model [28], and by our 3D segmentation 
method, respectively. For this and the following brain tumor images, we use the follow-
ing parameters in our model:

Note that we choose a smaller value ω for these images to cope with the severe inten-
sity inhomogeneity by strengthening the influence of the intensity in the desired target 
(the tumor region), as explained in “Discussion” section. In this and the following exper-
iments, we choose smaller λ2 and ν than in the previous experiments to further encour-
age the expansion of the contour to the inhomogeneous hybrid volumetric region. As 
can be seen from Fig. 5, because the intensity of the hybrid lesion region with both brain 
tumor and edema are very inhomogeneous and some intensities of the edema regions in 
the right and middle parts are very similar to those of the adjacent non-lesion regions, 
the results (shown as green contours) obtained by the RSF model and the SBGFRLS 
model are less accurate: part of the tumor is incorrectly identified as the non-lesion 
region, while parts of non-lesion regions are included into the result. By contrast, our 
method segments the lesions more accurately, which demonstrate the advantage of our 
method over these 2D segmentation methods.

To demonstrate the advantage of our method in terms of accuracy more clearly, we 
show multiple slices in three standard views and the final segmentation result obtained 
by our method in Fig. 6. It can be clearly seen that our method correctly recovers the 
boundaries of the brain tumor in the volumetric MR image.

We evaluate the performance of our method with 10 different initializations of the 
contour for the same volumetric image which has been used in Fig. 6. The orthogonal 
slice views in Fig.  7a–d show four of the 10 initial seeded contours. The correspond-
ing 3D surface models overlayed on the three orthogonal slices, are shown in Fig. 7e–
f. Note that in these four different initializations, the initial contours are simplified as 
seeded labels, which are different from the closed initial contours in traditional ACMs 

σ = 0.5, η = 3.0, �1 = �2 = 1.0, timeStep ∆t = 0.1, ω = 0.1, µ = 1.0, and ν = 0.

Fig. 5  The original axial slices are overlaid with the segmentation results of three different segmentation 
method. a The axial slice from the original volumetric data. b Result of the RSF model. c Result of the SBGFRLS 
model. d Result of our method
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Fig. 6  Multiple slices of the 3D segmentation results in Fig. 5d. The final contours (shown as green contours 
in the 1–7 columns) and the 3D surface models (shown as blue volumes in the last column) overlaid on the 
corresponding axial slices (in the first row), the sagittal slices (in the second row) and the coronal slices (in the 
last row), respectively

Fig. 7  Facilitation and robustness of our method to contour initializations. a–d Different initial seeded labels 
(red strokes indicated by dashed yellow circles) are drawn inside the same target. e–h The corresponding 
3D surface models (blue volumes) and some main differences of the resulting segmentations (indicated by 
arrows)
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and, therefore, facilitate user interaction. Moreover, instead of roughly drawing the seeds 
around the center region of the target as proposed in [70], we draw the initial seeded 
labels in random position in our method as long as they are inside the target. It can 
be seen from Fig. 7 that despite the great difference of these initializations, the corre-
sponding segmentation results are quite consistent with each other. The boundaries of 
the objects of interest (the lesion regions) are accurately captured for these different ini-
tializations. The average DSC value for the 10 segmentation results with different ini-
tializations is 0.9216 ± 0.0037, which again demonstrates the advantage of the proposed 
method in terms of robustness to contour initialization.

Validation and method comparison

Previous experimental results for the RSF model and the SBGFRLS model shown in 
Fig. 5 and those of the proposed method shown in Figs. 3, 4, 5, 6 and 7 have demon-
strated the advantages of the proposed method over these three models. We now quan-
titatively evaluate and compare the performances of the proposed method and the 
well-known 3D segmentation softwares ITK-SNAP [87], Seg3D [88] and 3D Slicer [77].

We first show the results of comparison with ITK-SNAP and Seg3D. ITK-SNAP and 
Seg3D are two very nice open-source softwares providing optional algorithms for 3D 
image segmentation, both which can achieve excellent results by incorporating the 
algorithms with expert manual refinements in the friendly software environment. In 
this work, we employ the region competition based active contour algorithms, which 
are embedded in these softwares, for comparison without further manual segmenta-
tion. The segmentation workflow in ITK-SNAP is divided into three logical stages. We 
notice that the manual pre-segmentation in the first stage, which is performed by apply-
ing a smooth threshold, has a significant impact on the final segmentation result. In the 
following tests, in order to compare the performances of the algorithms, we used the 
default smooth thresholds for the 1–3 images and manual tuned thresholds for the 4–5 
images, which can not generate reasonable results by applying default thresholds. In par-
ticular, we set the two-sided thresholds as (418, 703) and (400, 660) for the forth and 
fifth images, respectively. We also tweaked other major parameters in ITK-SNAP and 
Seg3D, respectively, for the best segmentation results for these five images. All the three 
segmentation methods used the same initial labels for each image, as shown in the first 
column of Fig. 8.

Figure 8 shows the performances of ITK-SNAP, Seg3D and the proposed method on 
five real brain volumetric MR images with complex image conditions, such as low con-
trast, intensity inhomogeneity, different level of noise, and weak object boundary. The 
original low- and high-grade glioma MR images from BRATS12 data sets [86] and the 
initial labels are shown in the first column. The corresponding ground truths posted with 
these images are shown in the second column. The segmentation results obtained by 
ITK-SNAP, Seg3D and the proposed method are plotted on the images in the third, forth 
and fifth columns, respectively. It can be observed that the segmentation results of the 
three methods for the first image look similar to the ground truth by visual comparison, 
showing the capability of these methods in handling intensity inhomogeneity. However, 
for the second and third images in which the overlaps of the tissue intensity distributions 
are too large even for human observers, the errors of ITK-SNAP and Seg3D are obvious. 
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By contrast, the proposed method generates visually reasonable segmentation results. 
For the 4–5 images with weak object boundaries, the leakage issue of ITK-SNAP is seri-
ous, while Seg3D and our method generate visually comparative results. The following 
experiment can demonstrate the significant advantage of our method by quantitative 
evaluating the segmentation results.

We perform more objective and precise comparison of the three methods in terms 
of segmentation accuracy by using the DSC as the metric. The DSC values of the three 

Fig. 8  Comparison of our method with ITK-SNAP and Seg3D on five real brain tumor volumetric MR images. 
Column 1 the initial labels (red bubbles) and slices of the original volumetric images with complex image 
conditions; column 2 ground truth; column 3 results of ITK-SNAP for five images with region competition force 
α and the smoothing force β represented as a pair (α, β) = (0.65, 0.35), (0.65, 0.35), (0.55, 0.25), (0.5, 0.03), and 
(0.7, 0.25) in the order from left to right; column 4 results of Seg3D with threshold range TR, curvature weight 
CW, and propagation weight PW represented as a triple (TR, CW, PW) = (2,5, 0.1), (3.8, 7, 0.1), (2.55, 3, 0.1), (2.3, 
3, 0.1), and (2.1, 3, 0.1) in the order from left to right; column 5 results of the proposed method



Page 19 of 26Wang and Ma ﻿BioMed Eng OnLine  (2016) 15:39 

methods are computed against the ground truth, and are provided in Table 2 for the five 
brain tumor images previously used and Fig. 9 for all the 80 cases from BRATS12 train-
ing data sets, respectively. As can be seen, the proposed method achieves more accurate 
and robust segmentation results. Specifically, the DSC values of ITK-SNAP, Seg3D and 
the proposed method on the 80 cases of BRATS12 training data sets are 0.8102 ± 0.0718, 
0.7665 ± 0.1586 and 0.8802 ± 0.0595, respectively.

For comparison with 3D Slicer, we used the “Robust Statistics Segmenter” module 
embedded in 3D Slicer, which is a fast implementation of the LRS model [70]. Figure 10 
shows the results of comparison with the LRS model. We notice that the segmentation 
result of LRS model is somewhat sensitive to the locations of the initial seeds/strokes 
and the choice of three major parameters: approximate volume AV, intensity homogene-
ity IH and boundary smoothness BS. We have carefully initialized the seeds and tweaked 
these three parameters, which are represented as a triple (AV, IH, BS) = (400, 0.6, 0.07), 
(200, 0.1, 0.2) and (900, 0.05, 0.02) in the order from left to right, for the best segmen-
tation results for these three images [86] in rows 1, 3 and 5 in Fig. 10. Both the images 
and the parameters in rows 2, 4 and 6 are the same as that in rows 1, 3 and 5 in the same 
order. In order to compare the robustness of the two methods to seed initialization, we 

Table 2  The DSC values for the segmentation results of the three different methods on five 
images in Fig. 8

Approach Images in Fig. 8 in the same order

Img. 1 Img. 2 Img. 3 Img. 4 Img. 5

ITK-SNAP 0.8966 0.9054 0.8242 0.8025 0.8974

Seg3D 0.9024 0.9032 0.8827 0.8744 0.9074

Proposed 0.9543 0.9149 0.9097 0.9108 0.9242

Fig. 9  The DSC values of three different segmentation methods on 80 images from BRATS12 data sets. The 
proposed method achieved more accurate and consistent segmentation results compared with ITK-SNAP 
and Seg3D
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Fig. 10  Comparison of our method with the LRS model in 3D Slicer on three groups of brain tumor volumet-
ric MR images. Column 1 Different initial seeded labels (red strokes) are drawn on the original images; column 2 
ground truth; column 3 the LRS model; column 4 the proposed method
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roughly placed the seed labels in the images in rows 2, 4 and 6. Our model and the LRS 
model use the same initial seeds in each row.

By visual inspection, the proposed model and the LRS model achieve comparable 
results with sophisticated seed placement (see rows 1, 3 and 5 in Fig. 10), while the pro-
posed model exhibits higher segmentation accuracy and robustness than the LRS model 
dose with rough initial seeds (see rows 2, 4 and 6 in Fig. 10). To qualitatively compare the 
results of different models, the DSC values of these two models are computed against 
the ground truth, and are provided in Table 3 for the images in Fig. 10, which clearly 
demonstrates the advantage of our model over the LRS model.

The proposed model is also superior in terms of user interaction. Both the proposed 
model and the LRS model are semi-automatic methods. Given a small number of user-
specified seed labels, the rest of the image can be segmented automatically. The main 
portion of user interaction in these two models is selecting the initial seeds. Due to the 
significant advantage of the proposed method in terms of robustness to contour initiali-
zation, which has been demonstrated by the experimental results shown in Fig. 10 and 
Table 3, the user initialization scheme of the proposed method can be easier to imple-
ment than that of the LRS model.

In is necessary to note that although a large variety of imaging modalities with dif-
ferent types of biological information can be used for improving the accuracy of tumor 
delineations, a combination of imaging modalities is beyond the scope of this paper. 
Therefore, we do not claim to have the best multimodal segmentation, but instead pre-
sent a promising single modal image segmentation approach which gives some meth-
odological improvements of the field.

Discussion
Impact of the parameters

There are two scale parameters σ and η in the proposed model which control the scales of 
volumes in calculating the robust statistics features and the fitting energies, respectively. 
Although we set fixed values for both the two scale parameters in this work, different scale 
parameters can be incorporated into the proposed model to further improve the perfor-
mance. In order to examine the influence of these two scales parameters on the perfor-
mance of the proposed model, we segment the severe contaminated volumetric MR image 
used in the last row in Fig. 3 with our method using three different values for the two scale 
parameters. Table 4 shows the HD values of segmenting the WM and GM in the last row 
in Fig. 3, under various scale parameters σ and η, with respect to the ground truth.

Table 3  The DSC values for  the segmentation results of  the two different methods 
on images in Fig. 10

Approach Three images with different seed placement in Fig. 10 in the same order

Img. 1 Img. 2 Img. 3

Sophisticated 
initial seeds

Rough  
initial  
seeds

Sophisticated 
initial seeds

Rough  
initial  
seeds

Sophisticated 
initial seeds

Rough  
initial 
seeds

The LRS model 0.8890 0.7165 0.8636 0.6735 0.9263 0.8095

Proposed 0.9051 0.9042 0.8534 0.8396 0.9286 0.9296
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Intuitively, a smaller scale parameter η for the fitting energy can make the algorithm 
produce more accurate segmentation results in presence of intensity inhomogeneity, 
while a larger σ for the robust statistics feature increases the robustness of the proposed 
method in terms of noise. For various types of data, we examined and found that the two 
scale parameters η and σ need to be adjusted in the range from 3.0 to 30.0 according to 
the degree of intensity inhomogeneity, and from 0.5 to 5.0 according to the level of noise, 
respectively.

The parameter ω is a constant, which controls the influence of the user specified 
regions and the local volumes around the center voxels on the two sides of the evolving 
contours. With a larger parameter ω, the evolution of the contours in our method would 
be dominated by the native characters of the image like in the RSF model. In fact, the 
RSF model can be considered as an extreme case of the proposed model for ω → 1. This 
can be seen from the limit of the fitting function Pi in Eq. 9 as ω → 1. It can be shown 
that

The right-hand side in Eq. 22 is the robust statistics in the local volumes, which is in 
the same form of region-scalable fitting energy in the RSF model, while difference in the 
usage of local information.

Computational complexity

The main computational cost in the proposed method is for computing Pi in Eq. 18, ui 
in Eq. 19 and �1e1 − �2e2 in Eq. 20. The integrals in the numerators and denominators in 
these equations are computed for each voxel in the target volumetric image. By factor-
izing these integrals and merging similar terms, there are totally five integrals left to be 
computed at each iteration, resulting in segmentation running times of approximately 
10 s per iteration on a 256 × 256 × 186 pixel image.

Although the proposed method consists of a few computationally expensive steps, the 
computational efficiency can be significantly improved by using a narrow band scheme 
described in [21]. For example, the typical algorithm running time of the narrow band 
implementation of the proposed method for each case in the BRATS12 training data sets 
can be within 3 min, which were recorded from our experiments with c++  code run 
on a Lenovo Thinkpad T520i PC, with Intel Core i3 Processor, 2.30 GHz, 4 GB RAM, 
with Visual studio 2005 on Windows 7. Indeed, although we have schemes to accelerate 
the algorithm, their efficiency is never perfect. Sometimes, if the running speed is not 
fast enough, the parameters of the proposed algorithm may not be tuned with ease via 

(22)lim
ω→1

Pi(x) =

∫

Ωi

Kη(x − y)p
(

µi(x)− f (y)
)

dy, i = 1, 2 .

Table 4  The HD values for different combinations of the scale parameters

WM GM

η = 3.0 (mm) η = 6.0 (mm) η = 10.0 (mm) η = 3.0 (mm) η = 6.0 (mm) η = 10.0 (mm)

σ = 0.5 10.06 12.19 17.54 10.12 12.41 18.2

σ = 1.0 8.65 10.7 16.93 8.34 11.62 18.04

σ = 3.0 11.24 15.32 24.16 11.17 17.25 26.93
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trial-and-error. Therefore, in order to guarantee the scalability of the proposed method 
to large and growing databases, the computational efficiency need to be improved in the 
near future.

Some extensions

Currently we only use certain local robust statistics for image features extraction. How-
ever, the proposed volume-scalable method provides a basic scheme into which more 
sophisticated image features can be incorporated, such as Fourier and wavelet features. 
Some priori information, such as the shape priors, can also be incorporated into the pro-
posed scheme. Combined with the fitting energy functional, this is expected to further 
improve the accuracy and robustness of the proposed method. Moreover, although the 
proposed method has been accelerated by a narrow band scheme, the computational 
efficiency can be further improved by using GPUs or by sparse field level set method. 
Due to the space limit, details of the above extensions are not included in this paper.

Conclusion
In contrast to traditional methods, in this paper we presented a semi-automated vol-
ume-scalable 3D ACM for segmenting volumetric medical images with complex image 
conditions. The robust statistics was employed at a controllable scale to extract image 
information in local volumes. In order to characterize the voxels in the desired objects, a 
hybrid PDF was proposed according to the local volumes around the intermediate con-
tour and user specified initial seeds. We defined the final energy functional in a volume-
scalable manner.

As demonstrated in our experiments, the proposed method can handle intensity inho-
mogeneity as well as weak object boundary with high level noise in volumetric medical 
images. The proposed method achieved a high accuracy of 0.9246 ±  0.0068 for WM, 
0.9043 ± 0.0131 for liver tumors, 0.8802 ± 0.0595 for brain tumors, etc., measured by 
DSC value for the overlap between the algorithm one and the ground truth. With the 
simplified initialization of the active contour, the proposed model held high robustness 
to initialization. The average DSC value for the ten segmentation results with different 
initializations is 0.9216  ±  0.0037. Comparative experiments shown desirable perfor-
mance of the proposed method over several well-known segmentation methods. All of 
these proven that the application of our proposed volumetric medical image segmen-
tation method can clearly benefit the development of image-based diagnosis/surgery 
systems.
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