For reprint orders, please contact: reprints@future-science.com

Aung Myint Tun^{*,1}, Kyaw Zin Thein², Wai Lin Thein³ & Elizabeth Guevara¹

¹Department of Medicine, Division of Hematology & Oncology, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA

Checkpoint inhibitors plus chemotherapy for

meta-analysis of randomized controlled trials

first-line treatment of advanced non-small

cell lung cancer: a systematic review and

²Department of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

³University of Medicine 1, Yangon, Myanmar

*Author for correspondence: Tel.: +1 310 728 5455; Fax: +1 718 250 6493; atun345@gmail.com

Background: We conducted a meta-analysis to evaluate the efficacy and safety of upfront add-on immunotherapy for advanced non-small cell lung cancers (NSCLC). **Methods:** We performed a literature search on first-line chemotherapy \pm immunotherapy in NSCLC. We utilized Revman version 5.3 to calculate the estimated pooled hazard ratio for overall survival (OS) and progression-free survival (PFS) and pooled risk ratio for objective response rate (ORR), all-grade and high-grade adverse events with 95% CI. **Results:** We analyzed 4322 patients. The pooled hazard ratios for OS, PFS and ORR were 0.74 (95% CI: 0.62–0.88; p = 0.0007), 0.62 (95% CI: 0.57–0.68; p = 0.00001) and 1.51 (95% CI: 1.3–1.74; p = 0.00001), respectively. The pooled risk ratios for all-grade and high-grade adverse events were 1.01 (95% CI: 0.99–1.03; p = 0.27) and 1.17 (95% CI: 1.07–1.28; p = 0.0006), respectively. **Conclusion:** Add-on immunotherapy significantly improves PFS, OS and ORR for the first-line treatment of advanced NSCLC with a reasonable safety profile.

Lay abstract: Lung cancer is the most frequent cancer and is the leading cause of cancer mortality worldwide – more than half of the patients presented at late-stage disease, which is associated with limited survival. To treat cancers, we use immune checkpoint inhibitors that release the brakes on the immune system; thus, the immune cells can kill cancer cells better. Multiple clinical trials have tested the role of immune checkpoint inhibitors combined with chemotherapy for lung cancer treatment. Based on these clinical trials, we conducted a systematic review that showed improvement in outcomes with combined chemotherapy and immunotherapy with acceptable adverse events.

First draft submitted: 9 July 2019; Accepted for publication: 5 September 2019; Published online: 25 September 2019

Keywords: advanced non-small-cell lung cancer • checkpoint inhibitors • chemotherapy • first-line therapy • immune-related adverse events • objective response rate • overall survival • progression-free survival • randomized controlled trials • systematic review and meta-analysis

Lung cancer is the most common cancer worldwide, with an estimated incidence of more than 2 million cases and approximately 1.8 million deaths, was also the leading cause of cancer mortality in 2018 [1]. In the USA, it is the second most frequently diagnosed cancer and is currently the leading cause of cancer death in both sexes [2]. There are estimated 228,150 cases of lung and bronchial carcinoma and approximately 142,670 deaths in 2019 in the USA [2]. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers [3]. The metastatic disease represents approximately 55% of cases and long-term prognosis remains poor [3].

Subsets of patients with driver mutations and gene rearrangements gain significant benefits from molecularly targeted agents; however, the majority of patients without an identified molecular subtype rely mainly on traditional chemotherapy with modest improvement in survival and quality of life. An increasing in the understanding of the complex interactions between the immune system and cancer has led to the development of immune checkpoint inhibitors, namely monoclonal antibodies directed against programmed death receptor 1 (PD-1), programmed death

Future Science

ligand 1 (PD-L1) and cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) monoclonal antibodies, which promote T-cell activation with subsequent formation of anti-tumor effect, resulting in durable response and improvement in outcome. Single-agent immunotherapy (nivolumab, pembrolizumab and atezolizumab) demonstrated superior overall survival (OS) and better safety profiles compared with chemotherapy in the subsequent management of both squamous and nonsquamous NSCLC [4–7]. However, single-agent immunotherapy in the first-line setting is limited to the small subset of NSCLC patients whose tumors have a PD-L1 tumor proportion score of 50% or more 'without *EGFR or ALK* genomic tumor aberrations', for which pembrolizumab is proven to be superior in terms of efficacy and safety profiles [8]. Increasing evidence suggests that combined chemoimmunotherapy can have synergistic anticancer activities through the immunomodulatory effect of checkpoint inhibitors and the immunogenic effect of chemotherapy, such as lowering regulatory T-cell activity and enhancing cross-presentation of tumor antigens [9,10].

Several randomized controlled trials (RCTs) have shown that the addition of immunotherapy to standard chemotherapy improves survival with manageable toxicity profiles. RCTs for the CTLA-4 inhibitor ipilimumab were not included in the analysis owing to separate mechanism of action, lack of OS benefit and different toxicity profiles [11,12]. Therefore, we conducted the meta-analysis of RCTs on PD-1 and PD-L1 inhibitors to evaluate the efficacy and safety of immune checkpoint inhibitors in combination with chemotherapy for the first-line treatment of advanced, metastatic NSCLC.

Methods

We conducted this systematic review according to the Cochrane Handbook for Systematic Reviews [13] and reported per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.

Search methods

We conducted literature search in PubMed, EMBASE and SCOPUS databases using the terms 'immune checkpoint inhibitors and NSCLC', 'nivolumab and NSCLC', 'pembrolizumab and NSCLC', 'atezolizumab and NSCLC', 'avelumab and NSCLC' and 'durvalumab and NSCLC'. A further search was performed on major oncology conferences throughout January 2019, including those of the American Society of Clinical Oncology, European Society of Medical Oncology and International Association for the Study of Lung Cancer. Clinical trials in English were retrieved and filtered, as mentioned in eligibility criteria.

Inclusion & exclusion criteria

The search results were narrowed to the following article types: clinical trial, Phase II; clinical trial, Phase III; checkpoint inhibitor plus chemotherapy versus chemotherapy plus placebo; studies that showed survival data and studies conducted for first-line treatment of advanced or metastatic NSCLC.

The exclusion criteria were as follows: review articles, systematic reviews, letter to editor and case reports; preclinical trials, Phase I trials, or nonrandomized trials; immune checkpoint inhibitors in adjuvant or neoadjuvant settings; duplicates of previous publications on the same population and study of CTLA-4 inhibitor ipilimumab due to lack of OS benefit in combination with standard chemotherapy in the first-line setting [11,12].

Data extraction & quality assessment

AM Tun and WL Thein collected basic information of individual study and data were extracted independently. Discrepancies and disagreement were resolved through consensus with the third and the fourth reviewers (KZ Thein. and E Guevara). Extracted data include trial name, a surname of the first author, year of publication, study phase, treatment arms, participant characteristics and the number of patients evaluable for analysis. Analysis of hazard ratio (HR) for OS is the primary outcome of the study. Secondary outcomes were pooled progression-free survival (PFS), pooled overall response rate (ORR) and adverse events (AEs). The tool recommended by Cochrane Collaboration (London, UK) identified biases in each study. Biases were classified as selection bias, performance bias, detection bias, attrition bias, reporting bias and others. They are rated as low, high or unclear risk [14].

Statistical analysis

Review Manager, version 5.3 (Nordic Cochrane Centre; Copenhagen, Denmark) was used for data analyses; p < 0.05 were considered significant and $I^2 > 50\%$ is considered substantially heterogeneous [15]. The random-effect

model was applied for all analyses due to heterogeneity among studies. We utilized the inverse variance method to analyze PFS and OS data and reported the outcomes as pooled HRs. Analysis of dichotomous outcomes, such as ORR and AEs, were done by the Mantel–Haenszel method and were reported as risk ratios (RRs) with 95% CIs. Subgroup analyses HRs for PFS and OS were conducted based on the degree of PD-L1 expressions (PD-L1 negative; low-PD-L1 expression: PD-L1 tumor proportion score of 1–49% for pembrolizumab trials or PD-L1 expression on 1–49% of tumor cells (TCs) or 1–9% of tumor-infiltrating immune cells (ICs) for atezolizumab trials; and high-PD-L1 expression: PD-L1 of 50% or greater for pembrolizumab trials or PD-L1 expression of 50% or greater on TCs or 10% or higher ICs in atezolizumab trials). We also performed subgroup analyses of PFS based on age (<65 vs \geq 65 years), sex (male vs female) and Eastern Cooperative Oncology Group (ECOG) performance status (0 vs 1), and smoking status (current or former vs never). Publication bias was assessed by funnel plots. We did not perform sensitivity analysis since no study notably influences the results.

Results

Study selection

We retrieved 8409 potential references, and 5044 duplicates were removed. After application of exclusion criteria as mentioned above, seven RCTs were reviewed for the final analysis. We excluded Keynote 021 trial, which is a Phase II trial with expansion cohort from Phase I trial [16]. The data from IMpower-131, -132 and Checkmate-227 trials were extracted from conference abstracts and presentations. (Figure 1) We incorporated additional data from IMpower-130 trial in the analysis following its publication in July 2019 [17]. Figure 1 demonstrates study selection in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.

Study characteristics

The characteristics of the included studies are summarized in Table 1. A total of 4322 patients with advanced NSCLC were included in the meta-analysis. Overall, 2991 patients (69%) had nonsquamous NSCLC, among which 152 patients (5%) had *EGFR* or *ALK* alterations. A total of 1331 patients (31%) had squamous NSCLC. The median age of patients ranged from 63 to 65 years; all patients had ECOG performance status score of 0–1 with adequate organ function. All studies were done for the first-line treatment of advanced or metastatic NSCLC utilizing a platinum-based regimen with or without immunotherapy (nivolumab for Checkmate trial, atezolizumab for IMpower trials and pembrolizumab for Keynote trials). Data on the atezolizumab, carboplatin and paclitaxel study arms of IMpower-150, had two experimental arms: carboplatin, paclitaxel and atezolizumab (arm A) and carboplatin, paclitaxel, bevacizumab and atezolizumab (arm B) versus carboplatin, paclitaxel and bevacizumab (arm C). We did not include the data comparing between arm A and C because the HR may not reflect the actual effect of add-on immunotherapy (atezolizumab plus chemotherapy vs bevacizumab plus chemotherapy).

Different PD-L1 assay methods were utilized in these studies: 22C3 pharmDx assay (Agilent, CA, USA) in nivolumab and pembrolizumab studies [18,19,26] and SP142 assay (Ventana, Roche, Basel, Switzerland) [23] in atezolizumab studies. Checkmate-227 study comparing platinum-based chemo with or without nivolumab was done on tumors with PD-L1 expression <1% [25].

Study quality, risk bias & publication bias

Risk of bias for each study was evaluated by RevMan 5.3 software (Cochrane) and is illustrated in Figure 2. IMpower-130, -131, -132, -150 and Checkmate-227 were open-label studies that lacked blinding between investigators and participants. Detection bias was unclear for IMpower-130,-131,-132,-150, and Checkmate-227 trials due to lack of blinding. Moreover, all the studies are sponsored by pharmaceutical companies so other biases remained uncertain. Publication bias was not identified in this study.

Result

Primary outcome

Median OS ranged from 14 months and is not reached in the Keynote-189 trial in the experimental arms, whereas median OS ranges from 11.3 to 14.7 months in the control arms. The pooled HR for OS was 0.74 (95% CI: 0.62–0.88; p = 0.0007, $I^2 = 73\%$), and is mentioned in Figure 3A. We performed pooled HR for OS based on histologic subtypes (squamous and nonsquamous) and the type of immunotherapy (PD-1 and PD-L1 monoclonal antibodies). Pooled HRs for OS were 0.79 (95% CI: 0.53–1.18; p = 0.25) for squamous NSCLC (Figure 3B) and

Table 1. Characte 1; non-small-cell l	eristics d ung car	of included stu hcer).	udies (objec	tive respons	se rate; median progression	-free surviva	ıl; median ove	rall survival; p	orogrammed (death ligand
Study (year) [Ref.]	Phase	Participants	Patients (n)	Median age (years), study vs control	Intervention	PD-L1 expression	Median follow-up (months)	ORR (%) study arm vs control arm	mPFS (months), study vs control	mOS (months), study vs control
Gandhi e <i>t al.</i> (2018) [18] Keynote-189	=	Metastatic nonsquamous NSCLC without EGFR or ALK mutations	616	65 vs 63.5	Pemetrexed + platin-based drug + pembrolizumab vs pemetrexed + platinum-based drug	≥1%	10.5	47.6 vs 18.9	8.8 vs 4.9	Not reached vs 11.3
Paz-Ares et <i>al.</i> (2018) [19] Keynote-407	=	Metastatic squamous NSCLC	559	65	Carboplatin + paclitaxel/nab- paclitaxel + pembrolizumab vs carboplatin + paclitaxel/nab- paclitaxel	Any	7.8	57.9 vs 38.4	6.4 vs 4.8	15.9 vs 11.3
Cappuzzo e <i>t al.</i> (2018) [17,20] Impower-130	=	Advanced Nonsquamous NSCLC	723 (44 patients had EGFR or ALK mutations)	64 vs 65	Carboplatin + nabpaclitaxel + ate- zolizumab vs carboplatin + nabpaclitaxel	Any	AN	49.5 vs 31.9	7 vs 5.5	18.6 vs 13.9
Jotte <i>et al.</i> (2018) [21] IMpower-131	≡	Metastatic squamous NSCLC	683	65	Carboplatin + nabpaclitaxel + ate- zolizumab vs carboplatin + nabpaclitaxel	Any	17.1	49 vs 41	6.3 vs 5.6	14 vs 13.9
Papadimitrakopoulou et al. (2018) [22] IMpower-132	=	Advanced Nonsquamous NSCLC	578	64 vs 63	Pemetrexed + platin-based drug + atezolizumab vs pemetrexed + platinum-based drug	Any	14.8	47 vs 32	7.6 vs 5.2	18.1 vs 13.6
Socinski <i>et al.</i> (2018) [23,24] IMpower-150	≡	Metastatic nonsquamous NSCLC	800 (108 patients had <i>EGFR</i> or <i>ALK</i> alterations)	63	Carboplatin + paclitaxel + beva- cizumab + atezolizumab vs Carboplatin + paclitaxel + beva- cizumab	Any	15.4 vs 15.5	63.5 vs 48	8.3 vs 6.8	19.2 vs 14.7
Borghaei <i>et al.</i> (2018) [25] Checkmate-227	≡	Metastatic NSCLC PDL1 <1%	363	64	Chemotherapy + nivolumab vs chemotherapy	<1%	Not available	36.7 vs 23.1	5.6 vs 4.7	pending
NSCLC: Non-small-cell lun	g cancer; O	IRR: Objective respons	se rate; PD-L1: Pn	ogrammed death	ligand 1.					

Figure 1. Study flow diagram in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.

0.71 (95% CI: 0.57-0.88; p = 0.002) for nonsquamous NSCLC (Figure 3C). With regards to different treatment strategies, the pooled HR for PD-1 monoclonal antibody pembrolizumab was 0.56 (95% CI: 0.43-0.73; p = 0001) (Figure 3D) and pooled HR for PD-L1 monoclonal antibody atezolizumab was 0.83 (95% CI 0.75-0.92; p = 0.0006) (Figure 3E). The subgroup analysis was done for different levels of PD-L1 expressions (negative, low and high) and the forest plots for pooled HRs were shown in Figure 3F–H.

Secondary outcomes

Median PFS ranged from 5.6 to 8.8 months in the study arms, while the control arms ranged from 4.7 to 6.8 months. The pooled HR for PFS was 0.62 (95% CI: 0.57–0.68; p = 0.00001) (Figure 4A). Heterogeneity was present with an I² value of 34%. In addition, we performed pooled HR for PFS based on histologic subtypes (squamous and nonsquamous) and the type of immunotherapy (PD-1 and PD-L1 monoclonal antibodies). Pooled HR for squamous NSCLC and nonsquamous NSCLC were 0.64 (95% CI: 0.50–0.81; p = 0.0002) and 0.6 (95% CI: 0.54–0.65; p = 0.00001) (Figure 4B & C, respectively). The pooled HR for PD-1 monoclonal antibodies nivolumab and pembrolizumab was 0.59 (95% CI: 0.48–0.73; p = 0.0001) (Figure 4D) and the pooled HR for PD-L1 monoclonal antibody atezolizumab was 0.64 (95% CI: 0.59–0.70; p = 0.00001) (Figure 4E). Subgroup analyses of HRs for PFS based on the degree of PD-L1 expressions were performed and depicted in the Figure 4F–H.

Figure 2. Risk of bias for selected clinical trials.

Table 2. Subgroup analyses of pooled hazard ratios for progression-free survival.										
Subgroups	Studies (n)	Pooled HR (95% CI)	l ² (%)	p-value						
Age <65 years	4	0.59 (0.38–0.84)	66%	0.0001						
Age \geq 65 years	4	0.65 (0.56–0.75)	0%	0.00001						
Male	4	0.69 (0.62–0.78)	0%	0.00001						
Female	4	0.48 (0.33–0.70)	70%	0.0001						
ECOG PS 0	4	0.59 (0.49–0.71)	0%	0.0001						
ECOG PS 1	4	0.66 (0.58–0.74)	0%	0.00001						
Smoking (current or former)	3	0.64 (0.56–0.73)	19%	0.00001						
Smoking (never)	3	0.55 (0.38–0.81)	64%	0.002						
PD-L1 <1% (negative)	7	0.69 (0.60–0.79)	35%	0.00001						
PD-L1 \geq 1–49% (low)	6	0.64 (0.55–0.74)	0%	0.00001						
PD-L1 \geq 50% (high)	6	0.47 (0.38–0.57)	0%	0.00001						
ECOG: Eastern Cooperative Oncolog	y Group; HR: Hazard ratio; PD-L1: Pro	grammed death ligand 1.								

The addition of immune checkpoint inhibitor benefited across different levels of PD-L1 expressions. Moreover, subgroup analyses for PFS based on age, sex, ECOG performance status, smoking history and degree of PD-L1 expression (negative, low or high) were summarized in Table 2. IMpower-130 and -150 trials included patients

Weight Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE (V, random, 95% Cl (V, random, 95% Cl Mpower-130 -0.2485 0.1074 17.4 0.79 [0.64, 0.98] (V, random, 95% Cl Mpower-131 -0.0406 0.1059 17.5 0.96 (0.78, 1.18] (V, random, 95% Cl Mpower-130 -0.2485 0.1009 17.9 0.66 (0.49, 0.88] (V, random, 95% Cl Keynote-407 -0.4463 0.1363 15.1 0.64 (0.49, 0.84] (V, random, 95% Cl Heterogeneity: Tau" = 0.04; Ch" = 18.37, df = 5 (p = 0.003); l" = 73% 0.01 1 10 10 Fest for overall effect: Z = 3.40 (p = 0.0007) SE (%) IV, random, 95% Cl IV, random						
Study Or subgroup Log (nazard ratio) Size (%) (%) random, 95% Cl (%) random, 95% Cl IMpower-130 -0.2357 0.1074 17.4 0.79 (0.64, 0.95) - IMpower-131 -0.0408 0.1059 17.5 0.96 (0.78, 1.18) - IMpower-132 -0.2107 0.117 16.6 0.81 (0.64, 0.95) - Keynote-407 -0.4463 0.1363 15.1 0.64 (0.49, 0.84) - Yethore-189 -0.7133 0.1297 15.6 0.419 (0.84, 0.95) - Total (95% Cl) 100.0 0.74 (0.62, 0.88) - - Heterogeneity: Tau" = 0.04; Chi ^p = 18.37, df = 5 (p = 0.003); i ^p = 73% 0.01 0.1 10 10 Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Impower-131 -0.0408 0.1593 52.2 0.96 [0.78, 1.18] - <th>Study or subgroup</th> <th>Log [bozord rotio]</th> <th>SE</th> <th>Weight</th> <th>Hazard ratio</th> <th>Hazard ratio</th>	Study or subgroup	Log [bozord rotio]	SE	Weight	Hazard ratio	Hazard ratio
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Study of Subgroup		0 1074	(%)	IV, random, 95% CI	IV, random, 95% Cl
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	INpower 130	-0.2357	0.1074	17.4	0.79 [0.64, 0.98]	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IMpower_132	-0.0408	0.1059	17.5	0.90 [0.76, 1.16]	-
Keynote-189 -0.7133 0.1297 15.6 0.49 0.38 0.63 Keynote-407 -0.4463 0.1363 15.1 0.64 0.49 0.83 0.63 Total (95% Cl) 100.0 0.74 0.62 0.88 0.13 0.11 10 10 Heterogeneity: Tau ² = 0.04; Chi ² = 18.37, df = 5 (p = 0.003); l ² = 73% 0.01 0.1 1 10 10 Study or subgroup Log [hazard ratio SE Weight Hazard ratio Hazard ratio Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio SE (%) 100.0 0.79 0.53, 118] -0.01 0.1 10 10 Total (95% Cl) 100.0 0.79 0.53, 118] -0.01 10 10 10 Study or subgroup Log [hazard ratio SE (%) Nr andom, 95% Cl IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Impower-130 -0.2357 0.1074 25.8 0.79 0.64, 0.98 -0.71 -0.71 -0.71 -0.71 -0.74 -0.71 -0.74 -0.73 -0.71	IMpower-150	-0.2485	0 1009	17.9	0 78 [0 64 0 95]	-
Keynote-407 -0.4463 0.1363 15.1 0.64 [0.49, 0.84] Total (95% Cl) 100.0 0.74 [0.52, 0.88] Heterogeneity: Tau ² = 0.04; Chi ² = 18.37, df = 5 (p = 0.003); l ² = 73% 0.01 0.1 10 10 10 Study or subgroup Log [hazard ratio] SE Weight Hazard ratio Hazard ratio Hazard ratio Hazard ratio Hazard ratio Hazard ratio IV, random, 95% Cl	Kevnote–189	-0.7133	0.1297	15.6	0.49 [0.38, 0.63]	-
Total (95% CI) 100.0 0.74 [0.62, 0.88] Heterogeneity: Tau ² = 0.04; Chi ² = 18.37, df = 5 (p = 0.003); l ² = 73% 0.01 1 100.0 0.74 [0.62, 0.88] Study or subgroup Log [hazard ratio] SE Weight Hazard ratio Hazard ratio Mpower-131 -0.0408 0.1059 52.2 0.96 [0.78, 1.18] Hazard ratio Hazard ratio Total (95% CI) -0.4463 0.1363 47.8 0.64 [0.49, 0.84] Hazard ratio Hazard ratio Total (95% CI) -0.4463 0.1363 47.8 0.64 [0.49, 0.84] Hazard ratio Hazard ratio Test for overall effect: Z = 1.16 (p = 0.25) Veight Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE Weight Hazard ratio Hazard ratio IMpower-130 -0.2485 0.1074 25.8 0.79 [0.64, 0.98] Hazard ratio Hazard ratio IMpower-130 -0.2485 0.109 26.5 0.71 [0.57, 0.88] Hazard ratio Hazard ratio IMpower-130 -0.2485 0.101; l ² = 73% <td>Keynote-407</td> <td>-0.4463</td> <td>0.1363</td> <td>15.1</td> <td>0.64 [0.49, 0.84]</td> <td></td>	Keynote-407	-0.4463	0.1363	15.1	0.64 [0.49, 0.84]	
Heterogeneily: Tau ² = 0.04; Ch ² = 18.37, df = 5 (p = 0.003); l ² = 73% Interviewed to the second seco	Total (95% CI)			100.0	0.74 [0.62, 0.88]	•
Test for overall effect: $Z = 3.40$ (p = 0.0007) 0.01 0.11 10 10 Test for overall effect: $Z = 3.40$ (p = 0.0007) 0.01 0.11 10 10 Study or subgroup Log [hazard ratio] Weight (%) Hazard ratio Hazard ratio Hazard ratio Meight Hazard ratio Hazard ratio Hazard ratio Meight (%) N/ random, 95% CI IV, random, 95% CI Import to get the formation of the formatio	Heterogeneity: Tau ² =	= 0.04: Chi ² = 18.37.	df = 5 (p	= 0.003)	$ ^2 = 73\%$	*
Study or subgroup Log [hazard ratio] SE Weight (%) Hazard ratio IV, random, 95% CI Hazard ratio IV, random, 95% CI IMpower-131 -0.0408 0.1059 52.2 0.96 [0.78, 1.18] 0.64 [0.49, 0.84] IV, random, 95% CI Total (95% CI) 100.0 0.79 [0.53, 1.18] Heterogeneity: Tau ² = 0.07; Chi ² = 5.52, df = 1 (p = 0.02); l ² = 82% 0.01 0.1 1 10 10 Study or subgroup Log [hazard ratio] SE Weight (%) Hazard ratio IV, random, 95% CI Hazard ratio IV, random, 95% CI Hazard ratio Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI IMpower-132 -0.2107 0.171 24.6 0.81 [0.64, 0.95] Favors [experimental] Favors [control] IMpower-132 -0.2107 0.171 24.6 0.81 [0.64, 0.95] - - Keynote-189 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] - - Test for overall effect: Z = 3.14 (p = 0.002) SE (%) IV, random, 95% CI IV, random, 95% CI - Budger Store veral effect: Z = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01	Test for overall effect:	Z = 3.40 (p = 0.000)	7)	,	0.0	01 0.1 1 10 10
B Weight Keynote-131 -0.0408 0.1059 52.2 0.96 [0.78, 1.18] Hazard ratio IV, random, 95% CI IMpower-131 -0.0408 0.1059 52.2 0.96 [0.78, 1.18] IV, random, 95% CI IV, random, 95% CI Total (95% CI) -0.4463 0.1363 47.8 0.64 [0.49, 0.84] IV		, i	,			Favous [experimental] Favors [control]
Study or subgroup Log [hazard ratio] SE Weight (%) Hazard ratio IV, random, 95% CI Hazard ratio IV, random, 95% CI IMpower-131 -0.0408 0.1059 52.2 0.96 [0.78, 1.18] IV Keynote-407 -0.4463 0.1353 47.8 0.64 [0.49, 0.84] IV Total (95% CI) -0.4463 0.1363 47.8 0.64 [0.49, 0.84] IV Heterogeneity: Tau ² = 0.07; Chi ² = 5.52, df = 1 (p = 0.02); l ² = 82% 0.01 0.1 1 10 Test for overall effect: Z = 1.16 (p = 0.25) IV, random, 95% CI Hazard ratio IV, random, 95% CI Hazard ratio IMpower-130 -0.2357 0.1074 25.8 0.79 [0.64, 0.98] IV, random, 95% CI IV, random, 95% CI IMpower-130 -0.2485 0.109 26.5 0.78 [0.64, 0.95] IV	B					
Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI IMpower-131 -0.0408 0.1059 52.2 0.96 [0.78, 1.18] Impower-131 -0.04463 0.1363 47.8 0.64 [0.49, 0.84] Total (95% CI) 100.0 0.79 [0.53, 1.18] Impower-132 -0.07; Chi ² = 5.52, df = 1 (p = 0.02); l ² = 82% 0.01 0.1 10 10 Test for overall effect: Z = 1.16 (p = 0.25) Veight Hazard ratio Hazard ratio Hazard ratio Favors [control] Favors [control] C Veight Hazard ratio IV, random, 95% CI IV, random, 95% CI IV, random, 95% CI IMpower-130 -0.2357 0.1074 25.8 0.79 [0.64, 0.98] Impower-132 -0.2107<0.117 24.6 0.81 [0.64, 1.02] Impower-189 Impower-132 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] Impower-189 Impower-180 Impower-180<	e			Weight	Hazard ratio	Hazard ratio
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Study or subgroup	Log [hazard ratio]	SE	(%)	IV, random, 95% CI	IV, random, 95% Cl
Keynote-407 -0.4463 0.1363 47.8 0.64 [0.49, 0.84] Total (95% Cl) 100.0 0.79 [0.53, 1.18] Heterogeneity: Tau ² = 0.07; Chi ² = 5.52, df = 1 (p = 0.02); l ² = 82% 0.01 1 10 10 Test for overall effect: Z = 1.16 (p = 0.25) Veight Hazard ratio Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE Weight Hazard ratio IV, random, 95% Cl IV, random, 95% Cl IMpower-130 -0.2357 0.1074 25.8 0.79 [0.64, 0.98] Hazard ratio IMpower-132 -0.2107 0.117 24.6 0.81 [0.64, 0.98] Hazard ratio IMpower-139 -0.2137 0.109 26.5 0.78 [0.64, 0.96] Hazard ratio IMpower-139 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] - Total (95% Cl) 100.0 0.71 [0.57, 0.88] Hazard ratio Hazard ratio Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 1 10 10 Diddy or subgroup Log [hazard ratio] SE (%) IV, random, 95% Cl	IMpower-131	-0.0408	0.1059	52.2	0.96 [0.78, 1.18]	+
Total (95% CI) 100.0 0.79 [0.53, 1.18] Heterogeneity: Tau ² = 0.07; Chi ² = 5.52, df = 1 (p = 0.02); l ² = 82% Output of the second	Keynote–407	-0.4463	0.1363	47.8	0.64 [0.49, 0.84]	-
Total (95% Cl) Weight Hazard ratio (%) Weight Hazard ratio (%) Total (95% Cl) Weight Hazard ratio Total (95% Cl) Weight Hazard ratio Total (95% Cl) Total (95% Cl) Weight Hazard ratio Total (95% Cl) 1	Total (95% CI)			100.0	0 79 [0 53 1 18]	
Network of the state of th	Heterogeneity: Tau ² –	0.07 Cbi ² – 5.52 d	f – 1 (n –	0.02).12	- 82%	`
Favors [experimental] Favors [experimental] Favors [control] Favors [experimental] Favors [experimental] Favors [control] Favors [experimental] Favors [control] Favors [experimental] Favors [control] Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IMpower-132 -0.2107 0.117 24.6 0.81 [0.64, 0.95] IMpower-132 -0.2485 0.1009 26.5 0.78 [0.64, 0.95] IMpower-189 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] Meterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 I Favors [experimental] Favors [control] D Weight Hazard ratio ITotal (95% CI) Log [hazard ratio] Keynote-189 -0.7133 0.1297 51.2 0	Test for overall effect:	7 = 1.16 (n = 0.25)	i = i (p =	. 0.02), 1	- 02 /0	01 0.1 1 10 10
C Study or subgroup Log [hazard ratio] SE Weight (%) Hazard ratio IV, random, 95% CI Hazard ratio IV, random, 95% CI IMpower-130 -0.2357 0.1074 25.8 0.79 [0.64, 0.98] IV, random, 95% CI IMpower-132 -0.2107 0.117 24.6 0.81 [0.64, 1.02] IV IMpower-150 -0.2485 0.1009 26.5 0.78 [0.64, 0.95] IV Keynote-189 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] IV Total (95% CI) 100.0 0.71 [0.57, 0.88] IV IV Favors [experimental] Favors [control] IMpower-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] IV Favors [control] Test for overall effect: Z = 3.14 (p = 0.002) SE (%) IV, random, 95% CI IV, random, 95% CI Exervice -189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] IV Keynote-407 -0.4463 0.1363 48.8 0.64 [0.49, 1.84] IV Total (95% CI) 100.0 0.56 [0.43, 0.73]		o (p 0.20)				Favors [experimental] Favors [control]
Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI IMpower-130 -0.2357 0.1074 25.8 0.79 [0.64, 0.98] IV, random, 95% CI IMpower-132 -0.2107 0.117 24.6 0.81 [0.64, 1.02] IV IMpower-150 -0.2485 0.1009 26.5 0.78 [0.64, 0.95] IV Keynote-189 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] IV Total (95% CI) 100.0 0.71 [0.57, 0.88] IV IV Favors [control] Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 0.1 1 10 Test for overall effect: Z = 3.14 (p = 0.002) Veight Hazard ratio Hazard ratio Favors [control] Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] IV Keynote-407 -0.4463 0.1363 48.8 0.64 [0.49, 1.84] IV	C					
Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI IMpower-130 -0.2357 0.1074 25.8 0.79 [0.64 , 0.98] \bullet IMpower-132 -0.2107 0.117 24.6 0.81 [0.64 , 1.02] \bullet IMpower-150 -0.2485 0.1009 26.5 0.78 [0.64 , 0.95] \bullet Keynote-189 -0.7133 0.1297 23.1 0.49 [0.38 , 0.63] \bullet Test for overall effect: Z = 3.14 (p = 0.002) 100.0 0.71 [0.57 , 0.88] \bullet \bullet D Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV Test for overall effect: Z = 3.14 (p = 0.002) IV, random, 95% CI IV, random, 95% CI IV, random, 95% CI IV, random, 95% CI Example -407 -0.7133 0.1297 51.2 0.49 [0.38 , 0.63] \bullet IV, random, 95% CI Total (95% CI) 100.0 0.56 [0.43 , 0.73] IV IV IV IV				Weight	Hazard ratio	Hazard ratio
IMpower-130 -0.2357 0.1074 25.8 0.79 $[0.64, 0.98]$ IMpower-132 -0.2107 0.117 24.6 0.81 $[0.64, 1.02]$ IMpower-150 -0.2485 0.1009 26.5 0.78 $[0.64, 0.95]$ Keynote-189 -0.7133 0.1297 23.1 0.49 $[0.38, 0.63]$ Total (95% Cl) 100.0 0.71 $[0.57, 0.88]$ \bullet Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 0.1 10 10 Test for overall effect: $Z = 3.14$ (p = 0.002) Weight Hazard ratio Hazard ratio Favors [experimental] Favors [control] D Weight Hazard ratio IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Total (95% Cl) 0.0463 0.1363 48.8 0.64 $[0.49, 1.84]$ \bullet Total (95% Cl) 100.0 0.56 $[0.43, 0.73]$ \bullet \bullet	Study or subgroup	Log [hazard ratio]	SE	(%)	IV, random, 95% CI	IV, random, 95% Cl
IMpower-132 -0.2107 0.117 24.6 0.81 $[0.64, 1.02]$ IMpower-150 -0.2485 0.1009 26.5 0.78 $[0.64, 0.95]$ Keynote-189 -0.7133 0.1297 23.1 0.49 $[0.38, 0.63]$ $-$ Total (95% Cl) 100.0 0.71 $[0.57, 0.88]$ $-$ Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 0.1 100 0.71 0.01 0.1 100 100 Test for overall effect: Z = 3.14 (p = 0.002) Weight Hazard ratio Hazard ratio Favors [experimental] Favors [control] D Weight Hazard ratio Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% Cl IV, random, 95% Cl Keynote-189 -0.7133 0.1297 51.2 0.49 [$0.38, 0.63$] $-$ Keynote-407 -0.4463 0.1363 48.8 0.64 [$0.49, 1.84$] $-$ Total (95% Cl) 100.0 0.56 [$0.43, 0.73$] $ -$	IMpower-130	-0.2357	0.1074	25.8	0.79 [0.64, 0.98]	
IMpower-150 -0.2485 0.1009 26.5 0.78 [0.64, 0.95] Keynote-189 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] Total (95% Cl) 100.0 0.71 [0.57, 0.88] Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 0.1 100 0.71 [0.57, 0.88] Test for overall effect: Z = 3.14 (p = 0.002) Weight Hazard ratio Favors [experimental] Favors [control] D Weight Hazard ratio Hazard ratio Hazard ratio Hazard ratio Keynote-189 -0.7133 0.1297 51.2 0.49 [$0.38, 0.63$] $-$ Keynote-407 -0.4463 0.1363 48.8 0.64 [$0.49, 1.84$] $-$ Total (95% Cl) 100.0 0.56 [$0.43, 0.73$] $-$	IMpower-132	-0.2107	0.117	24.6	0.81 [0.64, 1.02]	
Keynote-189 -0.7133 0.1297 23.1 0.49 [0.38, 0.63] Total (95% Cl) 100.0 0.71 [0.57, 0.88] Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 0.1 100.0 Test for overall effect: Z = 3.14 (p = 0.002) Weight Hazard ratio Favors [experimental] Favors [control] D Weight Hazard ratio Hazard ratio Hazard ratio Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] IV, random, 95% Cl Keynote-407 -0.4463 0.1363 48.8 0.64 [0.49, 1.84] Image: Close of the second sec	IMpower-150	-0.2485	0.1009	26.5	0.78 [0.64, 0.95]	
Total (95% Cl) 100.0 0.71 [0.57, 0.88] Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 0.1 1 10 10 Test for overall effect: Z = 3.14 (p = 0.002) Weight Hazard ratio Favors [experimental] Favors [control] D Veight Hazard ratio Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% Cl IV, random, 95% Cl Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] Image: Control of the second se	Keynole-189	-0.7133	0.1297	23.1	0.49 [0.38, 0.63]	•
Heterogeneity: Tau ² = 0.03; Chi ² = 11.18, df = 3 (p = 0.01); l ² = 73% 0.01 0.1 1 10 10 Test for overall effect: Z = 3.14 (p = 0.002) Weight Hazard ratio Favors [experimental] Favors [control] D Weight Hazard ratio Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] Image: Control of the second	Total (95% CI)			100.0	0 71 [0 57 0 88]	•
Test for overall effect: Z = 3.14 (p = 0.002) 0.01 0.1 1 1 10 10 D Weight Hazard ratio Extudy or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI IV, random, 95% CI Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">IV, random, 95% CI Total (95% CI) 100.0 0.56 [0.43, 0.73] Image: Colspan="4">Image: Colspan="4" Image: Colspa="4" Image: Colspan="4" Image: Colspan="4" Im	Heterogeneity: Tau ² =	0.03° Chi ² = 11.18	df = 3 (n)	= 0.01).	$l^2 = 73\%$	· · · · · · · · · · · · · · · · · · ·
Image: Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI Hazard ratio IV, random, 95% CI Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] IV Keynote-407 -0.4463 0.1363 48.8 0.64 [0.49, 1.84] IV Total (95% CI) 100.0 0.56 [0.43, 0.73] IV IV	Test for overall effect:	7 = 3.14 (p = 0.002))	- 0.01),	0.0	01 0.1 1 10 10
B Weight Keynote-189 Hazard ratio IV, random, 95% CI Hazard ratio Keynote-407 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] - Total (95% CI) 100.0 0.56 [0.43, 0.73] - -		_ 0(p 0.001	/			Favors [experimental] Favors [control]
Weight Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] Image: Free contract of the second contre						
Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] IV Keynote-407 -0.4463 0.1363 48.8 0.64 [0.49, 1.84] IV Total (95% CI) 100.0 0.56 [0.43, 0.73] IV IV	U			Weight	Hazard ratio	Hazard ratio
Keynote-189 -0.7133 0.1297 51.2 0.49 [0.38, 0.63] Keynote-407 -0.4463 0.1363 48.8 0.64 [0.49, 1.84] Total (95% Cl) 100.0 0.56 [0.43, 0.73]	Study or subaroup	Log [hazard ratio]	SE	(%)	IV. random, 95% Cl	IV. random, 95% Cl
Keynote-407 -0.4463 0.1363 48.8 0.64 [0.49, 1.84] Total (95% Cl) 100.0 0.56 [0.43, 0.73] Image: Close of the second sec	Keynote-189	-0.7133	0.1297	51.2	0.49 [0.38. 0.63]	
Total (95% Cl) 100.0 0.56 [0.43, 0.73]	Keynote-407	-0.4463	0.1363	48.8	0.64 [0.49, 1.84]	
Total (95% CI) 100.0 0.56 [0.43, 0.73]		0100				_
	Total (95% CI)			100.0	0.56 [0.43, 0.73]	◆
Heterogeneity: Tau ² = 0.02; Chi ² = 2.01, df = 1 (p = 0.16); l ² = 50%	Heterogeneity: Tau ² =	= 0.02; Chi ² = 2.01, d	f = 1 (p =	= 0.16); l ²	= 50%	
Test for overall effect: Z = 4.37 (p < 0.0001) 0.01 0.1 1 10 10	Test for overall effect:	Z = 4.37 (p < 0.000	1)		0.0	01 0.1 1 10 10
Favors [experimental] Favors [control]						

Figure 3. Overall survival analysis in participants treated with first-line chemoimmunotherapy versus chemotherapy alone. (A) Pooled HR for OS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(B)** Pooled HR for OS in patients with advanced squamous NSCLC treated with first-line chemoimmunotherapy. **(C)** Pooled HR for OS in patients with advanced nonsquamous NSCLC treated with first-line chemoimmunotherapy. **(D)** Pooled HR for OS in patients with advanced NSCLC treated with PD-1 inhibitor (pembrolizumab) in combination with chemotherapy in the first-line setting. **(E)** Pooled HR for OS in patients with advanced NSCLC treated with PD-L1 inhibitor (atezolizumab) in combination with chemotherapy in the first-line setting. **(F)** Pooled HR for OS in PD-L1 negative patients with advanced NSCLC in the first-line setting. **(G)** Pooled HR for OS in PD-L1 low patients with advanced NSCLC in the first-line setting. **(H)** Pooled HR for OS in PD-L1 high patients with advanced NSCLC in the first-line setting. **HR**: Hazard ratio; NSCLC: Non-small-cell lung cancer; OS: Overall survival; PD-1: Programmed death receptor 1; PD-L1: Programmed death ligand 1.

with *EGFR* and *ALK* alterations [17,24]. The pooled HR for PFS in this patient population was 0.63 (95% CI: 0.43–0.94; p = 0.02, $I^2 = 0\%$), favoring patients treated with atezolizumab (Figure 4).

The RR for ORR by random-effect model was 1.51 (95% CI: 1.3–1.74; p = 0.00001, $I^2 = 72\%$), benefiting the chemoimmunotherapy group (Figure 5A). Higher rates of high-grade (grade 3 or higher) AEs were noted with the addition of immunotherapy in experimental arms, but no significant difference in rates of all-grade AEs was

(E)					
Study or subgroup	Log [bozord rotio]	SE.	Weight	Hazard ratio	Hazard ratio
	Log [nazaru ratio]	0 1074	(%)	IV, random, 95% CI	IV, random, 95% CI
IMpower-130	-0.2357	0.1074	25.0	0.79 [0.64, 0.98]	
INpower-131	-0.0408	0.1059	25.7	0.96 [0.78, 1.18]	
INpower-132	-0.2107	0.117	21.0	0.81 [0.64, 1.02]	1
Inpower-150	-0.2485	0.1009	20.3	0.76 [0.04, 0.95]	-
Total (95% CI)	0.00.01.10.0.50		100.0	0.83 [0.75, 0.92]	•
Heterogeneity: I au ²	$= 0.00; Chi^2 = 2.52, d$	lf = 3 (p =	= 0.47); I ²	= 0%	
Test for overall effect	ι. <i>Σ</i> = 3.43 (p = 0.000	0)			Favors [experimental] Favors [control]
(F)					
			Weight	Hazard ratio	Hazard ratio
Study or subgroup	Log [hazard ratio]	SE	(%)	IV, random, 95% CI	IV, random, 95% Cl
IMpower-130	-0.2107	0.1447	26.1	0.81 [0.61, 1.08]	
IMpower-131	-0.1508	0.1428	26.8	0.86 [0.65, 1.14]	
IMpower-150	-0.1985	0.1426	26.9	0.82 [0.62, 1.08]	
Keynote-189	-0.5276	0.2245	10.8	0.59 [0.38, 0.92]	
Keynote-407	-0.4943	0.2415	9.4	0.61 [0.38, 0.98]	
Total (95% CI)			100.0	0.78 [0.67, 0.90]	•
Heterogeneity: Tau ² :	= 0.00; Chi ² = 3.24, d	f = 4 (p =	= 0.52); l ²	= 0%	
Test for overall effect	7 = 3.41 (p = 0.000)	6)	,, -	0.0	01 0.1 1 10 100
		0)			Favors [experimental] Favors [control]
G			Woight	Hazard ratio	Hazard ratio
			weigin	Παζαι μι τα μο	
Study or subaroup	Log [hazard ratio]	SE	(%)	IV random 95% CI	IV random 95% CI
Study or subgroup	Log [hazard ratio]	SE	<u>(%)</u>	IV, random, 95% CI	IV, random, 95% Cl
Study or subgroup IMpower-130	Log [hazard ratio] -0.3567 0.2027	0.2254	(%) 19.4	IV, random, 95% CI 0.70 [0.45, 1.09] 1.34 [0.05, 1.80]	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150	Log [hazard ratio] -0.3567 -0.2927 0.2221	SE 0.2254 0.1755 0.1012	(%) 19.4 22.2	IV, random, 95% Cl 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16]	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Kournete, 190	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5270	SE 0.2254 0.1755 0.1912	(%) 19.4 22.2 21.3	IV, random, 95% CI 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16]	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–107	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978	SE 0.2254 0.1755 0.1912 0.2454	(%) 19.4 22.2 21.3 18.3	IV, random, 95% CI 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16] 0.55 [0.34, 0.89] 0.55 [0.34, 0.89]	IV, random, 95% Cl
Study or subgroup Mpower–130 Mpower–131 Mpower–150 Keynote–189 Keynote–407	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621	SE 0.2254 0.1755 0.1912 0.2454 0.2345	(%) 19.4 22.2 21.3 18.3 18.9	IV, random, 95% Cl 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16] 0.55 [0.34, 0.89] 0.57 [0.36, 0.90]	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI)	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621	SE 0.2254 0.1755 0.1912 0.2454 0.2345	(%) 19.4 22.2 21.3 18.3 18.9 100.0	IV, random, 95% Cl 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16] 0.55 [0.34, 0.89] 0.57 [0.36, 0.90] 0.77 [0.55, 1.08]	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² :	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38,	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010)	IV, random, 95% Cl 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16] 0.55 [0.34, 0.89] 0.57 [0.36, 0.90] 0.77 [0.55, 1.08] ; l ² = 70%	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12)	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010);	$\begin{array}{c} \textbf{IV, random, 95\% Cl} \\ 0.70 \; [0.45, 1.09] \\ 1.34 \; [0.95, 1.89] \\ 0.80 \; [0.55, 1.16] \\ 0.55 \; [0.34, 0.89] \\ 0.57 \; [0.36, 0.90] \\ \hline \textbf{0.77 \; [0.55, 1.08]} \\ \textbf{; } \textbf{l}^2 = 70\% \\ 0.0 \end{array}$	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12)	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010);	$\begin{array}{c} \textbf{IV, random, 95\% Cl} \\ 0.70 \; [0.45, 1.09] \\ 1.34 \; [0.95, 1.89] \\ 0.80 \; [0.55, 1.16] \\ 0.55 \; [0.34, 0.89] \\ 0.57 \; [0.36, 0.90] \\ \hline \textbf{0.77 \; [0.55, 1.08]} \\ \textbf{; } \textbf{l}^2 = 70\% \\ 0.0 \end{array}$	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² Test for overall effect	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12)	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010)	IV, random, 95% CI 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16] 0.55 [0.34, 0.89] 0.57 [0.36, 0.90] 0.77 [0.55, 1.08] ; $I^2 = 70\%$	IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² Test for overall effect	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12)	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010);	IV, random, 95% CI 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16] 0.55 [0.34, 0.89] 0.57 [0.36, 0.90] 0.77 [0.55, 1.08] ; $ ^2 = 70\%$ Hazard ratio	IV, random, 95% Cl IV, ra
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² Test for overall effect (H) Study or subgroup	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio]	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010): Weight (%)	IV, random, 95% Cl $0.70 [0.45, 1.09]$ $1.34 [0.95, 1.89]$ $0.80 [0.55, 1.16]$ $0.55 [0.34, 0.89]$ $0.57 [0.36, 0.90]$ 0.77 [0.55, 1.08] $ ^2 = 70\%$ Uther the state of the	IV, random, 95% CI
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau ² Test for overall effect (H) Study or subgroup IMpower–130	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p SE 0.257	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010): Weight (%) 20.7	IV, random, 95% Cl $0.70 [0.45, 1.09]$ $1.34 [0.95, 1.89]$ $0.80 [0.55, 1.16]$ $0.55 [0.34, 0.89]$ $0.57 [0.36, 0.90]$ 0.77 [0.55, 1.08] $ ^2 = 70\%$ U Hazard ratio IV, random, 95% Cl $0.84 [0.51, 1.39]$	IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Hazard ratio IV, random, 95% Cl IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau ² Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p SE 0.257 0.2855	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010): Weight (%) 20.7 17.0	IV, random, 95% Cl $0.70 [0.45, 1.09]$ $1.34 [0.95, 1.89]$ $0.80 [0.55, 1.16]$ $0.55 [0.34, 0.89]$ $0.57 [0.36, 0.90]$ 0.77 [0.55, 1.08] ; I ² = 70% 0.6 IV, random, 95% Cl 0.84 [0.51, 1.39] 0.56 [0.32, 0.98]	IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–150	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p SE 0.257 0.2855 0.2486	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010) Weight (%) 20.7 17.0 22.0	IV, random, 95% Cl $0.70 [0.45, 1.09]$ $1.34 [0.95, 1.89]$ $0.80 [0.55, 1.16]$ $0.55 [0.34, 0.89]$ $0.57 [0.36, 0.90]$ 0.77 [0.55, 1.08] ; I ² = 70% 0.6 IV, random, 95% Cl 0.84 [0.51, 1.39] 0.56 [0.32, 0.98] 0.70 [0.43, 1.14]	IV, random, 95% CI
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p 0.2457 0.2855 0.2486 0.2447	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010): Weight (%) 20.7 17.0 22.0 22.6	IV, random, 95% Cl $0.70 [0.45, 1.09]$ $1.34 [0.95, 1.89]$ $0.80 [0.55, 1.16]$ $0.55 [0.34, 0.89]$ $0.57 [0.36, 0.90]$ 0.77 [0.55, 1.08] ; I ² = 70% 0.6 IV, random, 95% Cl 0.84 [0.51, 1.39] 0.56 [0.32, 0.98] 0.70 [0.43, 1.14] 0.42 [0.26. 0.68]	IV, random, 95% CI
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–189 Keynote–407	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675 -0.4463	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p SE 0.257 0.2855 0.2486 0.2447 0.2796	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010): Weight (%) 20.7 17.0 22.0 22.6 17.7	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	IV, random, 95% CI
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Tetal (95% CI)	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, : Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675 -0.4463	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p 0.257 0.2855 0.2486 0.2447 0.2796	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010) Weight (%) 20.7 17.0 22.0 22.6 17.7 100.0 22.6 17.7	IV, random, 95% CI 0.70 [0.45, 1.09] 1.34 [0.95, 1.89] 0.80 [0.55, 1.16] 0.55 [0.34, 0.89] 0.57 [0.36, 0.90] 0.77 [0.55, 1.08] ; $ ^2 = 70\%$ Hazard ratio IV, random, 95% CI 0.84 [0.51, 1.39] 0.56 [0.32, 0.98] 0.70 [0.43, 1.14] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11]	IV, random, 95% CI
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–130 Keynote–189 Keynote–407 Total (95% CI)	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675 -0.4463	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p 0.257 0.2855 0.2486 0.2447 0.2796	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010) Weight (%) 20.7 17.0 22.0 22.6 17.7 100.0		IV, random, 95% CI
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–131 IMpower–150 Keynote–189 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² :	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675 -0.4463 = 0.01; Chi ² = 4.30, d	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p 0.257 0.2855 0.2486 0.2447 0.2796	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010): Weight (%) 20.7 17.0 22.0 22.6 17.7 100.0 = 0.37); ²		IV, random, 95% CI
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675 -0.4463 = 0.01; Chi ² = 4.30, d :: Z = 4.03 (p < 0.000	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p 0.2855 0.2486 0.2447 0.2796 ff = 4 (p = 1)	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010); Weight (%) 20.7 17.0 22.0 22.6 17.7 100.0 = 0.37); ²	$\begin{array}{c} \textbf{IV, random, 95\% Cl} \\ 0.70 [0.45, 1.09] \\ 1.34 [0.95, 1.89] \\ 0.80 [0.55, 1.16] \\ 0.55 [0.34, 0.89] \\ 0.57 [0.36, 0.90] \\ \textbf{0.77 [0.55, 1.08]} \\ \textbf{; l}^2 = 70\% \\ \textbf{0.6} \\ \hline \textbf{IV, random, 95\% Cl} \\ 0.84 [0.51, 1.39] \\ 0.56 [0.32, 0.98] \\ 0.70 [0.43, 1.14] \\ 0.42 [0.26, 0.68] \\ 0.64 [0.37, 1.11] \\ \textbf{0.61 [0.48, 0.78]} \\ = 7\% \\ 0.6 \end{array}$	IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Hazard ratio IV, random, 95% Cl
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675 -0.4463 = 0.01; Chi ² = 4.30, d :: Z = 4.03 (p < 0.000	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p 0.2855 0.2485 0.2487 0.2796 ff = 4 (p = 1)	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010); Weight (%) 20.7 17.0 22.0 22.6 17.7 100.0 = 0.37); ²		IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl IV, random, 95% Cl Favors [experimental] Favors [control]
Study or subgroup IMpower–130 IMpower–131 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect (H) Study or subgroup IMpower–130 IMpower–131 IMpower–130 IMpower–150 Keynote–189 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² : Test for overall effect	Log [hazard ratio] -0.3567 -0.2927 -0.2231 -0.5978 -0.5621 = 0.10; Chi ² = 13.38, :: Z = 1.54 (p = 0.12) Log [hazard ratio] -0.1744 -0.5798 -0.3567 -0.8675 -0.4463 = 0.01; Chi ² = 4.30, d :: Z = 4.03 (p < 0.000	SE 0.2254 0.1755 0.1912 0.2454 0.2345 df = 4 (p 0.257 0.2855 0.2486 0.2447 0.2796 if = 4 (p = 1)	(%) 19.4 22.2 21.3 18.3 18.9 100.0 = 0.010); Weight (%) 20.7 17.0 22.0 22.6 17.7 100.0 = 0.37); I ²		IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl IV, random, 95% Cl Favors [experimental] Favors [control] Favors [experimental] Favors [control]

Figure 3. Overall survival analysis in participants treated with first-line chemoimmunotherapy versus chemotherapy alone (cont.). (A) Pooled HR for OS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(B)** Pooled HR for OS in patients with advanced squamous NSCLC treated with first-line chemoimmunotherapy. **(C)** Pooled HR for OS in patients with advanced nonsquamous NSCLC treated with first-line chemoimmunotherapy. **(D)** Pooled HR for OS in patients with advanced NSCLC treated with PD-1 inhibitor (pembrolizumab) in combination with chemotherapy in the first-line setting. **(E)** Pooled HR for OS in patients with advanced NSCLC treated with PD-L1 inhibitor (atezolizumab) in combination with chemotherapy in the first-line setting. **(F)** Pooled HR for OS in PD-L1 negative patients with advanced NSCLC in the first-line setting. **(G)** Pooled HR for OS in PD-L1 low patients with advanced NSCLC in the first-line setting. **(H)** Pooled HR for OS in PD-L1 high patients with advanced NSCLC in the first-line setting. HR: Hazard ratio; NSCLC: Non-small-cell lung cancer; OS: Overall survival; PD-1: Programmed death receptor 1; PD-L1: Programmed death ligand 1.

		Weight	Hazard ratio	Hazard ratio
Study or subgroup	Log [hazard ratio] SE	(%)	IV, random, 95% CI	IV, random, 95% Cl
CheckMate-227	-0.3011 0.1243	10.2	0.74 [0.58, 0.94]	-
IMpower-130	-0.4463 0.0867	16.7	0.64 [0.54, 0.76]	
INpower-131	-0.3355 0.0869	16.7	0.71 [0.60, 0.85]	*
INpower 150	-0.5175 0.0999	13.9	0.60 [0.49, 0.72]	Ī
livipower-150	-0.478 0.0897	10.0	0.62 [0.52, 0.74]	
Keynole-189	-0.6539 0.097	14.5	0.52 [0.43, 0.63]	T T
Reynole-407	-0.5796 0.1116	12.0	0.56 [0.45, 0.70]	*
Total (95% CI)		100.0	0 62 [0 57 0 68]	4
Heterogeneity: Tau ²	-0.00 Chi ² -9.11 df -6 (n	- 0 17)· l ²	- 34%	· · · · · · · · · · · · · · · · · · ·
Test for overall effect	z = 0.00, 0 m = 0.11, 0 = 0 (p	- 0.17), 1	0.0	002 0.1 1 10 50
				Favors [experimental] Favors [control]
B				
		Weight	Hazard ratio	Hazard ratio
Study or subgroup	Log [hazard ratio] SE	(%)	IV, random, 95% CI	IV, random, 95% Cl
IMpower-131	-0.3355 0.0869	54.1	0.71 [0.60, 0.85]	
Keynote-407	-0.5798 0.1116	45.9	0.56 [0.45, 0.70]	-
Total (95% CI)		100.0	0.64 [0.50, 0.81]	•
Heterogeneity: Tau ²	= 0.02; Chi ² = 2.98, df = 1 (p =	= 0.08); l ²	= 66%	
Test for overall effect	:: Z = 3.68 (p = 0.0002)		0.	002 0.1 1 10 50
				Favors [experimental] Favors [control]
C				
0	Less theread and an tipl	Weight	Hazard ratio	Hazard ratio
Study or subgroup	Log [nazard ratio] SE	(%)	IV, random, 95% Cl	IV, random, 95% Cl
IMpower-130	-0.4463 0.0867	28.7	0.64 [0.54, 0.76]	•
IMpower–132	-0.5175 0.0999	21.6	0.60 [0.49, 0.72]	•
IMpower-150	-0.478 0.0897	26.8	0.62 [0.52, 0.74]	
Keynote–189	-0.6539 0.097	22.9	0.52 [0.43, 0.63]	*
		100.0	0 60 [0 64 0 66]	
Hotorogonoity: Tau ²	-0.00 Chi ² -2.85 df -3.0	- 0 42): 12	0.00 [0.34, 0.03]	· · · · · · · · · · · · · · · · · · ·
Test for overall effect	= 0.00, 011 = 2.00, 01 = 3 (p)	- 0.42), 1	- 0 /8	002 0.1 1 10 50
	1.2 = 11.10 (p < 0.00001)			Favors [experimental] Favors [control]
				and the stand stand stands
D				
.		Weight	Hazard ratio	Hazard ratio
Study or subgroup	Log [hazard ratio] SE	(%)	IV, random, 95% CI	IV, random, 95% Cl
CheckMate-227	-0.3011 0.1243	30.3	0.74 [0.58, 0.94]	_*
Keynote–189	-0.6539 0.097	36.6	0.52 [0.43, 0.63]	•
Keynote–407	-0.5798 0.1116	33.1	0.56 [0.45, 0.70]	•
T (050/ ON		400.0	0 50 50 40 0 501	
Iotal (95% CI)		100.0	0.59 [0.48, 0.73]	•
Test for overall offeet	$= 0.02$; $Chi^2 = 5.20$, $di = 2$ (p = t = 7 - 5.08 (p < 0.00001)	= 0.07); 1-	- = 62%	
rest for overall effect	L = 5.08 (p < 0.00001)		0.	Favors [experimental] Favors [control]
E		Woight	Hazard ratio	Hazard ratio
Study or subgroup	Log [bazard ratio] SE	(%)	IV random 95% Cl	IV random 95% Cl
IMpower_120		272	0.64 [0.54, 0.76]	
IMpower_130	-0.4403 0.0867	27.2	0.04 [0.04, 0.76]	
IMpower-131	-0.5355 0.0009	20.5	0.60 [0.49 0.72]	-
IMpower-152	-0.3173 0.0999	20.5	0.00 [0.49, 0.72]	
Impower-150	-0.476 0.0897	20.4	0.02 [0.32, 0.74]	-
Total (95% CI)		100.0	0 64 [0 59 0 70]	•
Heterogeneity: Tau ²	= 0.00; Chi ² = 2.23 df = 3 (n =	= 0.53): 12	= 0%	· · · · · · · · · · · · · · · · · · ·
Test for overall effect	Z = 9.72 (p < 0.00001)	0.00), 1	0.	002 0.1 1 10 50
				Favors [experimental] Favors [control]

Figure 4. Progression-free survival analysis in participants treated with first-line chemoimmunotherapy versus standard chemotherapy regimen. (A) Pooled HR for PFS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(B)** Pooled HR for PFS in patients with advanced squamous NSCLC treated with first-line chemoimmunotherapy. **(C)** Pooled HR for PFS in patients with advanced nonsquamous NSCLC treated with first-line chemoimmunotherapy. **(D)** Pooled HR for PFS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(D)** Pooled HR for PFS in patients with advanced NSCLC treated with PD-1 inhibitor (nivolumab or pembrolizumab) in combination with chemotherapy in the first-line setting. **(E)** Pooled HR for PFS in patients with advanced NSCLC treated with PD-11 inhibitor (atezolizumab) in combination with chemotherapy in the first-line setting. **(F)** Pooled HR for PFS in PD-L1 negative patients with advanced NSCLC in the first-line setting. **(G)** Pooled HR for PFS in PD-L1 low patients with advanced NSCLC in the first-line setting. **(H)** Pooled HR for PFS in PD-L1 high patients with advanced NSCLC in the first-line setting. **(I)** Pooled HR for PFS in patients with *EGFR* and *ALK* mutated advanced NSCLC treated with atezolizumab.

HR: Hazard ratio; NSCLC: Non-small-cell lung cancer; OS: Overall survival; PD-1: Programmed death receptor 1; PD-L1: Programmed death ligand 1; PFS: Progression-free survival.

Weight Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [nazard ratio] 0.5% (S) (V, random, 95% C) (V, random, 95% C) Mpower-131 -0.2107 0.1243 18.2 0.74 (0.58, 0.94) - Mpower-131 -0.2107 0.1202 18.9 0.81 (0.44, 1.03) - Mpower-132 -0.7985 0.1797 11.3 0.45 (0.32, 0.64) - Mpower-150 -0.2614 0.1188 19.1 0.77 (0.61, 0.97) - Heterogeneity: Tau" = 0.01; Chi" = 9.29, d = 6 (p = 0.16); i" = 35% 0.01 - - Test (for overall effect; Z = 5.23 (p < 0.00001) 100.0 0.69 (0.60, 0.79) - Febrogeneity: Tau" = 0.01; Chi" = 9.29, d = 6 (p = 0.16); i" = 35% - - - Mpower-131 -0.3670 0.419 172 0.61 (0.43, 0.87) - Test for overall effect; Z = 5.23 (p < 0.00001) SE (%) V, random, 95% C1 - Mpower-131 -0.3670 0.419 721 0.50 (0.40, 0.87) - -	F							
Study or subgroup Log [hzard ratio] SE (%) (Y, random, 95% CI (V, random, 95% CI Mpower-130 -0.3285 0.1282 17.5 0.72 (0.56, 0.93)				Weight	Hazard ratio	Hazard ratio		
CheckMate-227 - 0.3011 0.1243 18.2 0.74 (0.58, 0.94] Mpower-130 -0.2826 0.728 0.58 0.72 (0.56, 0.93) Mpower-131 -0.2170 0.1202 18.9 0.81 (0.64, 1.03) Mpower-132 -0.7986 0.1797 11.3 0.45 (0.32, 0.64] Mpower-150 -0.2614 0.1188 19.1 0.77 (0.61, 0.97] Heterogeneity: Tau ² 0.01 Ch ² = 3.29, df = 6 (p = 0.16); l ² = 35% Test for overall effect: Z = 5.23 (p < 0.00001) G Study or subgroup Log [hazard ratio] Mpower-130 -0.4657 0.1419 27.1 0.61 (0.38, 0.98] Mpower-131 -0.3657 0.1419 27.1 0.61 (0.58, 0.47] Mpower-132 -0.2231 0.1419 27.1 0.61 (0.48, 0.87] Mpower-132 -0.2231 0.1419 27.1 0.61 (0.48, 0.87] Mpower-132 -0.2378 0.1591 21.6 0.669 (0.56, 0.79] Mpower-132 -0.2378 0.1591 21.6 0.669 (0.55, 0.74] Mpower-132 -0.00; Ch ² = 3.18, df = 5 (p = 0.67); l ² = 0% Total (95% Cl) - 0.5621 0.2345 9.9 0.57 (0.36, 0.89] Total (95% Cl) - 0.5621 0.2345 9.9 0.57 (0.36, 0.89] Total (95% Cl) - 0.5621 0.2345 9.9 0.57 (0.36, 0.89] Total (95% Cl) - 0.5621 0.2345 9.9 0.57 (0.36, 0.89] Total (95% Cl) - 0.5621 0.2345 9.9 0.57 (0.36, 0.89] Total (95% Cl) - 0.5621 0.2345 9.9 0.57 (0.36, 0.89] Mpower-130 -0.6733 0.2069 24.5 0.51 (0.34, 0.77] Mpower-130 -0.6738 0.269 24.5 0.51 (0.34, 0.77] Mpower-130 -0.6781 0.2457 9.785 Cl IV, random, 95% Cl IV, random	Study or subgroup	Log [hazard ratio]	SE	(%)	IV, random, 95% CI	IV, random, 95% Cl		
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	CheckMate-227	-0.3011 (0.1243	18.2	0.74 [0.58, 0.94]	+		
$ \begin{array}{ l l l l l l l l l l l l l l l l l l $	IMpower–130	-0.3285 (0.1282	17.5	0.72 [0.56, 0.93]	-		
$ \begin{array}{ l l l l l l l l l l l l l l l l l l $	IMpower–131	-0.2107 (0.1202	18.9	0.81 [0.64, 1.03]			
$ \begin{array}{ c c c c c c c c c c c c c$	IMpower–132	-0.7985 (0.1797	11.3	0.45 [0.32, 0.64]			
Keynote-189 -0.5276 0.2245 8.0 0.59 0.38 0.494 Total (95% Cl) 100.0 0.66 0.60 0.79 100.0 0.67 0.61 0.38 0.92 Total (95% Cl) Log [hazard ratio] SE Weight Hazard ratio Hazard ratio Hazard ratio Mpower-131 -0.3567 0.1419 27.1 0.07 0.57 0.57 0.57 0.57 0.57 0.57 0.11 100 100 Mpower-132 -0.2578 0.159 121.6 0.66 [0.41, 0.76] Hazard ratio Hazard ratio Hazard ratio Mpower-150 -0.5798 0.1591 121.6 0.56 [0.34, 0.87] Hazard ratio Favors [experimental] Favors [control] Total (95% Cl) 100.0 0.64 [0.55, 0.74] Hazard ratio Hazard ratio Favors [control] Favors [control] (H) Total (95% Cl) 100.0 0.64 [0.55, 0.74] Hazard ratio Favors [control] Favors [control] (H) East or overall effect: Z = 6.10 (p < 0.00001) Es (%) Hazard ratio Hazard ratio <th< td=""><td>IMpower–150</td><td>-0.2614 (</td><td>0.1188</td><td>19.1</td><td>0.77 [0.61, 0.97]</td><td>-</td></th<>	IMpower–150	-0.2614 (0.1188	19.1	0.77 [0.61, 0.97]	-		
Keynote-407 -0.4943 0.2415 7.1 0.61 0.38, 0.98 Total (95% Cl) 100.0 0.69 0.60 0.79 Heterogeneity: Tau ² = 0.01; Chi ² = 9.29, df = 6 (p = 0.16); l ² = 35% 0.01 0.1 10 100 Go Weight Hazard ratio Keynote-100 0.61 (0.43, 0.87) 100 Favors [control] Go Weight Hazard ratio Keynote-130 -0.4943 0.1784 172 0.61 (0.43, 0.87) Impower-130 -0.4943 0.1784 172 0.61 (0.43, 0.87) Hazard ratio Hazard ratio Hazard ratio Favors [control] Mpower-131 -0.3657 0.1419 22.080 (0.55, 0.74]	Keynote–189	-0.5276 (0.2245	8.0	0.59 [0.38, 0.92]	_ 		
Total (95% CI) 100.0 0.69 (0.60, 0.79] Heterogeneity: Tau" = 0.01; Chi" = 9.29, df = 6 (p = 0.16); I" = 35% Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Total (95% CI) Colspan="2" Total (95% CI) Colspan="2" Meterogeneity: Tau" = 0.01; Chi" = 2.33 (b = 0.00001) Weight Hazard ratio Weight Hazard ratio Total (95% CI) Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Total (95% CI) Hazard ratio Hazard ratio Meterogeneity: Tau" = 0.00; Chi" = 3.18, df = 5 (p = 0.67); F = 0% Colspan="2" Colspan="2" Total (95% CI) Total (95% CI) Hazard ratio Hazard ratio Study or subgroup Log (hazard ratio) <th <="" colspan="2" td=""><td>Keynote-407</td><td>-0.4943 (</td><td>0.2415</td><td>7.1</td><td>0.61 [0.38, 0.98]</td><td></td></th>	<td>Keynote-407</td> <td>-0.4943 (</td> <td>0.2415</td> <td>7.1</td> <td>0.61 [0.38, 0.98]</td> <td></td>		Keynote-407	-0.4943 (0.2415	7.1	0.61 [0.38, 0.98]	
1000 (0.5) (1.2)				100.0	0 60 [0 60 0 70]	▲		
$ \begin{array}{c} \mbox{Test for overall effect: $Z = 5.23 (p < 0.00001) \\ \hline \mbox{Favors [experimental]} \\ Favors [experimental$	Hotorogonoity: Tou ² -	-0.01 Chi ² -0.20 df	- 6 (n -	100.0	0.09 [0.00, 0.79]	•		
Favors [experimental] Favors [experimental] Favors [experimental] Mover-130 -0.4943 0.1784 17.2 0.61 (0.43, 0.87) Mover-130 -0.5578 0.1591 2.0.2345 9.1 0.55 (0.34, 0.89) Mover-130 -0.6733 0.2649 9.0 0.57 (0.36, 0.89) Mover-130 -0.6733 0.2669 24.5 0.64 [0.52, 0.74] Meletrogeneity: Tau ² = 0.00; Chi ² = 3.18, df = 5 (p = 0.67); l ² = 0% 0.01 0.1 100.0 0.46 [0.22, 0.72] Mover-130 -0.6733 0.2669 24.5 0.51 [0.34, 0.77] Favors [experimental] <th <="" colspan="2" td=""><td>Test for overall effect</td><td>= 0.01, 0.01 = 9.29, 0.0000</td><td>= 0 (p =)1)</td><td>= 0.10), 1</td><td>= 35%</td><td></td></th>	<td>Test for overall effect</td> <td>= 0.01, 0.01 = 9.29, 0.0000</td> <td>= 0 (p =)1)</td> <td>= 0.10), 1</td> <td>= 35%</td> <td></td>		Test for overall effect	= 0.01, 0.01 = 9.29, 0.0000	= 0 (p =)1)	= 0.10), 1	= 35%	
$ \begin{array}{ c c c c } \hline \textbf{(b)} & ($. z = 3.23 (p < 0.0000	,,,			Favors [experimental] Favors [control]		
Weight Hazard ratio Hazard ratio Hazard ratio Study or subgroup Log [hazard ratio] SE (%) V, random, 95% CI IV, random, 95% CI IMpower-130 -0.4943 0.1784 172 0.61 [0.43, 0.87]	G							
Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI IMpower-130 -0.4943 0.1784 17.2 0.61 [0.43, 0.67] - IMpower-131 -0.3567 0.1419 27.1 0.70 [0.53, 0.92] - IMpower-132 -0.2231 0.1996 15.2 0.80 [0.55, 1.16] - IMpower-130 -0.5578 0.2454 9.1 0.55 [0.34, 0.89] - Hetrogeneity: Tau ² = 0.00; Chi ² = 3.18, df = 5 (p = 0.67); l ² = 0% 100.0 0.64 [0.55, 0.74] - Hetrogeneity: Tau ² = 0.00; Chi ² = 3.18, df = 5 (p = 0.67); l ² = 0% 0.01 0.1 1 100 Favors [experimental] Favors [control] Favors [control] Favors [control] - IMpower-130 -0.6733 0.2069 24.5 0.51 [0.34, 0.77] - - IMpower-131 -0.8675 0.2477 7.4 0.46 [0.22, 0.68] - - IMpower-132 -0.765 0.363 0.2469 2.04 (0.27, 0.72] - - - <th></th> <th></th> <th></th> <th>Weight</th> <th>Hazard ratio</th> <th>Hazard ratio</th>				Weight	Hazard ratio	Hazard ratio		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Study or subgroup	Log [hazard ratio]	SE	(%)	IV, random, 95% CI	IV, random, 95% CI		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IMpower-130	-0.4943	0.1784	17.2	0.61 [0.43, 0.87]			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IMpower-131	-0.3567	0.1419	27.1	0.70 [0.53, 0.92]	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IMpower–132	-0.2231	0.1896	15.2	0.80 [0.55, 1.16]			
Keynote-189 -0.5978 0.2454 9.1 0.55 [0.34, 0.89] Keynote-407 -0.5621 0.2345 9.9 0.57 [0.36, 0.89] Total (95% Cl) 100.0 0.64 [0.55, 0.74] Heterogeneity: Tau ² = 0.00; Chi ² = 3.18, df = 5 (p = 0.67); l ² = 0% 0.01 0.1 10 100 Test for overall effect: Z = 6.10 (p < 0.00001)	IMpower–150	-0.5798	0.1591	21.6	0.56 [0.41, 0.76]	+		
Keynote-407 -0.5621 0.2345 9.9 0.57 $[0.36, 0.89]$ Total (95% CI) 100.0 0.64 [0.55, 0.74] 0.01 0.1 100 100 Test for overall effect: Z = 6.10 (p < 0.00001) SE Weight Hazard ratio (%) Hazard ratio IV, random, 95% CI Hazard ratio Hazard ratio Hazard ratio Favors [experimental] Hazard ratio Hazard ratio Mpower-130 -0.6733 0.2069 24.5 0.51 0.34 0.22 , 0.96 Mpower-131 -0.821 0.2492 16.9 0.44 0.22 , 0.96 0.44 0.22 , 0.96 Mpower-132 -0.7765 0.3763 7.4 0.46 0.22 , 0.96 -0.6875 0.2447 17.5 0.42 0.20 , 0.68 Mpower-130 -0.8675 0.2447 17.5 0.42 0.20 , 0.68 -0.6875 0.44 0.39 0.25 0.01 0.1 100 0.46 0.2796 0.376 0.39 0.57 0.36 0.57 0.376 0.39 0.57 0.376 0.376 0.46 0.276 0.38	Keynote–189	-0.5978	0.2454	9.1	0.55 [0.34, 0.89]			
Total (95% CI) 100.0 0.64 [0.55, 0.74] Heterogeneity: Tau ² = 0.00; Chi ² = 3.18, df = 5 (p = 0.67); P = 0% 0.01 0.1 1 100 Favors [control] Impower-130 -0.6733 0.2069 24.5 0.51 [0.34, 0.77] Hazard ratio Impower-130 -0.821 0.2492 16.9 0.44 [0.27, 0.72] Impower-131 -0.821 0.2492 16.9 0.44 [0.27, 0.72] Impower-132 -0.7765 0.3763 7.4 0.46 [0.22, 0.96] Impower-132 -0.7765 0.3763 7.4 0.46 [0.22, 0.96] Impower-132 -0.8675 0.2447 17.5 0.42 [0.26, 0.68] Impower-132 -0.7765 0.3763 7.4 0.46 [0.22, 0.96] Impower-132 Impower-130 Impowerenoticle (tonoticle (to noticle (tonoticle (to noticle	Keynote-407	-0.5621	0.2345	9.9	0.57 [0.36, 0.89]			
Total (95% Cl) 100.0 0.64 [0.55, 0.74] Heterogeneity: Tau ² = 0.00; Chi ² = 3.18, df = 5 (p = 0.67); l ² = 0% 0.01 0.1 1 100 Favors [experimental] Favors [control] Weight Hazard ratio Machine in the interval of the								
Heterogeneity: Tau ² = 0.00; Chi ² = 3.18, df = 5 (p = 0.67); l ² = 0% Test for overall effect: Z = 6.10 (p < 0.00001) (e) Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% Cl IV, random, 95% Cl IMpower-130 -0.6733 0.2069 24.5 0.51 [0.34, 0.77] Mpower-131 -0.821 0.2492 16.9 0.44 [0.27, 0.72] IMpower-132 -0.7765 0.3763 7.4 0.46 [0.22, 0.96] IMpower-150 -0.9416 0.2269 20.4 0.39 [0.25, 0.61] Keynote-407 -0.4463 0.2796 13.4 0.64 [0.37, 1.11] Total (95% Cl) 100.0 0.47 [0.38, 0.57] Heterogeneity: Tau ² = 0.00; Chi ² = 2.33, df = 5 (p = 0.80); l ² = 0% Test for overall effect: Z = 7.46 (p < 0.00001) (I) Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% Cl IV, random, 95% Cl Impower-130 -0.2877 0.3745 28.8 0.75 [0.36, 1.56] Impower-150 -0.5276 0.2381 71.2 0.59 [0.37, 0.94] (I) Total (95% Cl) Hazard ratio] SE (%) IV, random, 95% Cl IV, random, 95% Cl Impower-150 -0.5276 0.2381 71.2 0.59 [0.37, 0.94] (I) Total (95% Cl) 100.0 0.63 [0.43, 0.94] Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 100 100 Favors [experimental] Favors [control]	Total (95% CI)			100.0	0.64 [0.55, 0.74]	•		
Test for overall effect: $Z = 6.10 (p < 0.00001)$ Interview of the set o	Heterogeneity: Tau ² =	= 0.00; Chi ² = 3.18, df	= 5 (p =	: 0.67); l ²	= 0%			
$\begin{array}{ c c c c c c c c } \hline Pavors [experimental] & Pavor$	T + f		-					
Study or subgroup Log [hazard ratio] SE Weight Hazard ratio Hazard ratio Hazard ratio IMpower-130 -0.6733 0.2069 24.5 0.51 [0.34, 0.77] IV, random, 95% CI IV, random, 95% CI IMpower-131 -0.821 0.2492 16.9 0.44 [0.27, 0.72] IV IV <t< td=""><td>lest for overall effect:</td><td>: Z = 6.10 (p < 0.0000</td><td>)1)</td><td></td><td>0.</td><td>01 0.1 1 10 10</td></t<>	lest for overall effect:	: Z = 6.10 (p < 0.0000)1)		0.	01 0.1 1 10 10		
Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% CI IV, random, 95% CI IMpower-130 -0.6733 0.2069 24.5 0.51 [0.34, 0.77] IV, random, 95% CI IMpower-131 -0.821 0.2492 16.9 0.44 [0.27, 0.72] IV IMpower-132 -0.7765 0.3763 7.4 0.46 [0.22, 0.96] IV IMpower-150 -0.9416 0.2269 20.4 0.39 [0.25, 0.61] IV Keynote-189 -0.8675 0.2447 17.5 0.42 [0.26, 0.68] IV Keynote-407 -0.4463 0.2796 13.4 0.64 [0.37, 1.11] IV Test for overall effect: Z = 7.46 (p < 0.00001) IV random, 95% CI IV Favors [experimental] Favors [control] IMpower-130 -0.2877 0.3745 28.8 0.75 [0.36, 1.56] IV, random, 95% CI IV, random, 95% CI IMpower-150 -0.5276 0.281 71.2 0.59 [0.37, 0.94] IV, random, 95% CI IV, random, 95% CI IMpower-150 -0.5276 0.281 71.2		: Z = 6.10 (p < 0.0000)1)		0.	01 0.1 1 10 10 Favors [experimental] Favors [control]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H	: Z = 6.10 (p < 0.0000)1)	14/-1-1-4	0.	01 0.1 1 10 10 Favors [experimental] Favors [control]		
$\begin{array}{ l l l l l l l l l l l l l l l l l l $	H Study or subgroup	: Z = 6.10 (p < 0.0000)1) SE	Weight	0. Hazard ratio	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Study or subgroup	: Z = 6.10 (p < 0.0000 Log [hazard ratio])1) SE	Weight (%)	0. Hazard ratio IV, random, 95% CI	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI		
$\begin{array}{ l l l l l l l l l l l l l l l l l l $	Study or subgroup	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733	01) SE 0.2069	Weight (%) 24.5	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl		
Window et = 130 -0.3416 0.2269 20.4 0.35 (0.23, 0.81) Keynote=189 -0.8675 0.2447 17.5 0.42 [0.26, 0.68] Keynote=407 -0.4463 0.2796 13.4 0.64 [0.37, 1.1] Total (95% Cl) 100.0 0.47 [0.38, 0.57] Heterogeneity: Tau ² = 0.00; Chi ² = 2.33, df = 5 (p = 0.80); l ² = 0% 0.01 0.1 1 10 100 Study or subgroup Log [hazard ratio] SE Weight (%) Hazard ratio (%) Hazard ratio (%) Hazard ratio Hazard ratio IMpower-130 -0.2877 0.3745 28.8 0.75 [0.36, 1.56] IV, random, 95% Cl IV, random, 95% Cl IMpower-150 -0.5276 0.2381 71.2 0.59 [0.37, 0.94] IV Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Favors [experimental] Favors [control] Favors [control] Favors [control]	Study or subgroup Mpower-130 Mpower-131 Macourt 120	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (0.735 (01) SE 0.2069 0.2492 0.2752	Weight (%) 24.5 16.9	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl		
Keynote-103 -0.3073 0.2447 17.3 0.42 [0.20, 0.06] Keynote-407 -0.4463 0.2796 13.4 0.64 [0.37, 1.11] Total (95% Cl) 100.0 0.47 [0.38, 0.57] \bullet Heterogeneity: Tau ² = 0.00; Chi ² = 2.33, df = 5 (p = 0.80); l ² = 0% 0.01 0.1 1 100 100 Study or subgroup Log [hazard ratio] SE Weight (%) IV, random, 95% Cl IV, random, 95% Cl IV, random, 95% Cl IMpower-130 -0.2877 0.3745 28.8 0.75 [0.36, 1.56] IV, random, 95% Cl IV, random, 95% Cl IMpower-150 -0.5276 0.2381 71.2 0.59 [0.37, 0.94] Image: Free orgeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Total (95% Cl) 100.0 0.63 [0.43, 0.94] Image: Free orgeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Favors [control] Total (95% Cl) 100.0 0.63 [0.43, 0.94] Image: Free orgeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% Favors [experimental] Favors [control]	Study or subgroup Mpower-130 Mpower-131 Mpower-132 Mpower-150	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 -0.821 -0.7765 0.0416	51) 52069 0.2492 0.3763 0.2269	Weight (%) 24.5 16.9 7.4	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.29 [0.25 0.61]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl		
Total (95% Cl) 100.0 0.47 [0.38, 0.57] Heterogeneity: Tau ² = 0.00; Chi ² = 2.33, df = 5 (p = 0.80); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 7.46 (p < 0.00001)	Study or subgroup Mpower–130 Mpower–131 Mpower–132 Mpower–150 Kownoto 190	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 -0.821 -0.7765 -0.9416 0.9675	51) 52069 0.2492 0.3763 0.2269 0.2447	Weight (%) 24.5 16.9 7.4 20.4 175	0. IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.49 [0.26, 0.69]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl		
Total (95% Cl) 100.0 0.47 [0.38, 0.57] Heterogeneity: Tau ² = 0.00; Chi ² = 2.33, df = 5 (p = 0.80); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 7.46 (p < 0.00001) Veight Hazard ratio Favors [experimental] Favors [control] Image: the state of the sta	Study or subgroup Mpower–130 Mpower–131 Mpower–132 Mpower–150 Keynote–189 Keynote–407	Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 -0.821 -0.7765 -0.9416 -0.8675 -0.4463	01) SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37 111]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl		
Notice (colspan="2">Notice (colspan="2") Notice (colspan="2")	Study or subgroup Mpower–130 Mpower–131 Mpower–132 Mpower–150 Keynote–189 Keynote–407	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 -0.821 -0.7765 -0.9416 -0.8675 -0.4463	01) SE 0.2069 0.2492 0.3763 0.2269 0.22447 0.2796	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl		
Notice generally fraction over all effect: Z = 7.46 (p < 0.00001) Output of the second of the secon	Study or subgroup Mpower–130 Mpower–131 Mpower–132 Mpower–132 Mpower–150 Keynote–189 Keynote–407 Total (95% CI)	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 -0.821 -0.7765 -0.9416 -0.8675 -0.4463	11) 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI		
$ \begin{array}{c c c c c c c } \hline Favors [experimental] & Favors [control] \\ \hline \hline \\ \hline $	Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–130 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau² =	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (-0.7765 (-0.9416 (-0.8675 (-0.4463 (= 0.00; Chi ² = 2.33 df	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 5 0.80): 1 ²	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0%	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fest for overall effect: H Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–130 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau² = Test for overall effect	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (-0.7765 (-0.9416 (-0.8675 (-0.4463 (= 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p =	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 • 0.80); 1 ²	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0%	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI		
Study or subgroup Log [hazard ratio] SE Weight (%) Hazard ratio IV, random, 95% CI Hazard ratio IMpower-130 -0.2877 0.3745 28.8 0.75 [0.36, 1.56] IV, random, 95% CI IMpower-150 -0.5276 0.2381 71.2 0.59 [0.37, 0.94] IV Total (95% CI) 100.0 0.63 [0.43, 0.94] IV IV Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 2.28 (p = 0.02) V V 0.59 [0.37, 0.94] Favors [experimental] Favors [control]	Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–150 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (-0.7765 (-0.9416 (-0.8675 (-0.4463 (= 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000)	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 01)	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 c 0.80); 1 ²	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0.	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI 		
Study or subgroup Log [hazard ratio] SE (%) IV, random, 95% Cl IV, random, 95% Cl IMpower-130 -0.2877 0.3745 28.8 0.75 [0.36, 1.56] IV IMpower-150 -0.5276 0.2381 71.2 0.59 [0.37, 0.94] IV Total (95% Cl) 100.0 0.63 [0.43, 0.94] IV IV Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 2.28 (p = 0.02) Favors [experimental] Favors [control] Favors [control]	Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–132 IMpower–130 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau² = Test for overall effect	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 -0.821 -0.7765 -0.9416 -0.8675 -0.4463 = 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 01)	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 c 0.80); 1 ²	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0.	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl 		
IMpower-130 -0.2877 0.3745 28.8 0.75 $[0.36, 1.56]$ IMpower-150 -0.5276 0.2381 71.2 0.59 $[0.37, 0.94]$ Total (95% Cl) 100.0 0.63 $[0.43, 0.94]$ Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 2.28 (p = 0.02) 0.02 0.01 0.1 1 10 100	Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–150 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect I	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 -0.821 -0.7765 -0.9416 -0.8675 -0.4463 = 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 01)	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 c 0.80); 1 ² Weight	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0. Hazard ratio	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl 01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio		
Importer 150 -0.5276 0.2381 71.2 0.59 $(0.37, 0.94]$ Total (95% Cl) 100.0 0.63 $[0.43, 0.94]$ Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 2.28 (p = 0.02) 0.01 0.1 1 10 100	Fest for overall effect: H Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect I Study or subgroup	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (-0.7765 (-0.9416 (-0.8675 (-0.4463 (= 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000) Log [hazard ratio]	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 01)	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 0.80); 1 ² Weight (%)	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0. Hazard ratio IV random 95% CI	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI 01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV random 95% CI		
Total (95% Cl) 100.0 0.63 [0.43, 0.94] Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 2.28 (p = 0.02) 0.01 0.1 1 10 100	Fest for overall effect: H Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–150 Keynote–189 Keynote–407 Total (95% CI) Heterogeneity: Tau ² = Test for overall effect Impower–130	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (-0.7765 (-0.9416 (-0.8675 (-0.4463 (= 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000 Log [hazard ratio] -0.2877 (SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 0.1) SE 0.3745	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 0.80); 1 ² Weight (%) 28.8	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0. Hazard ratio IV, random, 95% CI 0.75 [0.36, 1.56]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl 		
Total (95% Cl) 100.0 0.63 [0.43, 0.94] Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 1 10 100 Test for overall effect: Z = 2.28 (p = 0.02) Favors [experimental] Favors [control] Favors [control]	Fest for overall effect: H Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–150 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect I Study or subgroup IMpower–130 IMpower–130	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (-0.7765 (-0.9416 (-0.8675 (-0.4463 (= 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000 Log [hazard ratio] -0.2877 (-0.526 (SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 0.1) SE 0.3745 0.2381	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 c.0.80); 1 ² Weight (%) 28.8 28.8 71.2	0. Hazard ratio IV, random, 95% CI 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0. Hazard ratio IV, random, 95% CI 0.75 [0.36, 1.56] 0.59 [0.37, 0.94]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI 01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI		
Heterogeneity: Tau ² = 0.00; Chi ² = 0.29, df = 1 (p = 0.59); l ² = 0% 0.01 0.1 1 10 100 Test for overall effect: Z = 2.28 (p = 0.02) Favors [experimental] Favors [control] Favors [control]	Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–130 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect I Study or subgroup IMpower–130 IMpower–130	$\begin{array}{c} \textbf{Log [hazard ratio]}\\ \hline -0.6733 & (\\ -0.821 & \\ -0.7765 & \\ -0.9416 & \\ -0.8675 & \\ -0.4463 & \\ \end{array}$ $= 0.00; Chi^2 = 2.33, df \\ : Z = 7.46 (p < 0.0000 & \\ \hline \textbf{Log [hazard ratio]}\\ \hline -0.2877 & \\ -0.5276 & \\ \end{array}$	SE 0.2069 0.2492 0.3763 0.2269 0.22796 = 5 (p = 0)1) SE 0.3745 0.2381	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 0.80); 1 ² Weight (%) 28.8 71.2	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0.47 [0.38, 0.57] 0.47 [0.38, 0.57] 0.48 [0.27, 0.28] 0.49 [0.27, 0.28] 0.49 [0.27, 0.28] 0.41 [0.27, 0.28] 0.42 [0.26, 0.68] 0.59 [0.37, 0.94]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI 01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% CI		
Test for overall effect: Z = 2.28 (p = 0.02) 0.01 0.1 1 10 100 Favors [experimental] Favors [control] Favors [control] Favors [control]	Fest for overall effect: (H) Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–130 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau² = Test for overall effect (I) Study or subgroup IMpower–130 IMpower–130 Total (95% Cl)	$\begin{array}{c} \textbf{Log [hazard ratio]}\\ \hline -0.6733 & (\\ -0.821 & (\\ -0.7765 & (\\ -0.9416 & (\\ -0.8675 & (\\ -0.4463 & (\\ -0.4463 & (\\ -0.4463 & (\\ -0.4463 & (\\ -0.2877 & (\\ -0.2877 & (\\ -0.5276 & (\\ \end{array}\right) \end{array}$	SE 0.2069 0.2492 0.3763 0.2269 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 0.1) SE 0.3745 0.2381	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 0.80); 1 ² Weight (%) 28.8 71.2 100.0	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0.47 [0.38, 0.57] 0.47 [0.38, 0.57] 0.47 [0.36, 0.57] 0.59 [0.37, 0.94] 0.63 [0.43, 0.941]	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl 01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl Hazard ratio IV, random, 95% Cl		
Favors [experimental] Favors [control]	Fest for overall effect: (H) Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–150 Keynote–407 Total (95% Cl) Heterogeneity: Tau² = Test for overall effect (I) Study or subgroup IMpower–130 IMpower–130 IMpower–130 Hpower–130 IMpower–130 Hpower–130 Hpower–130 IMpower–130 Hpower–130 IMpower–130 IMpower–130 IMpower–130 IMpower–130 IMpower–130 IMpower–130	: Z = 6.10 (p < 0.0000 Log [hazard ratio] -0.6733 (-0.821 (-0.7765 (-0.9416 (-0.8675 (-0.4463 (= 0.00; Chi ² = 2.33, df : Z = 7.46 (p < 0.0000 Log [hazard ratio] -0.2877 (-0.5276 (= 0.00; Chi ² = 0.29. df	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 01) SE 0.3745 0.2381	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 0.80); 1 ² Weight (%) 28.8 71.2 28.8 71.2	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% Hazard ratio IV, random, 95% Cl 0.75 [0.36, 1.56] 0.59 [0.37, 0.94] 0.63 [0.43, 0.94] = 0%	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl 01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl Hazard ratio		
	Fest for overall effect: (H) Study or subgroup IMpower–130 IMpower–131 IMpower–132 IMpower–130 Keynote–189 Keynote–407 Total (95% Cl) Heterogeneity: Tau² = Test for overall effect (I) Study or subgroup IMpower–130 IMpower–150 Total (95% Cl) Heterogeneity: Tau² = Test for overall effect	Z = 6.10 (p < 0.0000 $-0.6733 (r) -0.6733 (r) -0.821 (r) -0.9416 (r) -0.8675 (r) -0.9416 (r) -0.8675 (r) -0.4463 (r) -0.4463 (r) -0.4463 (r) -0.4463 (r) -0.4463 (r) -0.2877 (r) -0.2877 (r) -0.5276 (r) -0.527$	SE 0.2069 0.2492 0.3763 0.2269 0.2447 0.2796 = 5 (p = 01) SE 0.3745 0.2381	Weight (%) 24.5 16.9 7.4 20.4 17.5 13.4 100.0 0.80); 1 ² Weight (%) 28.8 71.2 28.8 71.2 100.0	0. Hazard ratio IV, random, 95% Cl 0.51 [0.34, 0.77] 0.44 [0.27, 0.72] 0.46 [0.22, 0.96] 0.39 [0.25, 0.61] 0.42 [0.26, 0.68] 0.64 [0.37, 1.11] 0.47 [0.38, 0.57] = 0% 0.47 [0.38, 0.57] 0.47 [0.36, 1.56] 0.59 [0.37, 0.94] 0.63 [0.43, 0.94] = 0% 0.	01 0.1 1 10 10 Favors [experimental] Favors [control] Hazard ratio IV, random, 95% Cl 		

Figure 4. Progression-free survival analysis in participants treated with first-line chemoimmunotherapy versus standard chemotherapy regimen (cont.). (A) Pooled HR for PFS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(B)** Pooled HR for PFS in patients with advanced nonsquamous NSCLC treated with first-line chemoimmunotherapy. **(C)** Pooled HR for PFS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(C)** Pooled HR for PFS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(D)** Pooled HR for PFS in patients with advanced NSCLC treated with first-line chemoimmunotherapy. **(D)** Pooled HR for PFS in patients with advanced NSCLC treated with PD-1 inhibitor (nivolumab or pembrolizumab) in combination with chemotherapy in the first-line setting. **(E)** Pooled HR for PFS in PD-L1 negative patients with advanced NSCLC in the first-line setting. **(F)** Pooled HR for PFS in PD-L1 negative patients with advanced NSCLC in the first-line setting. **(G)** Pooled HR for PFS in PD-L1 low patients with advanced NSCLC in the first-line setting. **(I)** Pooled HR for PFS in patients with *EGFR* and *ALK* mutated advanced NSCLC treated with atezolizumab. HR: Hazard ratio; NSCLC: Non-small-cell lung cancer; OS: Overall survival; PD-1: Programmed death receptor 1; PD-L1: Programmed death ligand 1; PFS: Progression-free survival.

A							
Study or subgroup	Experim Events	nental Total	Cont Events	rol Total	Weight (%)	Risk ratio	Risk ratio M-H random 95% Cl
CheckMate_227	65	177	43	186	10.1	1.59 [1.15, 2.20]	
IMpower_130	220	447	72	226	14.4	1.54 [1.25, 1.91]	+
IMpower-131	168	343	139	340	16.4	1.20 [1.01, 1.42]	-
IMpower_132	137	292	92	286	14.6	146 [118 180]	
IMpower_150	224	252	150	200	176	132 [115, 152]	
Kovpoto 180	105	/10	20	206	11.0	2 51 [1 86 3 39]	
Keynote 407	190	410	100	200	15.0	151 [126 180]	
Reynole-407	101	270	100	201	15.9	1.51 [1.20, 1.00]	
Total (95% CI)		2300		1856	100.0	1.51 [1.30, 1.74]	•
Iotal events	1170		652	~ (
Heterogeneity: Tau ²	= 0.03; C	$hi^2 = 2^2$	1.07, df =	= 6 (p =	= 0.002);	$l^2 = 72\%$	
Test for overall effect	t: Z = 5.57	7 (p < 0	0.00001)			0.0	01 0.1 1 10 10
							Favors [control] Favors [experimental]
B	Experim	nental	Cont	rol	Weight	Risk ratio	Risk ratio
Study or subgroup	Events	Total	Events	Total	(%)	M-H, random. 95% Cl	M-H, random. 95% CI
CheckMate-227	92	172	77	183	0.6	127 [102 158]	
IMpower_130	471	172	230	232	218		
Mpower_131	325	3/3	200	340	a a	1.00 [0.99, 1.02]	
Mpower 122	286	201	266	274	16.1		
Mpower 152	200	202	200	201	12.2		I
Ilvipower–150	371	393	200	202	010	0.99 [0.96, 1.02]	1
Keynote-189	404	405	200	202	21.3	1.01 [0.99, 1.02]	I
Keynote-407	213	278	274	280	17.1	1.00 [0.98, 1.03]	
Total (95% CI)		2355		1905	100.0	1.01 [0.99, 1.03]	
Total events	2222		1731				
Heterogeneity: Tau ² = 0.00; Chi ² = 19.04, df = 6 (p = 0.004); l ² = 68%						$l^2 = 68\%$	
Test for overall effect: $Z = 1.10$ (p = 0.27)						0.2 0.5 1 2 5	
							Favors [experimental] Favors [control]
(C)	Experim	nental	Cont	rol	Weight	Bisk ratio	Risk ratio
Study or subgroup	Events	Total	Events	Total	(%)	M-H, random, 95% Cl	M-H. random, 95% Cl
CheckMate_227	52	172	35	183	4.6	1.58 [1.09 2.30]	
IMpower_120	220	451	137	228	16.4		-
IMpower_131	233	343	19/	340	16.6	1 19 [1 06 1 3/]	
IMpower_132	172	292	126	286	13.4	1 38 [1 18 1 62]	
IMpower_150	220	202	107	30/	15.4	117 [103 122]	-
Kovnoto 190	230	10E	100	202	16.2	1.02 [0.00, 1.15]	l I
Keynote 407	272	279	101	202	171		I
Reynole-407	194	210	191	200	17.1	1.02 [0.92, 1.14]	Ĭ
Total (95% CI)		2334		1913	100.0	1.17 [1.07, 1.28]	♦
Total events	1489		1013				
Heterogeneity: Tau ²	= 0.01; C	hi² = 17	7.78, df =	= 6 (p =	= 0.007);	l ² = 66%	
Test for overall effect	t: Z = 3.42	2(p = 0)	.0006)			0.	01 0.1 1 10 10
			,				Favors [experimental] Favors [control]

Figure 5. Pooled risk ratio for objective response rate, all-grade adverse events, and high-grade adverse events in patients with NSCLC receiving chemoimmunotherapy versus chemotherapy. (A) Pooled RR for ORR in patients with advanced NSCLC treated with first-line chemoimmunotherapy. (B) Pooled RR for all-grade AEs in patients with advanced NSCLC treated with first-line chemoimmunotherapy. (C) Pooled RR for high-grade AEs in patients with advanced NSCLC treated with first-line chemoimmunotherapy. AE: Adverse event; NSCLC: Non-small-cell lung cancer; ORR: Objective response rate; RR: Risk ratio.

observed. The pooled RR for all-grade AEs (Figure 5B) and high-grade AEs (Figure 5C) were 1.01 (95% CI: 0.99– 1.03; p = 0.27, $I^2 = 68\%$) and 1.17 (95% CI: 1.07–1.28; p = 0.0006, $I^2 = 66\%$), respectively. Specific immune-related AEs that are associated with statistically significant increased risk, with addition of immune checkpoint inhibitors, include hypothyroidism, hyperthyroidism, pneumonitis, colitis, hepatitis, hypophysitis, infusion reaction and rash. Pooled RRs for specific immune-related AEs are described in Table 3.

Discussion

Multiple randomized clinical trials have been conducted to identify the optimal chemoimmunotherapy treatment strategy for advanced NSCLC patients. Chen *et al.* conducted pooled efficacy and safety analyses of immune

Table 3. Pooled risk ratios for specific immune-related all-grade adverse events.											
Adverse events	Studies (n)	Chemoimm	unotherapy	Chemo	therapy	Pooled RR (95% CI)	l ² (%)	p-value			
		Events	Total	Events	Total						
Hypothyroidism	6	226	2174	35	1716	5.18 (2.89–9.27)	51	0.00001			
Hyperthyroidism	6	92	2174	18	1716	3.73 (1.70–8.19)	50	0.001			
Colitis	6	41	2174	7	1716	3.46 (1.60–7.47)	0	0.002			
Pneumonitis	6	117	2174	30	1716	2.92 (1.95–4.37)	0	0.00001			
Hepatitis	6	135	2174	50	1716	2.41 (1.27–4.60)	52	0.007			
Diabetes	4	10	1605	3	1162	1.77 (0.56–5.59)	0	0.33			
Pancreatitis	4	14	1562	3	1102	2.35 (0.75–7.41)	0	0.14			
Severe skin reaction	4	21	1367	9	1150	1.63 (0.68–3.88)	12	0.27			
Infusion reaction	4	28	1308	10	1090	2.11 (1.02–4.37)	0	0.04			
Adrenal insufficiency	3	10	1271	4	828	1.12 (0.23–5.39)	23	0.89			
Rash	3	258	1018	149	1002	1.68 (1.13–2.50)	78	0.01			
Hypophysitis	3	9	1076	0	876	5.57 (1.01–30.76)	0	0.05			
Nephritis	3	12	1076	2	876	2.57 (0.62–10.59)	0	0.19			
Meningoencephalitis	2	5	866	0	626	4.13 (0.50–34.37)	0	0.19			
Myositis	2	3	798	1	596	1.81 (0.27–12.29)	0	0.55			
Thyroiditis	2	4	683	0	482	3.45 (0.39–30.27)	0	0.26			
Ocular inflammatory toxicity	1	3	393	0	394	7.02 (0.36–135.41)	NA	0.2			
Encephalitis	1	1	393	0	394	3.01 (0.12–73.60)	NA	0.5			
Autoimmune hemolytic anemia	1	1	393	1	394	1 (0.06–15.97)	NA	1			
Vasculitis	1	1	393	1	394	1 (0.06–15.97)	NA	1			
RR: Risk ratio.											

checkpoint inhibitors in NSCLC patients as the first-line treatment option [27]. The study showed statistically improved PFS, OS but not ORR. It is important to note that the analysis also included studies that compare immune checkpoint inhibitors against chemotherapy. We excluded these studies in our review [27]. The metaanalysis done by Xu *et al.* showed improvement in PFS but not OS in first-line treatment of NSCLC [28]. The study mainly includes Phase I trials [28]. Analysis by Shen *et al.* showed improvement in PFS, OS and ORR [29]. A recent meta-analysis by Addeo *et al.* [30] incorporated additional Phase III studies (IMpower-130, -131, -132 and Checkmate-227 studies) that showed significantly prolonged PFS and OS with the addition of immune checkpoint inhibitor [30]. In addition to PFS and OS analyses of *EGFR* and *ALK* wild-type patient population, we analyzed pooled HR for PFS in patients with *EGFR* and *ALK* alterations (Figure 4I) that showed statistically significant PFS benefit. However, this benefit is mainly driven by the IMpower-150 trial, which utilized bevacizumab plus chemotherapy as a backbone regimen. We also performed a comprehensive review of safety profiles. Our study met the primary end point of significantly improved OS. The study also revealed statistically significant improvement in PFS and ORR.

Pooled analysis for OS based on histologic subtypes favored both histologic subtypes (both squamous NSCLC and nonsquamous NSCLC) but was not statistically significant for the squamous NSCLC subtype. A longer follow-up of the IMpower-131 trial may change this result. Besides, we identified substantial heterogeneity with I² of 82% among squamous NSCLC studies with the favorable outcome being driven by the pembrolizumab study (Figure 3B). The pooled HRs for PFS showed statistically significant benefits for both squamous and nonsquamous NSCLC. Moreover, statistically significant OS and PFS benefits were seen on separate analyses of PD-1 and PD-L1 monoclonal antibodies.

Subgroup analyses of both OS and PFS based on the degree of PD-L1 expressions yielded the statistically significant OS and PFS benefits across different levels of PD-L1 expressions, except pooled HR for OS in patients with low PD-L1 expression (HR: 0.77; 95% CI: 0.55–1.08; p = 0.12). We noted substantial heterogeneity in this analysis. The HRs from the Keynote trials contributed more to the survival benefit in low PD-L1 subgroup. In addition, studies utilized different PD-L1 assay methods, further complicating the picture. Nonetheless, subgroup

analyses should be interpreted with caution since they are observational by nature and are not based on randomized comparisons. There are significant false positive and false negative findings which could be misleading [13].

Immune checkpoint inhibitors showed relatively tolerable safety profiles. There was no statistically significant increase in rates of all-grade AEs, but a slight increase in high-grade (grade 3 or higher) AEs with the addition of immunotherapy.

There are several limitations to our review. The PD-L1 assay methods are not consistent across different studies; in the atezolizumab studies, PD-L1 immunohistochemistry is read on both TCs and tumor-infiltrating ICs [20,21,23]. However, trials of nivolumab and pembrolizumab applied PD-L1 expression only on TCs [18,19,25]. Moreover, we require longer follow-up and more mature data from the trials, which may change the overall efficacy and safety in the future. At last, our analysis is not designed to identify the optimal combination strategy, but to prove the impact of add-on immunotherapy to chemotherapy in patients with advanced NSCLC.

Conclusion

Overall, our meta-analysis suggests that the addition of immune checkpoint inhibitor to standard chemotherapy benefited OS and PFS, including tumors with *EGFR* and *ALK* alterations in first-line, advanced, metastatic NSCLC. The analysis also showed statistically significant improvement in ORR in the overall patient population with the addition of immune checkpoint inhibitor. The combined regimen had a slight increase in high-grade AEs without a statistically significant increase in rates of all-grade AEs.

Future perspective

It is clear that checkpoint blockade, along with cytotoxic chemotherapy, provides additional therapeutic benefit. Despite successful incorporation of PD-1 and PD-L1 inhibitors into the management of metastatic lung cancer, achieving durable remission remains a challenge. Understanding of complex tumor microenvironments and tumor-IC interaction plays a crucial role in the development of novel therapeutic strategies. Combination strategies utilizing multiple immune-checkpoint blockades is an attractive option and have been implemented in the Checkmate-227 trial [26]. Further strategies may include PD-1 blockade in combination with concurrent activation of the immune system, such as vaccination and use of stimulating antibodies. A greater understanding of molecular medicine along with molecular subclassification of this heterogeneous disease and identification of reliable biomarkers to tailor an optimal treatment strategy is crucial in the era of precision oncology. Additional basic science and clinical research will likely help us to understand more about molecular biology, develop newer biomarkers and evolve new therapeutic approaches which will ultimately improve long-term outcome.

Summary points

- Immune checkpoint blockade plus chemotherapy is proven to be effective in randomized controlled trials (RCTs) for the treatment of lung cancer.
- We conducted a literature search for RCTs in advanced non-small-cell lung cancer (NSCLC); seven RCTs with a total
 of 4322 patients were included in the study.
- The study population comprises nonsquamous NSCLC, 69% (5% had *EGFR* or *ALK* alterations) and squamous NSCLC, 31%.
- The analysis showed that the addition of an immune checkpoint inhibitor lead to improvement in overall survival, progression-free survival and objective response rate.
- Addition of atezolizumab to standard therapeutic regimen improved progression-free survival in cohorts of patients with *EGFR* and *ALK* altered nonsquamous NSCLC.
- Subgroup analysis failed to show OS benefit from add-on immunotherapy in patients with squamous NSCLC that expresses low PD-L1.
- The study showed slightly higher rates of high-grade (grade 3 or higher) AEs, but no significant difference in rates of all-grade AEs with addition of immune checkpoint inhibitor.
- We identified substantial heterogeneity among studies. The programmed death ligand 1 assay methods are not consistent across different studies.
- Long-term follow-up is required for mature data.
- Increasing understanding of molecular biology and the development of newer biomarkers and novel therapeutic approaches will improve outcome in this patient population.

Author contributions

All authors have full access to the data in the study and take responsibility for the accuracy of the analysis and the integrity of the data. AM Tun and E Guevara did study concept and design. All authors participated in acquisition, analysis, and interpretation of the data.

Note

This meta-analysis was presented as a poster presentation at the Annual meeting of the American Society of Clinical Oncology Immuno-Oncology Symposium in San Francisco in February 2019 (Abstract#117).

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Open access

This work is licensed under the Creative Commons Attribution 4.0 License. To view a copy of this license, visit http://creativecomm ons.org/licenses/by/4.0/

References

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* 68(6), 394–424 (2018).
- 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019).
- 3. SEER Cancer Statistics Review, 1975–2010. National Cancer Institute, MD, USA (2018). https://seer.cancer.gov/csr/1975_2014/
- 4. Rittmeyer A, Barlesi F, Waterkamp D *et al.* Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a Phase III, open-label, multicentre randomised controlled trial. *Lancet* 389(10066), 255–265 (2017).
- Herbst RS, Baas P, Kim D-W *et al.* Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. *Lancet* 387(10027), 1540–1550 (2016).
- Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373(17), 1627–1639 (2015).
- Brahmer J, Reckamp KL, Baas P et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373(2), 123–135 (2015).
- Fülöp A, Lubiniecki GM, Tafreshi A *et al.* Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. *N. Engl. J. Med.* 375(19), 1823–1833 (2016).
- 9. Spila A, Roselli M, Guadagni F *et al.* Effects of conventional therapeutic interventions on the number and function of regulatory T cells. *Oncoimmunology* 2(10), e27025 (2013).
- Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. *Cell Death Differ*. 21(1), 15–25 (2014).
- Lynch TJ, Bondarenko I, Luft A *et al.* Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non–small-cell lung cancer: results from a randomized, double-blind, multicenter Phase II study. *J. Clin. Oncol.* 30(17), 2046–2054 (2012).
- 12. Govindan R, Szczesna A, Ahn M-J *et al.* Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. *J. Clin. Oncol.* 35(30), 3449–3457 (2017).
- 13. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration (2011). http://www.cochrane-handbook.org
- 14. Higgins JPT Altman DG. Assessing risk of bias in included studies. In: *Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series.* Higgins JPT, Green S (Eds). Wiley, NJ, USA, 187–241 (2008).
- 15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 327(7414), 557-560 (2003).
- Langer CJ, Gadgeel SM, Borghaei H *et al.* Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, Phase II cohort of the open-label KEYNOTE-021 study. *Lancet Oncol.* 17(11), 1497–1508 (2016).
- West H, McCleod M, Hussein M *et al.* Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, Phase III trial. *Lancet Oncol.* 20(7), 924–937 (2019).

- Gandhi L, Rodríguez-Abreu D, Gadgeel S et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378(22), 2078–2092 (2018).
- Paz-Ares L, Luft A, Vicente D et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379(21), 2040–2051 (2018).
- Cappuzzo F, McCleod M, Hussein M *et al.* IMpower130: progression-free survival (PFS) and safety analysis from a randomised Phase III study of carboplatin+nab-paclitaxel (CnP) with or withoutatezolizumab (atezo) as first-line (1L) therapy in advanced non-squamous NSCLC. *Ann. Oncol.* 29(Suppl. 8), mdy424–065 (2018).
- Jotte RM, Cappuzzo F, Vynnychenko I *et al.* IMpower131: primary PFS and safety analysis of a randomized Phase III study of atezolizumab+carboplatin+paclitaxel or nab-paclitaxel vs carboplatin+nab-paclitaxel as 1L therapy in advanced squamous NSCLC. *J. Clin. Oncol.* 36(Suppl.18), LBA9000 (2018).
- 22. Papadimitrakopoulou V, Cobo M, Bordoni R *et al.* IMpower132: PFS and safety results with 1L atezolizumab+ carboplatin/cisplatin+ pemetrexed in stage IV non-squamous NSCLC. *J. Thorac. Oncol.* 13(Suppl. 10), S332–S333 (2018).
- 23. Socinski MA, Jotte RM, Cappuzzo F et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378(24), 2288–2301 (2018).
- Socinski MA, Jotte RM, Cappuzzo F et al. Overall survival (OS) analysis of IMpower150, a randomized Phase III study of atezolizumab (atezo)+ chemotherapy (chemo) ± bevacizumab (bev) vs chemo+ bev in 1L nonsquamous (NSQ) NSCLC. J. Clin. Oncol. 36(Suppl. 15), 9002 (2018).
- Borghaei H, Hellmann MD, Paz-Ares LG *et al.* Nivolumab (Nivo) + platinum-doublet chemotherapy (Chemo) vs chemo as first-line (1L) treatment (Tx) for advanced non-small cell lung cancer (NSCLC) with <1% tumor PD-L1 expression: results from CheckMate 227. *J. Clin. Oncol.* 36(Suppl. 15), 9001 (2018).
- Reck M, Geese WJ, Chang H et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378(22), 2093–2104 (2018).
- 27. Chen R, Hou X, Yang L, Zhao D. Comparative efficacy and safety of first-line treatments for advanced non-small cell lung cancer with immune checkpoint inhibitors: a systematic review and meta-analysis. *Thorac. Cancer.* 10(4), 607–623 (2019).
- 28. Xu X, Huang Z, Zheng L, Fan Y. The efficacy and safety of anti-PD-1/PD-L1 antibodies combined with chemotherapy or CTLA4 antibody as a first-line treatment for advanced lung cancer. *Int. J. Cancer* 142(11), 2344–2354 (2018).
- 29. Shen K, Cui J, Wei Y *et al.* Effectiveness and safety of PD-1/PD-L1 or CTLA4 inhibitors combined with chemotherapy as a first-line treatment for lung cancer: a meta-analysis. *J. Thorac. Dis.* 10(12), 6636–6652 (2018).
- 30. Addeo A, Banna GL, Metro G, Di Maio M. Chemotherapy in combination with immune checkpoint inhibitors for the first-line treatment of patients with advanced non-small cell lung cancer: a systematic review and literature-based meta-analysis. *Front. Oncol.* 9, 264 (2019).