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Abstract

Ataxic mutant mice can be used to represent models of cerebellar degenerative disorders. They serve for investigation
of cerebellar function, pathogenesis of degenerative processes as well as of therapeutic approaches. Lurcher, Hot-foot,
Purkinje cell degeneration, Nervous, Staggerer, Weaver, Reeler, and Scrambler mouse models and mouse models of
SCA1, SCA2, SCA3, SCA6, SCA7, SCA23, DRPLA, Niemann-Pick disease and Friedreich ataxia are reviewed with
special regard to cerebellar pathology, pathogenesis, functional changes and possible therapeutic influences, if any.
Finally, benefits and limitations of mouse models are discussed.
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Introduction
The cerebellum is a part of the brain that participates in
many complex functions. It is involved not only in
motor coordination and motor learning but it also plays
a role in cognitive and affective functions. Therefore
manifestations of cerebellar dysfunction includes motor
deficits as well as mental and behavioral abnormalities
known in humans as cognitive-affective syndrome [1].
The three main motor signs of cerebellar disorder are
ataxia, tremor and increased muscle passivity. These re-
sult in many motor problems including ataxic gait and
posture, deterioration of goal-directed movements of
the extremities, eyeball movement abnormalities, speech
disorders, etc. The cerebellum can be damaged due to
injuries, ischemia, hemorrhage, tumors, inflammation,
intoxication and inherited neurodegenerative conditions.
Humans are afflicted with a wide spectrum of hereditary
cerebellar degenerations [2], for which, presently, there
is no effective causal therapy. The main therapeutic ap-
proach is intensive rehabilitation directed toward helping
patients improve motor abilities and learning to live with
the disease.
Variability of human hereditary cerebellar degenerative

disorders is also reflected in animal models of cerebellar

ataxias [3]. Mouse models of cerebellar degenerations
are either spontaneous mutants or transgenic animals.
For some genes there are spontaneous or induced muta-
tions as well as transgenic mouse models. Mouse models
of hereditary cerebellar degenerative disorders are used
to investigate symptoms, pathogenesis, and cell death
mechanisms, as well as to develop and test therapeutic
approaches for these diseases. Elucidation of the rela-
tionships between functional abnormalities and cerebel-
lar defects could further our understanding of cerebellar
function. Since there are complex interconnections be-
tween the cerebellum and other areas of the central ner-
vous system and since degeneration, in many cases, is in
not restricted to just the cerebellum, a more complete
knowledge of the features of individual cerebellar ataxic
mice is important for selection of appropriate models for
particular studies and for appropriate interpretation of
findings. The cerebellar degenerative disorders seen in
mice show some similarities with those seen in human
patients, although there are also certain differences that
limit their research applications. All these fact should be
taken into account when choosing and using a mouse
model for cerebellar ataxia. The aim of this review is to
describe the main types of cerebellar ataxic mice with
special regard to cerebellar pathology, pathogenesis,
functional changes and possible therapeutic influences, if
any, and to discuss their benefits and limitations relative
to research applications.
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Review
Classic cerebellar mutant mice
Lurcher mice
Lurcher mice are well studied spontaneous cerebellar
mutants. They were first described in 1960 by Phillips
[4]. The degeneration is caused by a semi-dominant mu-
tation (Grid2Lc) in the δ2 glutamate receptor (GluRδ2)
encoding a gene localized on chromosome 6 [4,5].
GluRδ2 receptors are expressed at high levels in cerebel-
lar Purkinje cells [6]. The Grid2Lc mutation is a gain of
function mutation, which changes the receptor into a
leaky membrane channel that chronically depolarizes the
cells [5]. Later, a second Lurcher allele (LcJ), which is
phenotypically indistinguishable from Grid2Lc, was found
in an inbred strain BALB/cByJ [7].
Homozygous Lurcher mice (Grid2Lc/Lc) die shortly

after birth due to the massive loss of mid- and hindbrain
neurons during late embryogenesis and the inability to
suck for milk after birth [8]. Heterozygous Lurcher mice
are viable with normal lifespans and suffer from postna-
tal degeneration of cerebellar Purkinje, granule, stellate
and basket cells and inferior olive neurons [9,10].
Heterozygous Lurcher Purkinje cell reduction can be

detected by about postnatal (P) day 8–10 [9]. The pro-
gress of degeneration varies between individual cere-
bellar lobules [11]. About 95% of Purkinje neurons
die between P8 and P25 and virtually all of them have
degenerated by P90 [9]. The several hundred surviving
Purkinje cells are restricted to the paraflocculus, floccu-
lus and the nodular zone and can be detected as late as
P146 [11].
The death of Lurcher mutant Purkinje cells is cell au-

tonomous and it is a primary effect of the mutation
[12,13]. The Purkinje cells show high membrane con-
ductance and a depolarized resting potential due to the
presence of a large inward Na+ current [5]. This state of
permanent cell excitation and over-activation of Na+ –K+

ATPase probably leads to increased energy demand,
decreased intracellular ATP levels [14] and increased
mitochondrial cytochrome oxidase activity [15].
Zuo et al. [5] suggested excitotoxic apoptosis as the

mechanism of Purkinje cell death in Lurcher mice.
Norman et al. [16] observed swelling of axons, chroma-
tin condensation, cell and nuclear membrane blebbing
in Lurcher mutant Purkinje neurons, glial cell processes
wrapped around dying Purkinje neurons, ready to engulf
their remnants. They also observed apoptotic bodies which
had already been engulfed by glial cells and the absences of
infiltration with leucocytes, which indicated cell death
through apoptosis [16]. Deformation of cell shape and nu-
clei, thickened dendrites, irregular staining of nuclei and
cytoplasm and increased numbers of nucleoli in degenerat-
ing Lurcher Purkinje cells were also found [17]. Increase in
pro-caspase 3 expression, in Lurcher mutant Purkinje cells,

may participate in the induction of apoptosis [18]. On the
other hand, ultrastructural signs, such as axonal swellings
and torpedoes, perinuclear clumps of chromatin and en-
larged mitochondria with dilated cristae indicate necrotic
cell death [19,20]. Finally, evidence for autophagic path-
ways in Lurcher Purkinje cells was also found. Yue et al.
[21] reported that dying Lurcher Purkinje cells contain
morphological hallmarks of autophagic death in vivo. Later,
Wang et al. [22] described accumulation of autophago-
somes in axonal dystrophic swellings of Lurcher Purkinje
cells. Nishiyama and Yuzaki [14] reevaluated Purkinje cell
degeneration in Lurcher mice and designated it as necrosis
with autophagic features. Zanjani et al. [23] found that
in vitro inhibition of conventional protein kinase C, c-Jun
N-terminal kinase, as well as p38, led to enhanced survival
of Lurcher mutant Purkinje cells in cerebellar slices sug-
gesting that multiple Purkinje cell death pathways are in-
duced in Lurchers.
Degeneration of granule cells is also fast but not

complete. By P60 almost 90% of granule cells are lost
[9]. As mentioned above, the number of Golgi, stellate and
basket cells are also reduced [10]. Loss of inferior olive
neurons becomes apparent by P11 and represents about
70 – 75% of the complete neuronal population [9]. Reduc-
tion of granule cells and inferior olive neurons is target-
related cell death and can be prevented by surviving
Purkinje cells in Lurcher-wild type chimeras [12,13,24].
Stellate and basket cells are probably also affected
through a target-related cell death mechanism since there
is no evidence that the Grid2 receptor is expressed in
cerebellar interneurons [10]. Degeneration of the deep
cerebellar nuclei is relatively mild in Lurchers [25-27].
Lurcher mice exhibit multiple abnormalities of neural

functions. The main and most evident symptom of cere-
bellar degeneration is ataxia with a wobbly, lurching
gait and irregular EMG pattern during walking [28].
Lurchers show poor performance on the treadmill test
[29], rotarod test [30-33], static wooden beam [33], un-
stable platform [34], vertical grid [30,35], horizontal bar
or coat-hanger test [30,32]. Nevertheless, on some tests,
improvement was seen in their motor performance when
repeating the task [31,36,37]. Lurcher mice show a decline
in motor skills [38], motor learning [37] and spatial learn-
ing ability [39] with ageing. Lurcher mice also suffer from
disorder and lack of adaptive modifications in the oculo-
motor system [40].
Lurcher mutant mice do poorly on cognitive function

tests. Despite this, they show some level of learning ability
in the standard Morris water maze test with a hidden plat-
form, although their escape latencies are longer than those
of wild type mice [41-43]. Lurchers also have difficulty in
guiding themselves, in the water maze, toward a visible
goal, which suggests that their deficit in visuomotor coord-
ination contributes to their spatial orientation impairment
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[41,44] Lurchers also exhibit deficits in long-term memory
[45]. Porras-Garcia et al. [42,46] described changes in clas-
sical conditioning of eyelid responses in Lurcher mice.
Lurchers show higher spontaneous activity than control
wild type mice [47], however, their exploration behavior
on the hole-board test is reduced [35,47,48].
While basal levels of both adrenocorticotropic hor-

mone and corticosterone are similar in Lurcher mutants
and control mice, mutants show hyper-reactivity of the
hypothalamic-pituitary-adrenal axis [49,50]. Hilber et al.
[50] observed that exposure to an anxiogenic situation
(elevated plus-maze) increased corticosterone levels more
in the mutants than in controls. However, Lurchers
showed reduced behavioral indices of anxiety, which sug-
gests that they are rather less inhibited than less anxious
[50]. This agrees with observation that Lurchers have
lower prepulse inhibition, as described by Porras-Garcia
et al. [42]. Nevertheless, stress-provoked high cortico-
sterone levels cause only part of the behavioral disinhib-
ition, since inhibition of corticosterone synthesis produced
only modest changes in anxiety-related behaviors in
Lurchers [51]. Lurcher females have a high incidence of
maternal infanticide, which could be triggered by anxio-
genic stimuli linked to their behavioral disinhibition [52].
Furthermore, tests of behavioral flexibility in Lurcher

mice and chimeras, between Lurcher heterozygous and
wild type individuals, suggested that developmental cere-
bellar Purkinje cell loss may affect higher level cognitive
processes that are commonly deficient in autism spectrum
disorders [53]. In Lurcher mice, evoked glutamate release
is decreased in the mediodorsal and ventrolateral thalamic
nuclei, reticulotegmental nuclei and pedunculopontine
nuclei [54]. This is a mechanism by which Purkinje cell
loss could disrupt glutamate release in cerebellar effer-
ent pathways that ultimately affects dopamine release
in the prefrontal cortex associated with autism spectrum
disorders [54].

Hotfoot mice
Hotfoot mice have mutation (Grid2ho) in the δ2 glutam-
ate receptor (GluRδ2) encoding gene on chromosome 6,
the same gene, which is affected in Lurcher mice [55].
Several alleles causing the Hot-foot phenotype have been
discovered [56,57]. While the Grid2Lc (Lurchers) is a
gain of function mutation, the Grid2ho is a loss of func-
tion mutation leading to retention of the GluRδ2 in the
endoplasmic reticulum and thus its absence on the cell
surface [58].
Anatomical alterations are relatively mild; the most

obvious being Purkinje cells with ectopic spines devoid
of presynaptic innervations [59,60]. The Hotfoot pheno-
type is characterized by a flattened body posture, wide
base, backing up and jerky movements of the hind limbs
[59]. Hotfoot mice do poorly on the rotating grid,

wooden beam, coat hanger and rotarod tests, however,
they showed evidence of learning in the rotating grid and
coat hanger tests, but not on the wooden beam and
rotarod [31,36,61]. They did not alternate above chance
in the T-maze and failed in the Z-maze test [62].

Purkinje cell degeneration mice
Purkinje cell degeneration (pcd) mice are one of the
most frequently used spontaneous cerebellar mutants.
The heredity of the disorder is autosomal recessive
with full penetrance [63]. Pcd mice are homozygous
for the Agtpbp1pcd/J mutations in the gene encoding
cytosolic ATP/GTP binding protein 1 (synonyms: cytosolic
carboxypeptidase-like protein, CCP1, Nna1) located on
chromosome 13 [64]. Several spontaneous mutant alleles
(Agtpbp1pcd-1J, Agtpbp1pcd-2J, Agtpbp1pcd-3J, Agtpbp1pcd-5J,
Agtpbp1pcd-7J) and induced mutations (Agtpbp1pcd-4J,
Agtpbp1pcd-6J) of the gene with similar phenotypes have
been discovered or generated, respectively. CCP1 is a
metallopeptidase that plays a role in peptide turnover. In
normal mice it is intensively expressed in cerebellar Pur-
kinje cells, olfactory bulb mitral cells and retinal photore-
ceptors [64]. Therefore, pcd mice postnatally lose virtually
all Purkinje cells and suffer from slow, progressive degener-
ation of the retina and olfactory bulb mitral cells.
The primary cerebellar pathology in pcd mutants is

the loss of Purkinje cells. On P15 the number of Purkinje
cells is still within normal range, however, they have
already started to show structural abnormalities [65].
Purkinje cell loss starts at P20 and by P25 it has already
become massive [66]. By P28 it is nearly complete in
most parts of the cerebellum except for the most ventral
areas, where numerous Purkinje neurons still remain
[63]. Only a few Purkinje cells remain in the nodulus
after 7 weeks [63].
Kyuhou et al. [67] suggested that the death of Purkinje

cells is apoptotic via the activation of caspase 3. Chakrabarti
et al. [68] later described increased autophagy in Purkinje
cells. Berezniuk and Fricker [69] suggested that the lack of
CCP1 leads to decreased levels of cellular amino acids,
which then induce increased autophagy. This could be a
protective response to cellular amino acid starvation. They
also reported increased autophagy in brain structures,
which do not undergo degeneration in pcd mice [70].
CCP1 has also been shown to catalyze shortening of
glutamate side chains on polyglutamylated brain tubu-
lin [71,72]. Hyperglutamylation resulting from the loss
of the function of the enzyme in pcd mice has been
suggested to be the primary cause of the degeneration
[71].
The degeneration of cerebellar granule cells is second-

ary to the loss of Purkinje neurons and is exponentially
progressive [73,74]. The moderate reduction in the size
of deep cerebellar nuclei in older mutants is probably
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due to loss of synaptic input from Purkinje cells [75]. In-
ferior olivary neurons start to disappear between P17
and P23 and by P300 the reduction has reached 49%
[73]. The degeneration is probably due to the loss of
their postsynaptic targets, i.e. Purkinje cells [73]. Degen-
eration of Purkinje cells is followed by activation of
microglia and astrocytes in the cerebellum and apoptotic
death of cerebellar oligodendrocytes [66,67].
Olfactory bulb fiber degeneration starts at 13 weeks

and at 38 weeks it is massive. Older animals lose mi-
tral cells in the olfactory bulb [63]. Degeneration of
the thalamus has also been observed in the brain of
pcd mice. Rapid degeneration between P50 and P60
affects the majority of neurons in the central division
of the mediodorsal nucleus, ventral medial geniculate,
posterior ventromedial and submedial nuclei and
those parts of the ventrolateral and posteromedial nu-
clei surrounding the medial division of the ventroba-
sal complex [76]. Subtle changes were also found in
other thalamic nuclei [76].
Retinal degeneration is manifested by pycnotic nu-

clei of photoreceptors at 3 weeks in homozygous pcd
mice; 50% of the photoreceptors are gone by the fifth
week and the remaining photoreceptors are gone
within one year [77-79]. The progress of degeneration
is mirrored by decline in retinal function [80].
Pcd mice have reduced bodyweight [63,81] and poor

overall health. Pcd males are sterile due to low concen-
trations, low motility and abnormally formed sperm
[63]. Females are not sterile, however their fertility is re-
duced and they have difficulties rearing pups.
The major neurological symptom in pcd mice is

cerebellar ataxia that becomes apparent around P21
[63,81]. Pcd mice perform poorly on the coat-hanger
and rotarod tests but perform well on the rectangular
as well as round stationary beam [82]. Goodlett et al.
[81] reported that pcd mice were unable to navigate to a
hidden goal in the Morris water maze but had good per-
formances on visual guidance tasks. This finding shows
that pcd mice are able to navigate to visible goals, but
spatial navigation based on multiple distal cues is
severely impaired [81]. Pcd mice show deterioration of
delayed eye-blink classical conditioning [83] but not the
trace one [84].
Although the Agtpbp1pcd/J mutation is known to be

recessive, it has mild effect on Purkinje cells also in
heterozygous individuals. At P150 there are no differ-
ences in Purkinje cell number between wild type and
heterozygous pcd mice, however, by P300 there is
20% reduction in heterozygotes [85]. Doulazmi et al.
[86] reported a similar (18%) reduction at 17 months,
in heterozygous pcd mice. This mild degeneration has
been shown to promote fusion of surviving Purkinje
cells with grafted bone marrow-derived cells [85].

Nervous mice
Nervous mice are autosomal recessive mutants suffering
from a severe degeneration of Purkinje cells. The ner-
vous mutation (nr) is located on chromosome 8 [87,88].
The Nervous phenotype shows incomplete penetrance
and the existence of a nervous modifier locus on mouse
chromosome 5 is supposed [88].
On P9 abnormal rounded mitochondria appear in

some Purkinje cells and by P15 abnormal mitochondria
are present in all Purkinje cells [89]. Later, most of the
cells display progressive degenerative changes in the
rough endoplasmic reticulum, Golgi complex and poly-
somes. As late as P23 the number of the Purkinje cells is
still almost normal, however, rapid degeneration follows
and by P50 80% of Purkinje cells in the vermis, 88%
along the vermis-hemisphere junction and 97% in the
hemispheres are gone [89]. Although every nervous
Purkinje cell has spherical mitochondria, 10% of the
Purkinje cells do not degenerate and their mitochon-
dria reacquire normal shape [89]. Purkinje cell necrosis is
mediated by tissue plasminogen activator, levels of which
are elevated in the cerebellum of homozygous nervous
mutant mice [90,91]. As a consequence of Purkinje cell
loss, one third of the inferior olive neurons undergo
retrograde degeneration [92]. Berrebi and Mugnaini [93]
described alterations in the dorsal cochlear nuclei of Ner-
vous mice that were similar to those seen in Purkinje
cells and reported that although most of the cartwheel
cells of the nuclei survive, they show abnormal mito-
chondria throughout adulthood.
Nervous mutant mice are characterized by their hyper-

activity and ataxia [94]. They show impairment on the
stationary beam, coat-hanger, and rotarod tests of motor
coordination, impairment on the submerged platform,
but not the visible platform, Morris water maze task
and with higher levels of motor activity in an auto-
mated chamber but normal activity on the open field
test [94]. The phenotype of nervous mice also includes
lower body weight than wild type mice with the same
background [94].
The Nervous mutation also leads to retinal degener-

ation [95]. Photoreceptors degenerate rapidly between
P13 and P19, and then degeneration slows [96]. By
7.5 months the outer nuclear layer of the retina consists
only of a single row of nuclei, most of which are lost
later so that in 17 months old mice only a few photore-
ceptors remain [96].

Staggerer mice
The Staggerer is an autosomal recessive mutation (Rorasg)
in the gene encoding the retinoid-related orphan recep-
tor alpha on chromosome 9 [97]. In their first descrip-
tion Staggerer mice were characterized by a staggering
gait, tremor hypotonia, small body size and a cerebellar
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cortex having few granule cells and unaligned Purkinje
cells [98].
Development of Purkinje cell spines is delayed in

Staggerers. The spines appear later on both the cell
soma and dendrites and their density is lower [99].
Cytological appearance and degeneration of Purkinje
cells is regionally variable and by P30 between 60% and
90% are gone [100]. Surviving Purkinje cell somata and
dendrites are smaller, ectopic and the dendrites are not
confined to the sagittal plane [101,102]. The regional
variability of Purkinje cells along the mediolateral axis
seems to correspond with variability in calbindin ex-
pression [103]. The external granular layer is thinner
and the number of postmitotic granule cells is reduced
by P21 and almost all granule cells have degenerated by
P28 [101]. Staggerer mice lack synapses between Purkinje
cells and parallel fibers before granule cells disappear. On
the other hand, regression of multiple innervations of
Purkinje cells, by climbing fibers, fails and so several of
these fibers synapse with each Purkinje cell instead of a
single one as in normal mice [104,105].
A study using Staggerer-wild type chimeras revealed

that in the Staggerer-genotype medium-to-large neurons
in the cerebellum expressed all the defects present in
homozygous Staggerer mice, while genotypically wild
type Purkinje cells had a normal appearance, suggesting
that Purkinje cell defects are cell-intrinsic [102,106]. On
the other hand, Staggerer granule cells were rescued in the
chimeras and their number had a linear relationship with
the number of Purkinje cells, thus granule cell death is an
indirect consequence of the mutation [24,107,108].
Deep cerebellar nuclei, despite being reduced in vol-

ume by 30% have normal numbers of neurons [109,110].
There is also marked disorganization and loss of almost
60% of the cells within the inferior olivary complex due
to target-related cell death, which is secondary to the de-
generation of Purkinje cells [111]. Despite the Rorasg

mutation being described as a recessive mutation, het-
erozygous mutants, at 12 months, have undergone de-
generation of 35% of Purkinje cells, 35% of granule cells
and 40% of inferior olive neurons [112]. The Rorasg mu-
tation also influences neuronal differentiation and devel-
opment in the hippocampal dentate gyrus as shown by a
lower expression of doublecortin and NeuN [113].
Staggerer mice display an enhanced endocrine re-

sponse to novelty stress, which lacks the diurnal shift in
corticosterone nonstress levels [114]. Staggerers have
multiple behavioral and motor abnormalities. They have
an unsteady gait, shorter fall latencies on the wooden
beam, grid [115] and rotarod tests [116]. On the rotating
grid, wooden beam and coat hanger tests, Staggerer mice
had worse performances than wild type controls and they
were not able to improve when the tasks were repeated
for 7 days [31]. They performed poorly on the radial arm

maze and active avoidance tasks [117]. Staggerer mice had
fewer hole visits in the hole board test [115]; however, they
explored novel objects in a familiar environment for lon-
ger times [118] and showed a tendency to return to the
place in a maze that they had most recently visited, prob-
ably due to abnormal novelty reactions [119]. Since
their cerebellum is already abnormal at birth, newborn
Staggerers are less efficient in specific motor tasks, have
lower body weight and differ from wild type mice in
ultrasound production [120].

Weaver mouse
Weaver mice are semi-dominant mutants carrying the mis-
sense GrikWv mutation of the gene encoding a G-protein
coupled with inward rectifying potassium channel and lo-
cated on chromosome 2 [121]. The mutation results in a
disorganized cerebellar structure [122,123] and also affects
several extra-cerebellar brain areas.
By the time the pups are born, cell death is detectable

in the external granular layer of both homozygous and
heterozygous Weaver mice [124]. After birth, abnormal-
ities develop dramatically when the granule cells begin
to migrate, so that by P10 developmental defects are
markedly present [123]. At this age, the cerebellum of
heterozygous Weaver mice is reduced by 5-10%, the
granular layer is thinner, while the external granular
layer is disarranged and wider than in wild type mice
and Purkinje cells are less strictly aligned [123]. The mo-
lecular layer is narrower, but shows a greater density of
cell bodies because it contains young granule cells [123].
Those cells having a typical soma are properly aligned
with normal Bergmann glial fibers, many of the anomal-
ous cells lie contiguous with abnormal glial processes
and cells that have lost contact with glial cells are usually
seen in various stages of degeneration [123]. In homozy-
gous Weaver mice, cerebellar abnormalities are much
more pronounced. The external granular layer is indis-
tinct, granule cells form irregular vertical stacks and
many of them have degenerated and Purkinje cells are
arranged in several rows and have randomly oriented
dendritic trees [123,125]. As in Staggerer mice, Weaver
mice Purkinje cells receive multiple innervations from
climbing fibers [126]. Later in life cerebellar cytoarchi-
tecture improves somewhat in heterozygous Weaver
mice, while most of the homozygotes die around wean-
ing time [123].
Contrary to Lurcher, pcd and Nervous mice, Purkinje

cell loss is mild in Weavers. Heterozygotes have 86%
and homozygotes 72% of the normal number of Purkinje
cells [127]. The reduction in the number of Purkinje
neurons, as well as granule cells, is more severe in the
medial parts of the cerebellum than in lateral areas of
the hemispheres [128]. Homozygous Weaver mice suffer
from a 20-25% decrease in the number of deep cerebellar
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nuclei neurons [129]. The inferior olive of both homozy-
gous and heterozygous weaver mice is normal, olivocere-
bellar projections have a normal topographic organization
[127] and most cerebellar afferent pathways appear to be
unchanged [130,131]. On the other hand, Ozaki et al. [132]
described degeneration of pontine nuclei neurons and re-
traction of mossy fibers from the cerebellar cortex.
The fact, that degenerating granule cells had abnormal

or no contact with Bergmann glia led to the suggestion
that the degeneration and reduced rate of migration of
granule cells is secondary to a disorder of Bergmann
glial cells [123,133]. Later studies on chimeric mice re-
vealed that while ectopic Purkinje cells were of both
Weaver and non-Weaver origin, all ectopic granule cells
were from the weaver component of the chimera, thus the
abnormality seen in granule cells is intrinsic and a direct
effect of the GrikWv mutation [134]. Furthermore, degener-
ation affects Weaver Purkinje cells but not non-Weaver
Purkinje cells, indicating that while the disorganization of
Purkinje cells is an indirect effect, their degeneration is a
direct result of the GrikWv mutation [135].
Despite the absence of parallel fibers, Weaver Purkinje

cells have normal initial development of both somatic
and dendritic spines [136]. They grossly resemble nor-
mal Purkinje cells electrophysiologically, when the only
qualitative difference is in response to acetylcholine,
which increases their firing rate instead of having its
usual inhibitory effect [137].
Besides the cerebellum, changes in several other areas

of the CNS have been found in Weaver mutants. Cell
loss has been described in the pars compacta of the sub-
stantia nigra, ventral tegmental area and the retrorubral
nucleus [138-140]. In the hippocampus of homozygous
Weaver mice, a thicker pyramidal cell layer in the CA3
area with cell-free spaces, ectopic clusters of pyramidal
cells, on occasions subdivision of the pyramidal cell layer
into 2–3 layers and disorganized mossy fiber projections
have been described [141]. The retinas of adult Weaver
mice contain more dopaminergic cells, some of which have
an abnormal appearance and location [142]. Retinopetal
tyrosine hydroxylase-immunoreactive fibers are also
dramatically increased in number [143].
Weaver mutants do poorly on the spatial navigation in

the water maze test [144]. In the forced swimming task,
they did not acquire the immobility response, which was
seen wild type mice [145]. Weaver mice had less explora-
tory activity on the hole board test and shorter fall laten-
cies on the wooden beam and grid tests [146]. They also
showed learning deficits [147]. Like some other cerebellar
mutations, the GrikWv mutation leads to male sterility due
to the death of germ cells in the testes of homozygous
males [148].
Motor performance of Weaver mutants has been

shown to improve after removal of the cerebellum, which

eliminated the faulty output of the surviving Purkinje cells
[149]. This suggests that dysfunctional Purkinje cells can
be worse than no Purkinje cells at all. Granule cells death
has been identified as being apoptotic [150,151]. In vitro
studies showed that Weaver granule cells can be rescued
by pharmacological blockade of sodium influx [152], with
the calcium channel blocker verapamil, with high concen-
trations of the glutamate receptor antagonist MK-801,
using antibodies against the B2 chain of laminin [153] and
by protease inhibitors [154]. Nevertheless, removal of tis-
sue plasminogen activator, a serine protease, which is ele-
vated in the cerebellum of Weaver mice, did not protect
against the degeneration of granule cells [155]. Overexpres-
sion of insulin-like growth factor-I was found to protect
Weaver granule cells in vivo, improve muscle strength and
alleviate ataxia [156].

Reeler mouse
Reeler mice [157] have an autosomal recessive Relnrl

mutation on chromosome 5 [158]. The gene encodes the
extracellular matrix protein reelin, which is important
for neural cell migration [159]. The mutation leads to
disordered neuron migration during CNS development
resulting in architectonic disorganization and ectopic
cell localization in the cerebellum [160,161], hippocam-
pus [162,163], neocortex [164], inferior olive [165], olfac-
tory bulb [166], cochlear nucleus [167], superior colliculus
[168] and substantia nigra [169]. The characteristic feature
of the Reeler brain cortex is an inversion of the layers and
cells [170]. Nevertheless, most of the structures are appro-
priately interconnected [171-175].
The cerebellum of homozygous Reeler mice is reduced

in size [176]. Since embryonic day 17, foliation of the
cerebellum becomes deficient [177]. A study of the
histological structure of the Reeler cerebellum revealed
deep alteration of the cerebellar cortex architecture con-
sisting of out of place Purkinje cells in various locations,
lower density of granule cells, lower density of synaptic
contacts between Purkinje cells and parallel, climbing
and mossy fibers and basket cells [176,178,179]. Purkinje
cells are reduced to slightly less than half the normal
number and only 5% of the surviving ones are posi-
tioned normally, i.e. located between the molecular and
granular layers, while 10% are located within the granular
layer and the majority are in characteristic subcortical
cellular masses [180]. Some granule cells are retained
in the molecular layer. Their axons have an abnormal
course and in some cases have no T-like bifurcation
[181]. The distribution of fibers within the white matter
and their arborization are changed as a result of the
cerebellar architecture disorganization [182]. Despite
all the above mentioned disarrangement, the specificity
of most of the connections is preserved [176]. Some ab-
normalities, however, have been discovered: (1) deep
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Purkinje cells receiving several climbing fibers, (2) ectopic
somato-dendritic or dendro-dendritic synapses between
granule and Purkinje cells and (3) synapses between mossy
fibers and Purkinje cell spines appearing in the granular
layer and central mass [176,183]. Despite this, intracellular
recordings showed that Reeler Purkinje cells have normal
sodium- and calcium-dependent spikes [184]. The homo-
zygous Reeler inferior olivary complex is reduced in size
by 22.6% [127].
During brain development, the upward migration of

young neurons is terminated in the depths of the neo-
cortex; additionally, abnormally extensive contacts be-
tween glial fibers and somata of post-migratory cells
appear to be sustained in Reeler mutants suggesting that
abnormal adhesions between post-migratory cells and
radial glial fibers obstruct neuronal migration [185].
Within the cerebellum, the role of dysgenesis of radial
glia in obstructed migration of Purkinje cells has been
shown by Yuasa et al. [186]. Goffinet et al. [179] sug-
gested that the primary defect in the Reeler cerebellum
is malposition of Purkinje cells and that the mutation af-
fects the terminal phase of migration of these cells in
the cerebellum. However, findings of normal cerebellums
in normal mouse-Reeler chimera suggest that the dis-
turbance of neuronal migration in Reelers is attributable
to abnormal cell-to-cell interactions between young neu-
rons and the radial glia [187] and is not determined cell-
autonomously [188].
Reeler mice have lower neurogenesis rates and in-

creased susceptibility to ischemic brain injury [189] and
to epileptic seizures [190]. In humans, autosomal reces-
sive lissencephaly is associated with mutations in the
reelin encoding gene; and as with Reeler mice, neuronal
migration is impaired and abnormalities in the cerebel-
lum develop [191].
Reeler mice have an interesting behavioral phenotype.

Homozygous Reeler mice performed poorly on the ac-
tive avoidance task and on the radial arm maze task;
however, they were able to improve to a level similar to
wild-type controls after training [117]. Reeler mice also
performed poorly on the spontaneous alternation task in
the T-maze, water maze, stationary beam, coat-hanger
and rotarod tests [192].
Various behavioral abnormalities have also been re-

ported in heterozygous Reeler mice. Heterozygous Reeler
mice have a deficit in learning olfactory discrimination
[193]. Young heterozygous Reeler mice showed signi-
ficantly lower levels of anxiety- and risk-assessment-
related behaviors in the elevated plus-maze, whereas
adult mice exhibited elevated levels of motor impulsivity
and altered pain threshold [194]. Heterozygous mice also
exhibited complex changes in startle reactivity and sen-
sorimotor gating [195]. The vocal repertoire of neonatal
Reeler mice is characterized by preferential use of a

specific two-component call [196]. In heterozygous mice
the number of calls is increased and the ontogenetic
peak in the frequency of calls is delayed compared to
wild type mice, while in homozygous Reeler mice the
peak is absent [196]. On the other hand, a detailed be-
havioral study by Podhorna and Didriksen [197] did
not find any differences between heterozygous Reelers
and wild type mice. Qiu et al. [198] also reported similar
performance in heterozygous Reelers and wild type mice,
but found a reduction in contextual-fear-conditioned-
learning and impaired hippocampal long-term potenti-
ation in heterozygotes.
Some neurobehavioral abnormalities reported in Reeler

mice are thought to parallel some features found in human
psychiatric disorders and heterozygous Reeler mice
have even been suggested as a model of schizophrenia
[199,200]. On the other hand, Krueger et al. [201] do not
consider heterozygous Reeler mice to be an appropriate
model for schizophrenia but rather of general learning defi-
cits associated with many psychiatric disorders.
Several experimental therapies have been developed

for heterozygous Reeler mice. Cysteamine treatment
was found to improve prepulse inhibition and Y-maze
performance [202]. Nicotine treatment elevated reelin
in the brain to wild type levels and normalized hyper-
activity [203]. Reelin supplementation was also found
to enhance associative learning ability and prepulse
inhibition [204].

Scrambler mouse
The spontaneous autosomal recessive scrambler muta-
tion (Dab1scm-3J) in the disabled-1 (DAB1) gene on
chromosome 4 was described by Sweet et al. [205]. The
cerebellum of one month old homozygous Scrambler
mice is hypoplastic and devoid of folia [205]. Granule
cells numbers are reduced by 80%, Purkinje cells num-
bers are also reduced and only 5% are normally located
[206]. Despite Purkinje cell ectopia, topographic affer-
ents remain conserved [207].
Homozygous Scrambler mice suffer from an unstable

ataxic gait and whole body tremor [205] that distin-
guishes them from controls by as early as P8 [208].
Scrambler mice performed poorly on the rotarod, sta-
tionary beam and coat-hanger tests [209], but were able
to improve their performance on the vertical grid [210]
and were more active in the open field [209]. In the al-
ternation test, Scrambler mice did not alternate above
chance levels and they were impaired in both the hidden
and visible platform Morris water maze tasks [211].
The Scrambler phenotype is similar to Reeler mice

[205,212] despite normal levels of reelin in Scrambler
mice [206]. This is because function of extracellular
reelin, which is affected in Reeler mice depends on the
intracellular protein disabled-1 [206,213].
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Mouse models of human hereditary cerebellar
ataxias, genetically engineered and new
cerebellar mutants
New sources of cerebellar mutant mice include trans-
gene technology, induced and targeted mutations and
mutagenesis enhanced with mutagen substances [214,215].
The latter approach is capable of providing large numbers
of random mutations carriers that can be identified accord-
ing to the abnormal phenotype. Many mouse models of
cerebellar disorders, namely those genetically engineered,
are related to particular human disease.

SCA1
Spinocerebellar ataxia type 1 (SCA1) is one of the auto-
somal dominant hereditary ataxias. It is caused by an en-
larged region of CAG trinucleotides repeat in the ataxin-1
gene which results in a poly-glutamine tract (polyQ) ex-
pansion in the ataxin-1 protein. Normal length varies be-
tween 6 and 35 repeats, while in SCA1 patients it is 39–83
(for review see [216]).
Burright et al. [217] generated transgenic SCA1 mice

carrying the allele with 82 CAG repeats under the con-
trol of the murine Pcp2 promoter, which is supposed to
be capable of directing transgene expression specifically
to Purkinje cells. Five lines of the mice showed transgene
expression levels 10-100-fold greater than levels of en-
dogenous mouse ataxin-1 mRNA [217]. Morphologic
changes had varying intensities depending on the trans-
genic mouse line and on the presence of heterozy-
gous or homozygous combinations of the transgene [217].
Morphologic changes consisted of a marked loss of
Purkinje cells, abnormal Purkinje cell dendritic trees,
Bergmann glia proliferation, shrinkage and gliosis of the
molecular layer and the presence of ectopic Purkinje cells
in the molecular and granular layers [217]. Progressive
ataxia appeared earliest (at the age of 12 weeks) in the
line with the highest transgene expression; however,
among other lines ataxia onset and severity were not
strictly correlated with transgene mRNA [217]. Clark
et al. [218] described the same SCA1 mice shorter strides
at 12 weeks and dramatic gait pattern abnormalities at
1 year, and diminished performance on the rotarod test
obvious by 5 weeks.
Transgenic mice helped in the discovery of some pos-

sible components of the pathogenesis of SCA1. Klement
et al. [219] demonstrated that while nuclear localisation of
pathological ataxin-1 is necessary, its nuclear aggregation
is not required to initiate pathogenesis in transgenic mice.
Cummings et al. [220] suggested that impaired proteaso-
mal degradation of mutant ataxin-1 may contribute to
SCA1 pathogenesis in transgenic mice. Expanded ataxin-1
has been found to mediate downregulation of genes in-
volved in signal transduction and calcium homeostasis in
SCA1 mice prior to manifestation of the pathology [221].

SCA2
Transgenic mice carrying the human ataxin-2 gene, with
an enlarged CAG repeat sequence, are used as a model
of human spinocerebellar ataxia type 2 (SCA2). Normal
ataxin-2 usually contains 22 or 23 glutamines. SCA2 pa-
tients have 32–77 repeats (for review see [216]). SCA2
transgenic mice were generated in several lines with dif-
ferent lengths of the CAG repeat segment and varying in
severity of disease manifestation.
Transgenic SCA2 mice with 58 CAG repetitions in the

ataxin-2 gene (Q58) under control of the Pcp2 promoter
were generated in 3 founder lines (Q58-5B, Q58-11,
Q58-19) on the B6D2 hybrid background by Huynh
et al. [222]. Purkinje cell numbers were reduced by
about 50% in mice 24–27 weeks old. Mice from the
Q58-19 line showed altered stride length by the 8 weeks
and by 16 weeks stride length was reduced in all 3 lines
[222]. At 6 weeks, transgenic mice did not differ on the
rotarod test from wild type controls, homozygous and
heterozygous mice from the Q58-11 line were perform-
ing poorly by 16 or 26 weeks respectively. Mice from the
Q58-5B line had performances similar to those from the
Q58-11 line [222].
Aguiar et al. [223] described a similar pathology in

mice (B6D2 hybrid background) carrying the SCA2
transgene with 75 CAG repeats (Q75) under SCA2 self-
promoter regulation, including earlier onset of symptoms
in homozygous compared to heterozygous individuals.
Dispersion of ataxic symptom onset time was higher in
heterozygotes [223].
Transgenic SCA2 mice (B6D2 hybrid background) ex-

pressing Q127 ataxin-2 under control of Pcp2 promoter
have been shown to have a reduction in the expression
of genes specific for Purkinje cells (such as Calb1, Pcp2,
Grid2), to have a decrease in Purkinje cell firing frequency
first at 6 weeks and progressive motor performance deteri-
oration identified, using an accelerating rotarod test, began
at 8 weeks [224]. Motor decline, electrophysiological ab-
normalities as well as gene expression changes preceded
the decrease in Purkinje cell number, which occurred sev-
eral weeks later [224].
It seems, that the manifestation was more sever in

mouse lines with longer polyQ tracts and this phe-
nomenon is in agreement with the inverse correlation
observed between CAG repeat length and the age of on-
set in human patients [225]. Moreover, experiments with
transgenic SCA2 mice clearly show that the homozygous
combination of the pathologic allele, which is unusual in
humans, leads to an earlier onset of symptoms.
Studies on transgenic SCA2 mice have provided im-

portant information about certain aspects regarding the
pathogenesis of the disease. Huynh et al. [222] showed
that nuclear localization and inclusion body formation
of ataxin-2 are not necessary for disease development.
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Liu et al. [226] demonstrated that (1) glutamate induced
more pronounced cell death in the Q58 Purkinje cell
culture than in wild type cells, (2) glutamate-induced
cell death was attenuated by dantrolene, a calcium ion
stabilizer, and (3) long-term treatment of SCA2-58Q
mice with dantrolene alleviated motor deficits and Pur-
kinje cell loss. These findings suggested that disturbed
calcium signaling may play a role in the pathogenesis of
SCA2 [226].

SCA3
Spinocerebellar ataxia type 3 (SCA3) is also known as
Machado-Joseph disease. It is a late-onset degenerative
disease caused by a CAG repeat expansion in the gene
encoding the ataxin-3 protein. Within normal alleles, re-
peat length varies between 12 and 44 CAG trinucleo-
tides. In SCA3 patients, the length is 52–86 (for review
see [216]).
Transgenic mice with alleles containing polyglutamine

tracts of 64, 67, 72, 76 and 84 repeats have been gener-
ated by Cemal et al. [227]. These transgenic mice suffer
from a loss of neurons in the pontine nuclei, increased
numbers of reactive astrocytes in the dentate nucleus,
cerebellar white matter and moderate degeneration of
Purkinje cells, which showed dependence on the trans-
gene copy number [227]. The mice had a wide gait
during grid climbing, lowered pelvises, tremor, lower
activity, clasping, and slow weight gain [227]. They also
had features suggesting peripheral neuropathy character-
ized by demyelination and degeneration of the dorsal
root ganglia [227].
Transgenic mice expressing ataxin-3 with an expanded

polyglutamine tract with 79 repeats suffer from progres-
sive ataxia with onset at 5–6 months, followed by pro-
gression, despite no prominent neuronal loss in the
cerebellum, even as late as 10–11 months [228]. This
suggests that neuronal dysfunction and down-regulation
of cerebellar expressions of proteins involved in synaptic
transmission, signal transduction or regulation of neur-
onal survival and differentiation, rather than Purkinje
cell loss, could be responsible for the decline in cerebellar
function [228,229]. Studies on the SCA3 transgenic mouse
model have suggested that Purkinje neuron dysfunction as-
sociated with altered voltage-activated potassium channels
[230], calcium-dependent calpain-type proteases [231], and
disruption of dendritic development and metabotropic glu-
tamate receptor signaling in Purkinje cells by mutant
ataxin-3 [232] may also play role in the pathogenesis of
SCA3. Soluble extended ataxin-3 has shown a tendency for
decrease during disease progression in the cerebellum and
to inversely correlate with aggregate formation and pheno-
typic aggravation in SCA3 mice [233].
Boy et al. [234] and Nobrega et al. [235] showed, that

symptoms can be alleviated with pathological ataxin-3

expression silencing in diseased transgenic SCA3 mice.
Halting the expression of ataxin-3 is seen as a hopeful
therapeutic approach since the technique cleared nuclear
accumulation of the abnormal protein in SCA3 mice
[236]. Stimulation of proteasome activity by Rho-kinase
alleviated the neurological phenotype in SCA3 mice
since it may promote mutant ataxin-3 degradation [237].

SCA6
Spinocerebellar ataxia type 6 (SCA6) is due to a CAG
repeat expansion in the CACNA1A gene encoding the
alpha 1A-voltage-dependent calcium channel (CaV2.1)
[238]. Normal alleles have 4–16 repeats, while alleles
causing disease contain 20–33 repeats (for review see
[216]). Different mutations in the same locus appear in
ataxic mouse mutants Tottering [239,240], Leaner [241]
and Rocker [242].
Mice expressing CaV2.1, with the 84 polyglutamine

tract, developed progressive motor impairment and ag-
gregation of the mutant protein [243]. Homozygous
mice exhibited hypoactivity at 17 months and poor per-
formances on the accelerating rotarod [243]. Heterozy-
gotes were indistinguishable from wild type controls based
on visual inspection up to 20 months, however, at
19 months they were underperforming on rotarod test
[243]. No neuronal loss, no changes in Purkinje cell
morphology and no alterations in calbindin immunoreac-
tivity were found in these mice, even as late as 20 months,
when motor deficits were already apparent [243].
Studies on SCA6 mice with 28 or 84 polyglutamine re-

peats have shown that voltage dependence of activation
and inactivation, and current density measured in Pur-
kinje cells were not influenced by the polyglutamine
tract length, which suggests that alteration of CaV2.1
channel properties does not play a role and that the
pathogenesis of SCA6 may be linked to accumulation of
mutant channels [243,244]. The decreased whole cell
current density could be attributed to a decrease in
CaV2.1 channel numbers [243]. In Tottering mice, a mu-
tation in the CACNA1A gene leads to irregular simple
spike activities in Purkinje cells without any change in
other activity parameters and this abnormality has been
suggested as being sufficient to produce behavioral ab-
normalities [245].

SCA7
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenera-
tive disease caused by expansion of a CAG repeat within
the gene encoding ataxin-7. The normal range is 7–19
repeats. Pathological alleles contain from 37 to more
than 400 CAG triplets. Among SCAs, it is the only one
characterized by severe ataxia and at the same time by
visual loss due to pigmentary macular degeneration (for
review see [216]).

Cendelin Cerebellum & Ataxias 2014, 1:4 Page 9 of 21
http://www.cerebellumandataxias.com/content/1/1/4



Nuclear inclusions of mutant ataxin-7, motor coordin-
ation and vision impairment have been reported in mice
overexpressing full-length mutant ataxin-7 with 90 glu-
tamines (Q90) in Purkinje cells and photoreceptors
[246]. Yoo et al. [247] generated an authentic mouse
model of SCA7 by targeted insertion of 266 CAG re-
peats into the mouse SCA7 locus. The mice displayed an
infantile form of SCA7 that is manifested by ataxia, vis-
ual deficit, impaired short-term synaptic potentiation
and premature death [247]. In transgenic mice, expres-
sion of the Q92 ataxin-7 in all CNS neurons, except for
Purkinje cells, led to severe Purkinje cell degeneration,
development of gait ataxia, and formation of truncated
ataxin-7 nuclear aggregates that correlated with disease
phenotype onset and even to premature death [248].
These findings suggest that the degeneration of Purkinje
cells is non-cell-autonomous in SCA7 and that lack of
proteolytic cleavage may be one of the SCA7 pathogen-
etic mechanisms [248]. The next feature of SCA7 patho-
genesis may be changes in gene expression. Mice
expressing Q52 ataxin-7 and exhibiting motor dys-
function since the age of 7 months had down-regulated
mRNA expression of proteins involved in glutamatergic
transmission, signal transduction, myelin formation, axon
transport, deubiquitination, neuronal differentiation and
glial function [249]. Contrary to mice expressing Q92
ataxin-7, mice expressing Q52 did not lose significant
numbers of Purkinje cells, despite ataxic symptoms [249].
Experimental therapeutic approaches have been suc-

cessfully tested in SCA7 transgenic mice. Suppression of
mutant gene expression by 50%, started one month after
the ataxia onset, was effective at halting or reversing
motor symptoms, reducing mutant ataxin-7 aggregation
in Purkinje cells and preventing synaptic loss between
climbing fibers and Purkinje cells [250]. As with SCA3
mice, augmenting proteasome activity promoted mutant
ataxin-7 degradation [237]. It has also been shown that
interferon beta was able to induce clearance of ataxin-7
and improved motor function in Q266 SCA7 mice [251].

SCA23
SCA23 is a rare disease caused by mutations in the gene
encoding prodynorphin (for review see [216]). Prodynor-
phin knock-out mice are more sensitive to noxious stim-
uli but have normal responses to non-noxious stimuli
[252]; additionally, mutant dynorphin proteins have en-
hanced non-opioid excitatory activities which may underlie
development of SCA23 [253]. Nevertheless, these mice
have not been tested yet for phenotypic similarity to hu-
man SCA23.

DRPLA
Dentatorubral-pallidoluysian atrophy (DRPLA) is an auto-
somal dominant neurologic disorder. It manifests as

variable combinations of cerebellar ataxia, dementia,
epilepsy and choreoathetosis. It is caused by an un-
stable expansion of CAG repeat in the gene encoding
atrophin-1 on chromosome 12 [254]. The age at symptom
onset is highly variable and correlates with the length of
the polyglutamine tract [254].
Transgenic mice with 78 CAG repeats in the DRPLA

gene showed intergenerational instability of the CAG re-
peat tract, which is typical for human DRPLA [255].
Mice with 76 CAG triplets also revealed instability but
no obvious neurological abnormalities [256,257]. Mice
having 129 repeats revealed a marked neurological
phenotype, age dependent dysfunction of the globus
pallidus and cerebellum, shrinkage of the distal dendrites
of Purkinje cells, intranuclear accumulation of mutant pro-
tein and progressive brain atrophy, but no neuronal loss
[256,257]. Changes in gene expression in the cerebellum
and cerebrum, due to intranuclear accumulation of mutant
DRPLA protein have been shown [258]. Increase in the se-
verity of motor deficits that parallels the length of the ex-
panded CAG repeats and with age, has been observed in
mice carrying full-length mutant human DRPLA gene with
76, 96, 113 or 129 CAG repeats.

Niemann-pick disease model
Niemann-Pick disease is an autosomal recessive inher-
ited storage disease with types A, B and C. Its manifest-
ation is heterogeneous and consists of extraneural and
CNS (in type A and C) affections, with depletion of
Purkinje cells being seen in type C. Mutations causing
the analogous disease in mice have been described and
transgenic mouse models for Niemann-Pick disease type
C have been created [259-261]. Poor performances on
motor tests and also on the water maze task with the
hidden escape platform have been reported in these
mice [262,263]. Cerebellar affection, however, is only
one of multiple pathologies affecting these mice. There-
fore this model is not suitable for studying cerebellar
functions. Nevertheless, it has been successfully used
several times to investigate the pathogenesis of Niemann-
Pick type C disease [264,265] and to assess pharmaco-
logical [266] and transplantation [267-270] methods that
could potentially be used to treat those afflicted with
Niemann-Pick type C disease.

Friedreich ataxia
Friedreich ataxia (FRDA) is a human autosomal reces-
sive disease caused by a GAA triplet repeat expansion in
the gene encoding the frataxin, a mitochondrial protein
involved in iron metabolism (for review see [271]). Sev-
eral transgenic mouse models have been generated.
Al-Mahdavi et al. [272] reported vacuoles within dorsal
root ganglia neurons, axons demyelination, coordination
deficits and decreased locomotor activity. The next mouse
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model with a frataxin transgene containing 230 GAA re-
peats and reduced expression of wild type frataxin did not
develop motor coordination impairment and iron metabol-
ism anomalies [273]. Several other transgenic mice carry-
ing pathological frataxin gene alleles have yet to be tested
for Friedreich ataxia phenotype.

Robo3-deficient mouse
Robo3 (known also as Rig-1 or HGPPS), a member of
the roundabout family of transmembrane receptors, has
been shown to be important for neurons and axons to
cross the midline in mice [274,275]. Robo proteins also
regulate midline crossing of precerebellar neurons and
cerebellofugal axons [275-277]. In humans, Robo3 is re-
lated to a syndrome involving horizontal gaze palsy with
progressive scoliosis (HGPPS) [278,279]. Robo3 deficient
mice are not a model of cerebellar degeneration but
rather a developmental disorder of the laterality of pro-
jections from axons including those connecting the cere-
bellum with other CNS structures. Renier et al. [280]
generated Ptf1a::cre;Robo3lox/lox mice lacking the intero-
livary commissure. While in normal mice inferior olive
neurons project contralaterally to the cerebellum, in
Ptf1a::cre;Robo3lox/lox mice 67% of inferior olive neurons
have ipsilateral projections [280]. For the flocculus of
Ptf1a::cre;Robo3lox/lox mice, 76% of olivary neurons pro-
viding climbing fibers were located ipsilaterally [281].
On the other hand, lateralization of mossy fiber projec-
tions into the cerebellum and the size, structure and
cytoarchitecture of the cerebellum were not affected
[280,281]. Nevertheless, these mice suffer from severe
ataxia starting around postnatal day 10 and the motor
deficit has been shown to be even more severe than that
seen in Lurcher mice, which completely lack cerebellar
cortex output [280]. Ptf1a::cre;Robo3lox/lox mice showed
deficits in the gain and phase of the optokinetic reflex
and vestibulo-ocular reflex in light and higher variability
of both reflexes compared with control mice [281].

Research applications for mutant ataxic mice
Functional abnormalities
Cerebellar mutant mice suffer from more or less severe
cerebellar ataxia but also display a wide range of inter-
esting and variable cognitive impairments and behavioral
abnormalities. Therefore cerebellar mutants could pro-
vide information about the involvement of the cerebel-
lum in cognitive, affective and executive processes.
Experiments in cerebellar mutant mice have confirmed

the role of the cerebellum in motor learning (for review
see [282]). Nevertheless, motor learning deficits are not
equal in all cerebellar mutants. E.g. as shown by Lalonde
et al. [31], Staggerer mice did not improve their motor
performance during repeated training, while Lurcher
and hot-foot mice did. Eyelid conditioning seems to be a

good model of associative learning that enables analysis
of the execution of a learned motor response. Using this
technique, changes in classical conditioning, in execu-
tion of the conditioned response and the modulating
role of interpositus and red nuclei were described in
Lurcher mice [42,46,283]. Pcd mice have also been
shown to be partially defective in eyelid conditioning
and residual learning ability has been attributed to the
deep cerebellar nuclei [83,284]. Classical eye blink con-
ditioning deficit has also been found in global and
Purkinje cell-specific Fmr1 gene knockout mice which
show morphological and behavioral features similar to
fragile X syndrome patients [285]. Defects of conditioned
eye blink responses have also been found in human cere-
bellar patients [286,287].
Spatial learning or orientation deficits in various types

of mazes have been reported in many types of cerebella
mutants: Lurcher [41-44], Hot-foot [62], Pcd [81],
Nervous [94], Staggerer [117], Weaver [144], Reeler [192],
Scrambler [211] and in Niemann-Pick C disease mouse
model [262,263]; however, difficulties in solving water
maze tasks are not uniform (compare references e.g.
[44,81] and [94]). While impaired navigation to a hidden
goal with preserved ability to navigate toward a visible
goal (pcd, Nervous) is supposed to indicate a spatial learn-
ing defect, impaired navigation to both hidden and visible
goals (Lurcher) suggests more complex problems [44].
Furthermore, it is not always clear whether the poor per-
formance in the maze is specifically a consequence of im-
paired spatial learning ability since motor and oculomotor
deficits or affective function abnormalities could influence
the behavior of the mice in the maze.
Some behavioral abnormalities of cerebellar mutants re-

semble features of human psychiatric disorders. Con-
versely, abnormalities in cerebellar morphology have been
described e.g. in autistic patients [288-290]. Cerebellar
pathology is considered to play a key role in the pathogen-
esis of autistic spectrum disorders (for review see [291]).
Autism spectrum disorders have often been shown to be
accompanied by developmental Purkinje cell loss (e.g.
[292]) and some patient features are analogous to behav-
ioral and cognitive abnormalities in cerebellar mutant
mice [53,293]. Heterozygous Reeler mice have been pro-
posed, with some objections, as model of schizophrenia
or neurodevelopmental psychiatric diseases in general
[199-201,294]. Lurcher mice with their behavioral disin-
hibition and stress axis hyper-reactivity also mimic some
psychiatric abnormalities [42,49-52].
It is, however, impossible to consider common cerebel-

lar mutant mice to be direct models of psychiatric disor-
ders. For psychiatric disorders involving a cerebellar
pathology, there are more specific models, such as Fmr1
gene knockout mice for fragile X syndrome [285] or
neuroligin-3 knockout mice, a model for nonsyndromic
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autism [295]. Nevertheless, detailed analysis of behav-
ioral abnormalities and their correlation with structural,
ultrastructural or biochemical changes in the cerebellum
of various types of ataxic mutant mice could reveal the
role of the cerebellum in control of behavior and the im-
pact of cerebellar defects in behavioral pathology.
On the cell function level, firing patterns of Purkinje

cells tuned by the activity of other cerebellar compo-
nents and cerebellar inputs is crucial for cerebellar func-
tions (for review see [296]). Many mutations lead to a
change in spatiotemporal firing patterns and motor and
cognitive impairments [296], e.g. CACNA1A gene muta-
tion in Tottering mice [245], Grik mutation in Weaver
mice [137], mice selectively lacking large-conductance
voltage- and calcium-activated potassium channels in
the Purkinje cells [297], mice deficient in calretinin
[298], etc. In calretinin deficient mice, motor coord-
ination was restored with selective re-expression of calreti-
nin in granule cells [299]. Some mutations led specifically
to impairment of plasticity of certain cerebellar neuronal
types and their synapses with impact on motor learning
(for review see [300]).

Neurotransplantation research in cerebellar mutant mice
Cerebellar mutant mice are used as investigative models
of neurotransplantation therapy for cerebellar degener-
ation. Pcd and Lurcher mice have been the most fre-
quently used. Recently, however, transgenic mouse models
of human diseases have been viewed with increasing inter-
est. Neurotransplantation research not only helps in the
search for therapeutic strategies, but also offers deeper un-
derstanding of the role of neurogenic (either positive or
negative) signals from normal and injured cerebellar tis-
sue. Generally, cerebellar tissue is considered to have low
neurogenic capacity.
Pcd mice have been shown to be a good model for

neurotransplantation research. Donor Purkinje cells were
able to leave solid embryonic cerebellar grafts, migrate to
their final position in the molecular layer [301] and be-
come integrated synaptically within the pcd cerebellar cor-
tex [302,303]. Sotelo and Alvarado-Mallart [301] suggested
that the deficient pcd molecular layer exerts a selective
neurotropic effect on neurons of the missing category. Re-
establishment of corticonuclear projections has also been
demonstrated in pcd mice [304-306]. Nevertheless, prox-
imity of the grafted Purkinje cells to the deep cerebellar
nuclei is necessary [306] since the granular layer acts as a
barrier that prevents nerve fibers sprouting toward the
deep cerebellar nuclei [307]. Carletti and Rossi [308] found,
that the pcd cerebellum provides signals inducing selective
mechanisms that favor the survival of donor Purkinje cells.
Bilateral transplantation of a fetal cerebellar cell suspension
into the deep cerebellar nuclei led to an improvement of
motor performance in pcd mice [309,310].

Lurcher mice have also been used to study transplant-
ation of embryonic cerebellar cells. Aggregates of grafted
cells with organotypic organization on the surface of the
host cerebellum and invasion of grafted cells into the
host’s molecular layer have been observed [311-313]. Solid
embryonic cerebellar grafts survived well for 6 months in
both Lurcher and wild type mice but lacked sufficient in-
teractions with the host cerebellum [314]. Timely trans-
plantation of normal embryonic Purkinje cells can prevent
degeneration of cerebellar granule cells and inferior olive
neurons and this provides evidence for secondary nature
of degeneration in these cell categories [312]. A significant
improvement in performance on motor tests was observed
by Jones et al. [315] after transplantation of mesenchymal
stem cells into the cerebellum of newborn Lurcher mice.
Donor cells were located adjacent to the Purkinje cell layer
and produced neurotrophic factors (BDNF, NT-3 and
GDNF) that increased Purkinje cell survival [315].
In newborn nervous mice, intracerebellar transplant-

ation of undifferentiated neural stem cells supported
mitochondrial function, rescued Purkinje cells and im-
proved motor coordination [316]. Neural stem cells almost
normalized previously elevated levels of tissue plasminogen
activator, in the cerebellum, and thereby modulated the
pathway associated with Purkinje cell degeneration [316].
In Weaver mice, cerebellar grafts developed a trilaminar
organization, grafted granule-like cells proliferated and
were able to make synaptic contacts [317].
In SCA1 mice, transplantation of an embryonic cere-

bellar cell suspension led to improvement in motor
function [318]. Transplantation of neural precursor cells
improved motor skills, enhanced survival of Purkinje
cells and normalized Purkinje cell membrane potentials
in SCA1 mice; all this despite none of the grafted cells
being able to adopt Purkinje cell-like characteristics [319].
Furthermore, intrathecal injection of mesenchymal stem
cells mitigated cerebellar disorganization, suppressed atro-
phy of Purkinje cell dendrites and normalized deficits in
motor coordination in SCA1 mice [320]. In SCA2 trans-
genic mice, Chang et al. [321] found that intravenous injec-
tion of human mesenchymal stem cells increased the
survival of host Purkinje cells, delayed onset of disease and
improved motor function.
In the mouse model of Niemann-Pick disease type C,

mesenchymal stem cells were successfully grafted. Bone
marrow-derived mesenchymal stem cell transplantation
reduced astrocytic and microglial activation in the cere-
bellum [267], led to an increase in Purkinje cell num-
bers and motor skill improvement and it has been
shown that electrically active Purkinje neurons origi-
nated from existing Purkinje cells through fusion-like
events with grafted mesenchymal stem cells [268]. Also
transplantation of adipose tissue-derived stem cells res-
cued Purkinje neurons, alleviated inflammatory responses
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and restored motor coordination in Niemann-Pick disease
type C mice [269].
The first clinical trials have already tested neurotrans-

plantation therapy in human patients with cerebellar de-
generation [322,323]. The results seem to be promising,
but cerebellar transplantation is not routine therapy, yet,
and intensive preclinical research is still necessary. With
regard to the variability in the nature of human heredi-
tary cerebellar ataxias, different approaches for individ-
ual diseases will be probably necessary.

Conclusion
Studies on cerebellar mutant mice have provided a lot
of information about cerebellar function, manifestation
of cerebellar disorders, and pathogenesis and therapy of
cerebellar degeneration. Since Purkinje cell axons are the
sole output of the cerebellar cortex, mice with complete
loss of the Purkinje cells (e.g. Lurcher, pcd) represent
models of functional cerebellar decortication.
Studies of cerebellar degeneration in mutant mice have

revealed the mechanisms of cell death, which have been
found to be necrosis, apoptosis, or autophagy and it has
been even suggested that cell death may involve combi-
nations of multiple pathways [14,23]. Although the de-
generation affects the vast majority of Purkinje cells, in
certain of the cerebellar mutants, a few Purkinje cells
often survive until late adulthood. The distribution of
these cells, as well as the irregular progress of degener-
ation within the cerebellar cortex often follows character-
istic patterns that vary from one mutant strain to the next.
This variable Purkinje cells sensitivity to the effects of the
mutations shows their heterogeneity [324]. Cerebellar mu-
tant mice are also a model of secondary cell degeneration
caused by deprivation of postsynaptic targets or synaptic
inputs.
Cerebellar mutants are variable relative to the extent of

degeneration of individual cerebellar and extra-cerebellar
cell types, and cell death pathways. For example, Lurcher,
Purkinje cell degeneration and Nervous mice suffer from
severe Purkinje cell loss. In Staggerer or Weaver mutants,
the main problem is depletion of granule cells. Poor in-
nervation of Purkinje cells is the dominant pathology in
Hotfoot mice, whereas in Reeler, Scrambler and Weaver
mice, defective neuronal migration is responsible for cere-
bellar disorganization.
Though, the basic manifestation of cerebellar dysfunc-

tion is similar in most of the mouse models of cerebellar
degenerations, some particular signs differ. Moreover,
some of the mutations have extra-cerebellar impacts,
which are integral components of the phenotype (e.g.
olfactory bulb, retina and thalamus degeneration in pcd
mice, dorsal cochlear nuclei of Nervous mice, complex
CNS disorganization in Weaver and Reeler mice – see
above). Such variability and complexity of manifestations

in ataxic mutant mouse models is advantageous regard-
ing the complexity of symptoms of human cerebellar de-
generations. They provide tools to search for factors
determining particular phenotypic features and relation-
ships between morphologic and functional abnormal-
ities. Knowledge of the factors modifying the course of
the disease is important for understanding its pathogenesis
as well as for selection of optimal therapeutic approaches.
On the other hand, interpretation of examinations of par-
ticular neural functions in cerebellar mutant mice is diffi-
cult and ambiguous since the performance on tests can be
influenced by multiple factors such as motor abilities, cog-
nitive functions, anxiety or motivation.
It should be taken into account, however, that mouse

models of hereditary cerebellar degenerations have ser-
ious limitations that prevent direct translation of find-
ings to humans. There are, of course, species differences
in anatomy, metabolism, behavior, etc. between mice
and men. Spontaneous mouse mutations are usually not
identical to human ones and therefore mouse diseases
can only be similar to human diseases. On the other
hand, transgenic mice carry human pathological alleles
and thus they can be used as models for specific human
diseases. Nevertheless, even in transgenic mice the ac-
tion of the mutation could significantly differ from the
natural human mutation. The transgene could be under
control of different promoters and its expression could
differ from that seen in humans regarding intensity and
cell type. The transgene usually does not replace the
mouse wild type allele, if not knocked-out. In these cases
the mouse has both pathological as well as fully expressed
normal gene products. Autosomal dominant ataxias appear
in humans mostly in the form of heterozygotes. However,
mice can also be studied as homozygous individuals. These
experiments have shown that homozygous mice often dis-
play more severe pathological phenotype than heterozy-
gous mice suggesting that the diseases might be more
accurately described as having a semi-dominant nature.
Finally, cerebellar mutant mice have the phenotypic traits
of the original strain, which could also interfere with the
manifestation of the mutation of interest. Therefore it is
not easy to compare two cerebellar mutants when they are
derived from different mouse strains. Some mutants are
available in more strains of origin and some caution in ne-
cessary when comparing findings of studies that have used
different strains of the same mutant. Most transgenic mice
are created using F1 hybrid strains which are not stable
across subsequent generations. Despite the limitations,
cerebellar mutant mice are invaluable tools for research,
when the goal is a better understanding the pathogenesis
of cerebellar degenerative disorders and, hopefully, finding
effective therapies for humans.
Cerebellar mutant mice will continue to serve as valu-

able tools in preclinical studies investigating therapeutic
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methods for treating human cerebellar degenerations.
Nevertheless, deep phenotypic characterization, especially
of the new transgenic mouse models, and elucidation of
the pathogenesis and relationship of the functional disor-
ders to the cerebellum will remain important. Verification
of the conformity of the mouse models with human dis-
eases on the morphological, functional and molecular level
is also crucial for translation of experimental research to
human medicine.
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