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Klebsiella pneumoniae can cause both hospital- and community-acquired clinical
infections. Last-line antibiotics against carbapenem-resistant K. pneumoniae (CRKP),
such as ceftazidime/avibactam (CZA) and tigecycline (TGC), remain limited as treatment
choices. This study aimed to investigate the mechanisms by which CRKP acquires CZA
and TGC resistance in vivo under b-lactam antibiotic and TGC exposure. Three CRKP
strains (XDX16, XDX31 and XDX51) were consecutively isolated from an inpatient with a
urinary tract infection in two months. PFGE and MLST showed that these strains were
closely related and belonged to sequence type (ST) 4496, which is a novel ST closely
related to ST11. Compared to XDX16 and XDX31, XDX51 developed CZA and TGC
resistance. Sequencing showed that double copies of blaKPC-2 were located on a 108 kb
IncFII plasmid, increasing blaKPC-2 expression in XDX51. In addition, ramRwas interrupted
by Insertion sequence (IS) Kpn14 in XDX51, with this strain exhibiting upregulation of
ramA, acrA and acrB expression compared with XDX16 and XDX31. Furthermore, LPS
analysis suggested that the O-antigen in XDX51 was defective due to ISKpn26 insertion in
the rhamnosyl transferase gene wbbL, which slightly reduced TGC susceptibility. In brief,
CZA resistance was caused mainly by blaKPC-2 duplication, and TGC resistance was
caused by ramR inactivation with additional LPS changes due to IS element insertion in
wbbL. Notably, CRKP developed TGC and CZA resistance within one month under TGC
and b-lactam treatment without exposure to CZA. The CRKP clone ST4496 has the ability
to evolve CZA and TGC resistance rapidly, posing a potential threat to inpatients during
antibiotic treatment.
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INTRODUCTION

Klebsiella pneumoniae, is a major pathogen that can cause both
nosocomial- and community-acquired infections, such as
urinary tract infections, bacteremia, respiratory infections and
soft tissue infections, especially in immunocompromised
individuals (Ullmann, 1998; Holt et al., 2015). The emergence
of carbapenem-resistant K. pneumoniae (CRKP) has limited
antibiotic therapeutic choices and led to serious challenges in
clinical treatment and infection control (Rice, 2008; Livermore
et al., 2015a; Moradigaravand et al., 2017). The World Health
Organization (WHO) considers carbapenem-resistant
Enterobacteriaceae to be critical priority pathogens that require
new antibiotics (Shrivastava et al., 2018). Ceftazidime/avibactam
(CZA) and tigecycline (TGC) are last-line choices for the
treatment of CRKP infections.

CZA is a novel b-lactam-b-lactamase inhibitor combination
with the ability to inhibit the activity of AmpC, extended-
spectrum b-lactamases (ESBLs), class A carbapenemases such
as KPC and class D carbapenemases such as OXA-48 but not
class B carbapenemases such as NDM, IMP and VIM (Shirley,
2018). CZA was approved for the treatment of complicated intra-
abdominal infections and urinary tract infections by the FDA on
February 25, 2015. A multicenter, observational study reported
that CZA could be a reasonable substitute for colistin for the
treatment of CRKP infections with reduced mortality (Van Duin
et al., 2018). In the International Network For Optimal
Resistance Monitoring (INFORM) surveillance programme, the
in vitro susceptibility of carbapenemase-positive and MBL-
negative isolates to CZA was 99.8% between 2015 and 2017
(Spiliopoulou et al., 2020). However, acquisition of CZA
resistance has been reported after CZA therapy in recent years.
Resistance to CZA has been observed in strains with mutations
in AmpC, blaKPC-2 and blaKPC-3, and the mutation point was
mostly in W-loop in blaKPC genes (Shirley, 2018; Zhang et al.,
2020). In addition, high expression of KPC-3 was reported to be
as soc ia t ed wi th CZA res i s t ance (Humphr i e s and
Hemarajata, 2017).

The emergence of TGC resistance after exposure to TGC has
also been reported (Duin et al., 2014; Lin et al., 2016; Ye et al.,
2017). Overall, the primary TGC resistance mechanisms in K.
pneumoniae include overexpression of efflux pumps, such as
AcrAB and OqxAB, which can be mediated by regulators
(RamR-RamA and OqxR-RarA) and global activators (MarA,
SoxS and Rob) (Veleba and Schneiders, 2012). There also exist
other known mechanisms, conferred by the Lon protease, Tet(A)
protein and ribosomal protein S10, which is encoded by rpsJ
(Villa et al., 2014). In addition, Linkevicius M et al. reported that
lipopolysaccharide (LPS) defects could lead to reduced
susceptibility to TGC (Linkevicius et al., 2016).

Among all the antibiotics tested by the INFORM surveillance
programme (2015–2017) against 1,460 carbapenem-
nonsusceptible Enterobacteriaceae isolates, CZA and TGC
showed the highest susceptibility rates (73.0% and 78.1%,
respectively) (Spiliopoulou et al., 2020). Strains resistant to
these last-line antibiotics could pose a great threat to
public health.
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Here, we report a series of CRKP strains isolated in 2017 that
have evolved resistance to both CZA and TGC during exposure
to b-lactam antibiotics and TGC. The CRKP isolates resistant to
CZA were isolated before CZA was approved in China. The aim
of this study was to describe the phenotypic and genotypic
adaption characteristics of these strains during in-host
evolution and explain the molecular mechanisms of CZA and
TGC resistance.
MATERIAL AND METHODS

Strains and Patient Characteristics
Three CRKP strains (XDX16, XDX31 and XDX51) were isolated
from an 85-year-old male patient hospitalized in Sir Run Run
Shaw Hospital, Zhejiang Province, China, in 2017. The patient
was admitted for a urinary tract infection with multiple organ
dysfunction. After admission, he received urological surgeries,
including partial cystectomy, prostatic enucleation surgery and
ureteric reimplantation. The patient suffered urinary tract
infection with prolonged fever. Piperacillin-tazobactam (TZP,
4.5 g every 8 h) and cefoperazone-sulbactam (SCF, 2 g every 8 h)
were alternately used as empirical therapies. Then, TGC (50 mg
every 12 h) was used as a definitive therapy. During this period,
three CRKP strains, named XDX16, XDX31 and XDX51, were
isolated from the patient’s urine. In addition, XDX51 exhibited
resistance to both CZA and TGC. The patient chose to be
discharged against medical advice. The timeline of CRKP
infection and antibiotic usage was shown in Figure 1. This
study was approved by the ethics committees of the
participating hospital (20170301-3)

Antimicrobial Susceptibility Testing
The antibiotics tested in this study were TGC, CZA, meropenem,
imipenem, ertapenem, ceftazidime, amikacin, levofloxacin,
fosfomycin, aztreonam and colistin. The antimicrobial
susceptibility tests and minimum inhibitory concentrations
(MICs) were based on the European Committee on
Antimicrobial Susceptibility Testing (EUCAST, Version 10.0,
2020) guidelines and breakpoints. The MICs of carbapenem
and fosfomycin (with supplementation of glucose-6-phosphate
in the agar) were determined by the agar dilution method, and
the others were determined by the broth microdilution method
with fresh cation-adjusted Mueller-Hinton broth. The MICs of
TGC were also determined in the presence of Phe-Arg-b-
naphthylamide (PAbN) at a concentration of 50 mg/mL to
verify the function of the efflux pump in TGC resistance
(Salehi et al., 2021).

Whole-Genome Sequencing and Analysis
The clonality of the strain series was confirmed by pulsed-field
gel electrophoresis (PFGE) with a previously described protocol
(Barton et al., 1995). Briefly, genomic DNA was digested with the
restriction endonuclease XbaI and electrophoresed at 14°C for
20 h.

XDX16 and XDX51 were subjected to both Illumina paired-
end sequencing (Illumina Inc., San Diego, CA) and long-read
October 2021 | Volume 11 | Article 757470
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nanopore sequencing (Oxford Nanopore Technologies, Oxford,
UK). For Illumina sequencing, genomic DNA was extracted
using a QIAamp DNA MiniKit (Qiagen, New York, USA). The
whole genome was assembled by canu (Koren et al., 2017), and
the de novo assemblies were subsequently annotated with the
Prokka pipeline (Seemann, 2014). Resistance genes were detected
by ResFinder 3.2 with a 90% threshold for gene identification and
a 60% minimum length coverage (Zankari et al., 2012).
Multilocus sequence typing (MLST) was performed with the
Center for Genomic Epidemiology guidelines (http://cge.cbs.dtu.
dk/services/MLST/). Breseq (version 0.27.1) was used to find
mutations in XDX51, with XDX16 as the reference strain
(Barrick and Deatherage, 2014). All the mutations in XDX16,
XDX31 and XDX51 were confirmed by PCR and Sanger
sequencing (the primers are listed in Table S1).

The nucleotide sequences of XDX16 and XDX51 have been
submitted to the NCBI database under the accession
JAIWPV000000000-JAIWPW000000000.

qRT-PCR for Gene Expression Analysis
qRT-PCR was used to measure the expression of blaKPC-2, acrA,
acrB and ramR of XDX16, XDX31 and XDX51. XDX16 was used
as the reference strain, and the rpoB gene was used as the internal
reference (the primers are listed in Table S1). RNA was extracted
using the PureLink RNA Mini Kit (Invitrogen, Carlsbad, CA) in
the exponential growth period of bacterial cells. Then, cDNA was
obtained using a PrimeScript™ RT Reagent Kit (Takara, Kyoto,
Japan). The expression level was assessed using TB Green™

Premix Ex Taq™ (Takara, Kyoto, Japan) in a LightCycler 480
system (Roche, Rotkreuz, Switzerland) with triplicate samples for
each isolate, replicating three times independently using the
comparative CT method. Genes were considered to be
differentially expressed when the |log2 fold change| was greater
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
than 1.5 (Livak and Schmittgen, 2001). The log2 fold change in
blaKPC-2 expression was analyzed by an unpaired t test on
GraphPad Prism, and p<0.05 was considered significant.

Gene Knockout and Complementation
Experiment
We used the lambda-Red knockout system described previously
for wbbL gene knockout (Huang et al., 2014). Briefly, the
FRT-flanked apramycin resistance cassette was amplified from
the pIJ773 plasmid using a homologous region primer. The
pACBSR-Hyg plasmid was introduced into XDX16 by
electroporation for recombination. The knockout cassette was
transformed into XDX16-pACBSR-Hyg. Correct transformants
were screened using LBApra at 37°C and verified by PCR and
Sanger sequencing. Colonies were screened for the loss of
pACBSR-Hyg by streaking onto LBApra with or without
hygromycin (100 mg/mL) and low-salt LB + hygromycin plates
at 37°C overnight. The resistance marker was removed by pFLP-
Hyg plasmid.

The amplified target gene (wbbL) and its promoter were
cloned into the pCR2.1-Hyg plasmid, which was digested with
the Xba1 FastDigest enzyme (Thermo Scientific, Waltham, the
USA). The recombinant plasmids were introduced to resistant
and knockout strains (XDX51 and XDX16ΔwbbL) via chemical
transformation. The empty vector (pCR2.1-Hyg) was introduced
to the same strains as a blank control. The complemented
sequence was confirmed by Sanger sequencing (the primers are
listed in Table S1).

LPS Analysis
Extraction of XDX16, XDX16ΔwbbL and XDX51 LPS was
performed according to Michael R. Davis’s protocol (Davis and
Goldberg, 2012). Then, 5 ml of LPS was electrophoresed on 15%
FIGURE 1 | Timeline of CRKP infection and treatment during the patient’s hospitalization. XDX16, XDX31 and XDX51 are carbapenem-resistant Klebsiella
pneumoniae strains. UTI, urinary tract infection; SCF, Cefoperazone-sulbactam; TZP, Piperacillin-tazobactam; TGC, Tigecycline.
October 2021 | Volume 11 | Article 757470
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Tris-glycine (Fdbio Science, Hangzhou, China) and directly
stained using a fast silver staining kit (Beyotime Biotechnology,
Shanghai, China). O-antigen typing analysis was performed
using Kaptive (http://kaptive.holtlab.net/).
RESULTS

Strains and Antibiotic Susceptibility
XDX16 and XDX31 were considered the index strains. Three
strains were all identified to be resistant to meropenem,
imipenem, ertapenem, ceftazidime, amikacin, levofloxacin and
aztreonam. Significant differences in MICs were observed for
CZA and TGC between XDX51 and the index strains.
Specifically, for the index strains, TGC had an MIC of 0.5 mg/
mL, while for XDX51, the MIC of TGC was 8-fold higher.
Additionally, the MIC of CZA for XDX51 (16 mg/mL) was 4-
fold higher than that for the index strains (4 mg/mL). In addition,
the MICs of meropenem, imipenem and ceftazidime for XDX51
were also higher than those for the index strains (Table 1).

Genomic Characteristics
The PFGE results confirmed that the three strains were closely
related (Figure S1). XDX16 and XDX51 were chosen for whole-
genomic sequencing sinceXDX31 seemed to be the samepassage as
XDX16, with which it shared an identical PFGE typing result and
resistance phenotype. According to genome-based MLST analysis,
XDX16 and XDX51 belonged to the same novel ST, ST4496, which
is closely related to ST11 with one single-locus variant onmdh.

XDX16 and XDX51 shared the same resistance gene
distribution, including the aminoglycoside resistance genes aadA2
and rmtB, the sulfonamide resistance gene sul1, the beta-lactam
resistance genes blaKPC-2 and blaSHV-182, the fosfomycin resistance
gene fosA and the quinolone resistance genes oqxA and oqxB. Both
of them had identical mutations in acrR and ompK35.

Identification of Plasmid Differences
in XDX51
Both XDX16 and XDX51 had the IncFII plasmid harboring the
antibiotic resistance genes blaKPC-2 and rmtB. Furthermore, there
was duplication of blaKPC-2 on the plasmid of XDX51
(Figure 2A). The two copies were linked together and shared
the same Insertion sequence (IS) 26. The surrounding structure
of blaKPC-2 in our study was similar to the classic blaKPC-2 genetic
environment in pKP048 in China reported in a previous study,
with the gene order IS26, Tn3-resolvase, ISKpn8, blaKPC-2,
ISKpn6, hypothetical protein and IS26 (Shen et al., 2009)
(Figure 2B). In our study, there were two IS26 elements
around the Tn3-based blaKPC-2 structure, with one IS26
replacing the Tn3 transposase with pKP048.

Identification of Whole-Genome
Differences in XDX51
Comparison of the whole genomes of XDX16 and XDX51 also
revealed that the wbbL gene (a rhamnosyl transferase gene) and
ramR gene were interrupted by insertion sequences (Figure 3).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
A 769 bp ISKpn14 sequence was inserted at the 12 bp of ramR in
XDX51. The insertion was responsible for interruption of the
translation of the N-terminal amino acid sequence of RamR in
XDX51. Similarly, wbbL was interrupted by a 1190 bp ISKpn26
sequence at 307 bp in XDX51. There were three SNPs detected in
XDX51 compared to the prior wild type XDX16 using breseq.
However, the three SNPs have occurred in the next wild type
XDX31 isolate without TGC and CZA resistance phenotype.
Hence, we inferred that these three SNPs were not responsible
for TGC and CZA resistance (Table S2).

Expression Level of Antibiotic
Resistance Genes
Compared to the copy numbers in XDX16, the copy numbers of
blaKPC-2 in XDX51 determined by qRT-PCR (2.57 ± 0.3) were
consistent with those found in the genome sequence. The blaKPC-2
expression level of XDX51 was 3.54 ± 0.5 times higher than that
of XDX16 (Figure 4A). To verify the function of enhanced KPC
expression on CZA resistance in XDX51, we performed CZA
MIC test with avibactam at a higher concentration of 8 mg/mL,
after which XDX51 could restore its susceptibility to CZA under
sufficient avibactam.

ramR is a regulator of the AcrA/B system. We evaluated the
regulatory effects of ramR alteration in XDX51 by qRT-PCR. The
results showed that insertion in ramR led to overexpression of
ramA, which was 36.6 times higher in XDX51 than in XDX16.
The acrA and acrB expression levels in XDX51 were also
upregulated compared to those in the index strains
(Figure 4B). These results suggested that insertion in ramR
affected the expression level of AcrAB-TolC efflux pumps. To
further confirm the effect of ramR alteration on efflux pumps, we
performed an efflux pump suppression test with PAbN, and
there was a 4-fold decrease in the MIC of TGC for XDX51.

Effect of the wbbL Gene on Phenotype
To further verify the effect of wbbL inactivation on antibiotic
resistance, we constructed wbbL gene knockout and
complementation strains. The MIC of TGC for the XDX16 wbbL
gene knockout strain (XDX16ΔwbbL) (1 mg/mL) increased 2-fold
comparedwith that forXDX16 (0.5mg/mL). ThepCR2.1-Hyg vector
was transformed into XDX16ΔwbbL and into XDX51 as a control.
Wild-typewbbLwascloned into thepCR2.1-Hygvector (pwbbL) and
introduced to the gene knockout strain (XDX16ΔwbbL) and TGC-
resistant strain with inactivatedwbbL (XDX51). TGC sensitivity was
restored in XDX16ΔwbbL::pwbbL (0.5 mg/mL) and decreased in
XDX51::pwbbL (2 mg/mL) but not in the empty vector-harboring
strain. These results suggested that wbbL had a slight effect on the
TGC resistance phenotype. The MICs of the isolates are presented
in Table 1.

wbbL belongs to the O-antigen cluster. We hypothesized that
wbbL could affect LPS biosynthesis in XDX51. Thus, LPS in
XDX16ΔwbbL and XDX51 was analyzed by SDS-PAGE and
silver staining. Generally, the O-antigen bands were within 15–40
kD. There were fewer bands in XDX16ΔwbbL and XDX51 within
the 35–40 kD range, indicating that the O-antigen in XDX51 was
shorter than that in the wbbLwild-type strain XDX16 (Figure S2).
October 2021 | Volume 11 | Article 757470
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DISCUSSION

Under antibiotic pressure, bacteria adapt to the host or
environment with genomic and phenotypic changes
(Linkevicius et al., 2016). Here, we described a series of closely
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
related CRKP strains that evolved resistance to CZA and TGC in
vivo in a hospitalized patient. ST analysis showed that the strains
belonged to a new ST, ST4496, closely related to ST11. Before the
CZA- and TGC-resistant strain XDX51 was isolated, TGC was
used for 27 days, and b-lactam antibiotics (cefoperazone-
TABLE 1 | Antimicrobial susceptibility of isolates used in the study.

Strains MIC (mg/mL)*

TGC MEM IMP ETP CAZ AK LEV CZA(4) CZA(8) CST FOS ATM

XDX16 0.5 128 64 >128 64 >512 >8 4 2 0.06 32 >64
XDX31 0.5 128 64 >128 64 >512 >8 4 2 0.06 32 >64
XDX51 4 >128 128 >128 512 >512 >8 16 4 0.03 32 >64
XDX51::pCR2.1-Hyga 4 >128 128 >128 >128 >512 >8 16 – 0.03 32 >64
XDX51::pwbbLb 2 >128 128 >128 >128 >512 >8 16 – 0.03 32 >64
XDX16△wbbLc 1 128 64 >128 64 >512 >8 4 – 0.06 32 >64
XDX16△wbbL::pCR2.1-Hygd 1 128 64 >128 64 >512 >8 4 – 0.06 32 >64
XDX16△wbbL::pwbbLe 0.5 128 64 >128 64 >512 >8 4 – 0.06 32 >64
XDX51+PAbN 1 – – – – – – – – – – –
Oct
ober 2021 | V
olume 11
 | Article 75
*TGC, tigecycline; MEM, meropenem; IPM, imipenem; ETP, ertapenem; CAZ, ceftazidime; AK, amikacin; LEV, levofloxacin; CZA, ceftazidime/avibactam; CST, colistin; FOS, fosfomycin;
ATM, aztreonam. apCR2.1-Hyg was constructed via TA clone with hyg connected to pCR2.1 plasmid. XDX51:: pCR2.1-Hyg indicated pCR2.1-Hyg plasmid was introduced into XDX51 by
electrotransformation as blank control. bXDX51::pwbbL indicated wild-type wbbL bearing pCR2.1-Hyg plasmid was introduced into XDX51 by electrotransformation. CXDX16△wbbL was
a wbbL knockout XDX16 strain. dXDX16△wbbL::pCR2.1-Hyg indicated pCR2.1-Hyg plasmid was introduced into XDX16△wbbL as control. eXDX16△wbbL::pwbbL indicated wild-type
wbbL bearing pCR2.1-Hyg plasmid was introduced into XDX16△wbbL. CZA (4): The MIC of CZA was tested under 4 mg/L avibactam; CZA (8): The MIC of CZA was tested under 8 mg/
mL avibactam.
A

B

FIGURE 2 | Characteristics of the blaKPC-2-bearing IncFII plasmid and the genetic environment of blaKPC-2. (A) Comparison of the IncFII plasmids in XDX51 and
XDX16. There were double copies of blaKPC-2 in XDX51 compared to XDX16. (B) The blaKPC-2 environment in our study was compared with that in pKP048. The
gene environment of blaKPC-2 in our study was IS26-Tn3-ISKpn8-blaKPC-2-ISKpn6-hypothetical protein-IS26. Blue arrows indicate resistance genes, and orange
arrows indicate insertion sequences. The right inverted repeat (IRR) of IS26 was 5’-ggcactgttgcaaa-3’, the left inverted repeat (IRL) of IS26 was 5’-tttgcaacagtgcc-3’;
the IRR of ISKpn8 was 5’-atgtcaagacccggctggttat-3’; and the IRL of ISKpn8 was 5’-atcccacgagtccagac-3’.
7470

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Han et al. CZA and TGC Resistant CRKP
sulbactam and piperacillin-tazobactam) were prescribed
alternately, while there was no exposure to CZA. Compared to
the index strains, three genomic differences were identified in
XDX51, including duplication of blaKPC-2, ramR and wbbL
insertions caused by IS elements. Ye et al. reported that
deletion of the ramR ribosomal binding site could cause in
vivo development of TGC resistance during TGC treatment
(Ye et al., 2017). Long-term usage of antibiotics such as b-
lactams and TGC could have led to the evolution of the series
of CRKP strains in our study with gene mutations related to
antibiotic resistance.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Increased KPC expression could enhance ceftazidime
hydrolysis, which could not be completely inhibited by
avibactam (Zhang et al., 2020). Both XDX16 and XDX51
carried an IncFII plasmid containing blaKPC-2 and rmtB. The
MICs of CZA were 4-fold higher for XDX51 than for XDX16.
There was duplication of blaKPC-2 on the XDX51 plasmid due to
unequal crossover of the IS26 composite transposon causing
enhanced KPC expression levels, as identified by qRT-PCR.
KPC-23-producing K. pneumoniae has been reported to be
resistant to CZA due to increased ceftazidime hydrolysis
without prior exposure to CZA (Galani et al., 2019). Similarly,
A

B

FIGURE 3 | Schematic diagram of the gene structure. (A) The ramR gene was interrupted by ISKpn14 in XDX51; the IRL of ISKpn14 was 5’-GGTAATG-3’, and the
IRR was 5’-CATTACC-3’. (B) The wbbL gene was interrupted by ISKpn26 in XDX51, the IRL of ISKpn26 was 5’-GGAAGGTGCGAA-3’, and the IRR was 5’-
TTCGCACCTTCC-3’.
A

B

FIGURE 4 | Relative expression level or DNA copy numbers of (A) blaKPC-2- and (B) AcrAB-TolC-related genes. XDX16 was used as the reference strain, and rpoB
was used as the reference gene. The bars represent the mean ± standard deviation (SD) of triplicate biological repeats; the mean differences in log2 fold change
were analyzed using an unpaired t test. *p < 0.05.
October 2021 | Volume 11 | Article 757470
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Humphries RM reported CZA resistance due to increased
expression of KPC-3 in clinical isolates previously unexposed
to CZA (Humphries and Hemarajata, 2017). Both situations
above were combined with membrane porin deficiency. In
addition, Ω-loop alterations caused by KPC mutations can
prevent avibactam binding and lead to CZA resistance, such as
mutations at position 179 in blaKPC-2 or blaKPC-3 (Livermore
et al., 2015b; Barnes et al., 2017). CZA resistance caused by KPC
point mutations tends to occur after the strains are exposed to
CZA either in vivo or in vitro (Livermore et al., 2015b; Barnes
et al., 2017; Shields et al., 2017). Additionally, Antinori E.
reported that deletion in blaKPC-3 in clinical K. pneumoniae
could also result in CZA resistance (Antinori et al., 2020). In
our study, the CZA-resistant strain evolved double copies of
blaKPC-2 compared with the index strains. An increase in the
MICs of carbapenem and CAZ for XDX51 indicated enhanced
CAZ hydrolysis due to overexpression of blaKPC-2. Our
conclusion was confirmed by other studies as well. Shen Z.
et al. reported that the expression level of blaKPC-2 in CRKP
with CZA MIC 4-8 mg/mL group was 4.2-4.8-fold higher than
that in CZA MIC 1-2 mg/mL and ≤0.5 mg/mL group, and
hydrolysis activities of CAZ was 4-4.6-fold higher in CZA MIC
4-8 group than the other two groups, indicating that the
enhanced expression of blaKPC-2 could result in the decrease of
CZA susceptibility due to the increased hydrolysis activity of
CAZ (Shen et al., 2017). Hence, we considered the enhanced
KPC expression was responsible for CZA resistance in XDX51.

Nonfunctional RamR can lead to TGC resistance via regulation
of efflux pumps. Mutations in ramR, including deletion, mutation
and insertion, resulting in TGC resistance have been previously
reported (Hentschke et al., 2010; Ye et al., 2017). In XDX51, ramR
insertion caused by ISKpn14was identified throughwhole-genome
sequencing. It was interrupted at 12 bp, affecting the translation of
N-terminal amino acids. The RamR N-terminus acts as a DNA-
binding site (Yamasaki et al., 2013). Without its DNA binding
function, RamR is not able to inhibit RamA expression, and as a
result, the efflux pump AcrAB-TolC is upregulated. As we
speculated, qRT-PCR showed upregulated expression levels of
ramA, acrA and acrB compared to that in the baseline strains.
Moreover, efflux pump inhibition experiments with PAbN
demonstrated the role of AcrAB-TolC in the increase in the TGC
MIC in XDX51. Briefly, in our study, the dysregulation of RamR
caused by IS element insertion was a major molecular mechanism
for TGC resistance in XDX51.

In addition to antibiotic resistance-related genomic differences,
LPS phenotype-related gene mutations occurred during within-
host evolution. The 307bpwbbL gene inXDX51was interruptedby
ISKpn26, which shares 99% amino acid similaritywith IS5.WbbL is
a rhamnosyl transferase that transfers L-Rha residues to the O4
position of D-Glc or D-GlcNAc to obtain a complete O-antigen
(Erbing et al., 1977; Izquierdoet al., 2003).O-antigen typing showed
that XDX16 and XDX51 belonged to OL101 and thatwbbLwas an
important component of the OL101 locus (Follador et al., 2016).
LPS analysis suggested that the O-antigen in the XDX51 and wbbL
knockout strainswas shorter than that in thewbbLwild-type strain.
In addition, the TGC MIC for the reconstructed wbbL defective
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
mutant was 2-fold higher than that for the strain with the complete
wbbl sequence. Leth K et al. reported that wbbL mutations could
cause serotype shifts and MIC changes for mecillinam in
combination with blaCTX-M mutations in E. coli. A similar study
also reported that mutations in LPS-related genes could cause
antibiotic resistance (Anton, 1995; Leth et al., 2019). In our study,
the wbbLmutation had a slight effect on TGC susceptibility, with a
twofold change in the MIC. Our result was consistent with
Linkevicius’s report showing that defects in LPS-related genes
(rfaC, rfaE, lpcA) could cause low levels of TGC resistance
(Linkevicius et al., 2016).

In our study, the Insertion sequences played an important
role in phenotypic changes in antibiotic resistance and genomic
variation during within-host evolution, causing gene
devitalization and duplication. Antibiotic resistance caused by
ISs has been previously reported (Yang et al., 2020). Under long-
term antibiotic stress, genomic variation caused by ISs could help
the host overcome environmental challenges. Compared to
XDX16 and XDX31, longer-term usage of the b-lactam-b-
lactamase inhibitor and TGC led to the ISKpn14 insertion in
wbbl, ISKpn26 insertion in ramR and replicative IS26
transposition with the blaKPC-2 transposon structure. The ISs
above were widely distributed in the genomes of the baseline
strains, and their movement in the genome led to key antibiotic
resistance. Furthermore, composite transposons with two
identical ISs, such as IS26 on the blaKPC-2-bearing plasmid in
our study, can become mobilized and transferable among
different strains. The dissemination of antibiotic resistance
genes could cause great challenges to public health (Partridge
et al., 2018). In the future, more clinical isolates would be studied
to investigate the characteristic of CRKP that are prone to
develop last line antibiotic resistance.
CONCLUSIONS

In brief, we tracked how a CRKP strain developed TGC and CZA
resistance phenotypes during within-host antibiotic treatment.
Three different genomic mutations were identified in XDX51,
and all of them were caused by Insertion sequences. Double
copies of blaKPC-2 contributed to the CZA MIC changes due to
enhanced ceftazidime hydrolysis. CZA resistance occurred
without previous exposure to CZA. In addition, ramR
inactivation led to TGC resistance. Furthermore, inactivation
of wbbL was identified as being associated with LPS O-antigen
deficiency and slightly reduced the susceptibility to TGC. The
ST4496 clone needs attention, as it has the potential to evolve
TGC and CZA resistance rapidly under TGC and b-lactam
antibiotic exposure.
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