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Abstract

Polyploid chromosomes are those with more than two sets of homologous chromosomes.

Polyploid chromosomal abnormalities are observed in various malignant tumors. The prog-

nosis in such cases is generally poor. However, there are no studies examining the progno-

sis of diffuse large B-cell lymphoma (DLBCL) with polyploid chromosomal abnormalities.

Therefore, we statistically compared the clinicopathological features between polyploid

DLBCL and DLBCL without polyploid abnormalities. Herein, 51 polyploid DLBCL and 53

control (without polyploid chromosomal abnormalities) cases were examined. G-banding

method was employed to define polyploidy by cytogenetic analysis. Subsequently, flow

cytometric immunophenotyping and immunohistochemical staining were performed. Poly-

ploid DLBCL was defined as DLBCL with either near-tetraploid or greater number of chro-

mosomes, as detected by the G-band. In a survival analysis, a significantly worse overall

survival (OS) was observed for polyploid DLBCL (p = 0.04; p = 0.02 in cases who received

R-CHOP regimens). In a multivariate analysis of OS, polyploid chromosomal abnormalities

were an independent prognostic factor. Our results suggest that polyploid chromosomal

abnormalities detected through G-band may represent a new poor prognostic factor for

DLBCL.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most frequent type of B-cell lymphoma,

accounting for 30%-40% of non-Hodgkin’s lymphoma [1]. The biological properties, genetic

mutations, immune phenotypes, and cell morphology of DLBCL are varied, and therefore,

DLBCL is considered a heterogeneous group [2]. Chromosomal translocation of immunoglob-

ulin genes, such as c-MYC and BCL2, are widely observed as chromosomal abnormalities in

DLBCL. In addition, these chromosomal translocations are associated with poor prognosis in

DLBCL [3,4].
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Polyploidy refers to the existence of more than two sets of homologous chromosomes

within a cell. Abnormalities in the cell cycle, re-replication of DNA, and cell division are some

factors that cause polyploidy [5,6]. In normal tissue, chromosome polyploidization can be

observed in placental trophoblasts and megakaryocytes during the differentiation process.

Polyploid chromosomal abnormalities are also seen in 6.9% of malignant tumors, and are asso-

ciated with poor prognosis in acute myeloid leukemia, breast cancer, ovarian cancer, and

colon cancer [7–10].

We had previously examined the histological features of 16 cases of DLBCL in which poly-

ploid chromosomal abnormalities were observed by using the G-band method [11]. DLBCL

with polyploid chromosomal abnormalities was observed in 2.9% of the cases. Unique histo-

logical characteristics, Hodgkin’s-like giant cells and multilobated cells, were observed in poly-

ploid DLBCL [11]. However, to the best of our knowledge, there are no studies comparing the

clinicopathological features between polyploid DLBCL and DLBCL without polyploid chro-

mosomal abnormalities.

Therefore, in the present study, we statistically compared the clinicopathological features

between polyploid DLBCL and DLBCL without polyploid abnormalities.

Materials and methods

Patients and tissue samples

We reviewed 51 cases of polyploid DLBCL, not otherwise specified (NOS) from 2008 to 2014

in the Department of Pathology, Kurume University. The karyotypes of the polyploid DLBCL

cases are shown in S1 Table. Additionally, 53 cases of DLBCL, NOS were extracted as control

cases from our previous study [12]. The control cases did not have polyploid abnormalities,

validated by using the G-banding method (S2 Table). Paraffin-embedded tissues were used for

diagnosis and immunohistochemical staining (IHS). All cases were reviewed by experienced

hematopathologists (OK and MH) and were diagnosed according to the World Health Organi-

zation (WHO) classification [13]. The use of materials and clinical information were approved

by the Research Ethics Committee of Kurume University and were in accordance with the

Declaration of Helsinki. All data were fully anonymized.

Definition of polyploidy in cytogenetic analysis

The G-banding method was performed for cytogenetic analysis. Karyotypes were reviewed

according to the International System for Human Cytogenetics Nomenclature (ISCN 2013).

We defined DLBCL cases with near-tetraploid or greater number of chromosomes as poly-

ploid DLBCL as per our previous study [11]. According to ISCN 2013, chromosomal numbers

of 81–103 was defined as near-tetraploid and chromosomal numbers of 104–126 was defined

as near-pentaploid, while DLBCL with a chromosomal number of>127 was not observed in

this study.

Flow cytometric immunophenotyping analysis

For flow cytometric immunophenotyping analysis, unfixed tissues were pulverized to prepare

a cell suspension. The samples were centrifuged at 1800 rpm for 5 min, and washed with 5 mL

of 10% phosphate-buffered saline (PBS) after discarding the suspension twice. The cells were

then resuspended with CD45 (J.33; Becton-Dickinson, Mountain View, CA, USA) and then

with the other antibodies as follows at 4˚C for 30 min. The hemolytic agents were then added,

and the samples were centrifuged again at 1800 rpm for 5 min, and then washed with 5 mL of

10% PBS after discarding the suspension twice. Flow cytometric immunophenotyping analysis
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was then performed with a flow cytometer (FACS-Calibur, Becton-Dickinson) and the data

were analyzed with the Cell Quest software program (Becton-Dickinson). The cells were gated

according to forward scatter (FSC) and side scatter (SSC), and tumor cells were further gated

according to CD45 and SSC. The gated area with tumor cells was then analyzed by fluorescein

isothiocyanate (FITC) and phycoerythrin (PE) detection conjugated to the antibodies for the

relevant markers. Information of the antibodies is summarized in S3 Table. Evaluation of live

cells was conducted using propidium iodide (PI) staining (500 μg/mL). Mouse IgG1-FITC

(Becton-Dickinson) and Mouse IgG1-PE (Becton-Dickinson) were used as negative controls.

Immunohistochemical staining

Immunohistochemical staining (IHC) was carried out using 2.5-μm-thick, formalin-fixed, par-

affin-embedded tissue sections for all cases. The slides were deparaffinized with xylene fol-

lowed by ethanol. After rehydration with water, antigen retrieval was performed with

antibody-specific buffer in a microwave oven. Endogenous peroxidase activity was blocked by

incubating in 3% hydrogen peroxide for 5 min. The slides were then incubated with each anti-

body and EnVision1 System horseradish peroxide-labeled anti-mouse polymer (Dakocytoma-

tion) for 30 min. Visualization was performed using diaminobenzidine for 5 min. The slides

were counterstained with hematoxylin, dehydrated with ethanol, and mounted under cover-

slips. Information of the antibodies is provided in S3 Table. If>30% of the neoplastic cells

were immunostained (except for p53 staining), the case was defined as positive. According to

the results of a previous study, only cases showing a strong immunostaining intensity, in

which the anti-p53 antibody immunostained > 50% of the neoplastic cells, were defined as

p53-positive [14]. When CD5-positive DLBCL was detected, cyclin D1 (SP4) (ThermoScienti-

fic, Runcorn, UK) staining was performed to exclude mantle cell lymphoma, an aggressive

variant.

Quantification of various markers in CD20-positive tumor cells

The positive ratios of several markers (CD5, CD10, CD30, BCL2, BCL6, and MUM1) were

examined for the CD20-positive tumor cells using flow cytometry (CD5, CD10, and CD30)

and IHC (BCL2, BCL6, and MUM1). The proportion of cells positive for each marker was

divided by the CD20-positive cell ratio in the gated area of tumor cells (for flow cytometry) or

positive tumor cells (for IHC).

In situ hybridization for Epstein-Barr virus (EBV)-encoded RNA

EBV was detected by in situ hybridization with a fluorescein-conjugated EBV peptide nuclei

acid (PNA) probe kit (Dakocytomation) according to the manufacturer’s instructions. This

probe was complementary to the two nuclear EBER RNAs encoded by EBV. If >30% of the

neoplastic cells were immunostained, the case was defined as positive.

Fluorescence in situ hybridization (FISH) analysis

The following probes were used for FISH analysis according to previously published protocols

[15, 16]: MYC FISH DNA Probe; Split Signal (Abbott Molecular, Abbott Park, IL, USA); the

Vysis LSI IGH/BCL2 Dual Color, Dual Fusion Translocation Probe (Abbott Molecular); and

the Vysis LSI BCL6 Dual Color Break Apart Rearrangement Probe (Abbott Molecular). Shortly

after deparaffinization and dehydration, the specimens were incubated in 2X saline-sodium

citrate (SSC) buffer at 80˚C for 30 min and digested with protease (25–28˚C, 10 min). After

post-fixation and dehydration, the probe was applied to the slide under a coverslip and left to
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hybridize (95˚C, 5 min; 37˚C, 16 h). Hybridized slides were washed and air-dried before coun-

terstaining with 40,6-diamidino-2 phenylindole (DAPI) for fluorescence microscopy analysis.

The cut-off values for positivity were the presence of signals in 1% of cells in a cell suspension

and in 5% of cells, based on laboratory-established thresholds.

Statistical analysis

Clinicopathological characteristics of the patients were compared by using the chi-squared test

or Fisher’s two-sided exact test, as needed. The end-point of overall survival (OS) was defined

as the time of death due to DLBCL. The end-point of progression free survival (PFS) was

defined as the time of relapse due to DLBCL. Survival curves of OS and PFS were calculated

using the Kaplan–Meier method. A log-rank test was used to compare survival curves. Univar-

iate and multivariate Cox proportional regression models were used to evaluate the proposed

prognostic factors. P< 0.05 was considered statistically significant. JMP version 11.0 was used

in all analyses.

Results

Clinicopathological properties

We investigated a comparison with control DLBCL to clarify the clinicopathological properties

of polyploid DLBCL. Table 1 shows the clinical features of the polyploid DLBCL and control

DLBCL cases. No significant differences were observed between the two groups with respect to

age, sex, performance status (PS), number of extranodal infiltration sites> 1, B symptoms, lac-

tate dehydrogenase elevation, or advanced stage. Further, no significant differences were

observed between the groups with respect to known poor prognostic factors, including the

International Prognostic Index (IPI). Table 2 shows the clinical outcomes and therapy of the

two case groups. No significant difference was noted between the two groups with respect to

Table 1. Clinical features of polyploid DLBCL and control DLBCL.

Clinical features Polyploid cases (N = 51) Control cases (N = 53) p-value

No. % No. %

Age. Years

Median 69 72

Range 36–84 22–93

Sex

Male 29/51 56.9 23/53 43.4 0.17

Female 22/51 43.1 30/53 55.6

ECOG PS > 1 12/51 23.5 15/53 28.3 0.58

Extranodal infiltration site > 1 6/51 11.8 9/53 17.0 0.45

B symptoms 11/51 21.6 10/53 18.9 0.73

Elevated LDH 36/51 70.6 39/53 73.6 0.73

Ann Arbor Stage> 2 36/51 70.6 36/53 67.9 0.77

IPI score

Low/Low int 24/51 47.1 19/53 35.8 0.25

High int/High 27/51 52.9 34/53 54.2

Median follow up period

(Months)

27 months

(1–86 months)

37 months

(0.2–79.5 months)

PS, performance status; LDH, lactate dehydrogenase; IPI, international prognostic index;

Low int, low intermediate risk; High int, high intermediate risk;

https://doi.org/10.1371/journal.pone.0194525.t001
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the treatment strategy and response to initial therapy. R-CHOP (rituximab, cyclophospha-

mide, doxorubicin, vincristine, and prednisone) or an R-CHOP-like regimen was carried out

in 88.2% of the polyploid DLBCL cases (45/51) and in 79.2% (42/53) of the control DLBCL

cases, with no significant difference (p = 0.21). Fig 1 shows the pathological features of the

polyploid DLBCL cases. Consistent with our previous study [11], histological findings of

Hodgkin’s-like giant cells and multilobated cells were observed in cases of polyploid DLBCL.

Immunohistochemistry analysis and chromosomal translocation

abnormalities

In order to examine the characteristics of immunohistochemistry analysis and chromosomal

translocation abnormalities. The IHC characteristics and chromosomal translocation abnor-

malities between the two groups are summarized in Table 3. Fig 2 shows the result of IHC in

the polyploid DLBCL cases. No significant difference was observed between polyploid DLBCL

and control DLBCL cases with respect to the cell of origin according to Hans classification

markers (CD10, BCL6, and MUM1) [17] and the other markers (CD5, BCL2, CD30, and

EBV-ISH). As shown in S1 Fig, there was no significant difference in the proportion of positiv-

ity of various markers among CD20-positive tumor cells between the two groups. In addition,

there was no significant difference between polyploid DLBCL and control DLBCL cases with

respect to the rates of BCL2, BCL6, and MYC translocations, respectively.

Clinical follow-up

We show the OS and PFS of polyploid DLBCL and control DLBCL cases. (Fig 3) The OS curve

was significantly poorer in the polyploid cases than in the control cases (p = 0.04). The PFS

curves were not significantly different between the polyploid DLBCL and control DLBCL

(p = 0.49). In addition, we further compared the OS and PFS between the two groups including

only cases that received R-CHOP regimens to more effectively investigate the effect of poly-

ploidy on the treatment response. As shown in Fig 4, OS was significantly poorer in the

Table 2. Clinical outocomes and therapy of polyploid DLBCL and control DLBCL.

Clinical features Polyploid cases (N = 51) Control cases (N = 53) p-value

No. % No. %

Type of initial therapy

Chemotherapy 48/51 94.1 46/53 86.8 0.32�

R-CHOP/R-CHOP like regimen 45/48 93.8 43/46 93.5 1.00�

Other 3/48 6.2 3/46 6.5 1.00�

Radiation therapy 10/51 19.6 9/53 17.0 0.73

Radiation therapy only 0/10 0.0 3/9 33.3 0.24�

No therapy 3/51 5.9 4/53 7.5 1.00�

Response to initial therapy

CR 31/48 64.6 37/49 75.5 0.24

PR 10/48 20.8 6/49 12.2 0.25

SD 1/48 2.1 2/49 4.1 1.00�

PD 6/48 12.5 4/49 8.2. 0.52�

Not evaluable 3/51 5.9 4/53 7.5 1.00�

R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone;

PBSCT, peripheral blood stem cell transplantation; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.

�Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0194525.t002
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Fig 1. Histology of polyploid diffuse large B-cell lymphoma (DLBCL). (A) HE staining, large tumor cells (black arrows). (B) Tumor cells were positive for CD20.

(C) HE staining, multilobated tumor cells (black arrows) with many apoptotic cells (arrow heads). (D) Tumor cells were positive for CD20. (E) HE staining,

multilobated medium-sized cells (black arrows). (F) Tumor cells were positive for CD20.

https://doi.org/10.1371/journal.pone.0194525.g001
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Table 3. Immunohistochemistry analysis and chromosomal translocation abnormalities.

Polyploid cases (N = 51) Control cases (N = 53) p-value

No. % No. %

Immunohistochemistry

CD5 expression 12/51 23.5 14/53 26.4 0.73

CD10 expression 18/51 35.3 17/53 32.1 0.73

CD20 expression 51/51 100 53/53 100 1.00

BCL2 expression 40/51 78.4 38/48 79.2 0.93

BCL6 expression 38/51 74.5 31/53 58.5 0.08

MUM1 expression 36/51 70.6 39/53 73.6 0.73

CD30 expression 6/51 11.8 6/53 11.3 0.94

EBER positivity 2/51 3.9 5/53 9.4 0.44�

Cell of origin

GCB type 23/51 41.2 19/53 35.8 0.34

Non-GCB type 28/51 58.8 34/53 64.2

Chromosomal translocation abnormalities

BCL2 translocation 8/51 15.7 4/53 7.5 0.23�

BCL6 translocation 6/51 11.8 10/53 18.9 0.31

MYC translocation 2/51 3.9 2/53 3.8 1.00�

GCB, germinal center B-cell-like diffuse large B-cell lymphoma; EBER, EBV-encoded small RNAs

�Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0194525.t003

Fig 2. Analysis of immunohistochemistry staining in polyploid DLBCL. Tumor cells were positivity in each immunohistochemistry. CD5 (X400), (B) CD10

(X400), (C) CD30 (X400), (D) BCL2 (X400), (E) BCL6 (X400) and (F) MUM1 (X400).

https://doi.org/10.1371/journal.pone.0194525.g002
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polyploid cases than in the control cases (p = 0.02), whereas there was no difference in PFS

between the two groups (p = 0.27).

Prognostic factors

We conducted univariate and multivariate analysis to investigate factors related to OS in

DLBCL. As shown in Table 4, the univariate analysis revealed the following results: polyploid

abnormalities (hazard ratio: HR, 2.19 [95% confidence interval: 95% CI, 0.99–4.86], p = 0.05),

and IPI high int or high risk (HR, 4.32 [95% CI, 1.47–12.74], p = 0.008). The multivariate anal-

ysis indicated that polyploid abnormality (HR, 3.11 [95% CI, 1.27–7.66], p = 0.01) was an inde-

pendent poor prognostic factor of OS.

Fig 3. Overall survival and progression-free survival between polyploid DLBCL, NOS (n = 51) and control DLBCL, NOS (n = 53) patients. (A) The overall

survival curves were significantly worse for polyploid DLBCL than control DLBCL (p = 0.04). (B) The progression-free survival curves were not significantly

different between the polyploid DLBCL and control DLBCL (p = 0.49).

https://doi.org/10.1371/journal.pone.0194525.g003

Fig 4. Overall survival and progression-free survival between polyploid DLBCL, NOS (n = 45) and control DLBCL, NOS (n = 42) patients in only cases who

received R-CHOP regimens. (A) The overall survival curves were significantly worse for polyploid DLBCL than control DLBCL (p = 0.02). (B) The progression-

free survival curves were not significantly different between polyploid DLBCL and control DLBCL (p = 0.27).

https://doi.org/10.1371/journal.pone.0194525.g004
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Discussion

In our previous study, we found unique pathological features of patients with polyploid

DLBCL, presenting a greater number of huge and multinucleated cells compared to those of

the control group (DLBCL without polyploidy) [11]. In the current study, we demonstrated

that polyploid DLBCL represents a poor prognostic factor, with a reduction in OS and emerg-

ing as an independent factor contributing to poor prognosis in multivariate analysis.

Abnormalities of p53 have been reported to cause polyploid chromosomal abnormalities

[18,19]. Tetraploidization promotes tumor formation in the mammary gland epithelial cells of

mice with non-functional p53, and it is believed that p53 gene abnormalities play an important

role in the formation of polyploid chromosomal abnormalities [5]. A previous study has dem-

onstrated that immunostaining of p53 (>50% positive in tumor cells) is useful as an alternative

means to predict the mutation of p53 in DLBCL [20]. In our study, 81.8% (27/33) of polyploid

DLBCL cases tested positive for p53 in the immunohistochemistry analysis. Although the cut

off (>30% positive in tumor cells) was different among the various studies, 38.4%–48.4% of

DLBCL cases [21–23] have been reported to test positive for p53. Compared with these previ-

ous reports, more p53-positive polyploid DLBCL cases were found in the current study. How-

ever, in our study, mutation analysis of p53 was not performed, and the number of cases with a

confirmed p53 mutation is unknown. Together, these results indicate that mutation of p53
may play an important role in the formation of polyploid chromosomal abnormalities in poly-

ploid DLBCL.

In our study, polyploid DLBCL was associated with a significantly worse overall survival

only in cases who received R-CHOP regimens. This might be attributed to drug resistance. In

a previous study using a colon cancer cell line, tetraploid cells were found to be associated with

drug resistance caused by chromosomal instability [24]. It was reported that there is an associ-

ation between chromosomal instability and intratumor genetic heterogeneity in gastric cancer

and colorectal cancer with aneuploidy, including polyploidy [25,26]. Intratumor genetic het-

erogeneity may play a role in drug resistance [27,28]. By using array CGH, intratumor genetic

heterogeneity was detected in DLBCL, adult T-cell leukemia/lymphoma, mantle cell lym-

phoma, and peripheral T-cell lymphoma, and all of these malignant lymphomas with intratu-

mor genetic heterogeneity were resistant to treatment [29,30]. Based on these results, we

hypothesize that poorer OS in polyploid DLBCL is caused by drug resistance thorough

Table 4. Univariate and multivariate analysis for overall survival in DLBCL.

Parameters Hazard ratio

[95% confidence interval]

p-value

Univariate analysis

Polyploid abnormalities 2.19 [0.99–4.86] 0.05

B symptoms 1.53 [0.65–3.59] 0.33

CD5 expression 1.49 [0.67–3.30] 0.32

BCL2 expression 1.66 [0.68–4.08] 0.27

IPI high int or high risk 4.32 [1.47–12.74] 0.008

Non-GCB subtype 1.45 [0.64–3.30] 0.37

Multivariate analysis

IPI high int or high risk 5.36 [1.80–15.92] 0.003

Polyploid abnormalities 3.11 [1.27–7.66] 0.01

IPI, International Prognostic Index; GCB, Germinal center B-cell-like diffuse large B-cell lymphoma.

https://doi.org/10.1371/journal.pone.0194525.t004
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chromosomal instability and intratumor genetic heterogeneity; however, more detailed

research is necessary to validate our speculation.

In the multivariate analysis, polyploid chromosomal abnormality was found to be an inde-

pendent poor prognostic factor. Generally, solid tumors (including esophagus carcinoma, and

ovarian carcinoma) with polyploid chromosomal abnormalities have a poor prognosis [31,32].

Chromosomal instability resulting from ongoing numerical and structural chromosomal aber-

rations might be responsible for this effect [31,32]. Further, there are reports that the complex

karyotypes that can be detected with G-banding are related to chromosomal instability

[33,34]. Chromosomal instability in solid tumors is strongly correlated with progression to

high-grade transformation and is generally considered a poor prognostic factor [35]. In a

study of colon cancer, long-term culture and examination of stable diploid progenitors by

using isogenic tetraploid cells showed that chromosomal instability was induced after polyploi-

dization (genome-doubling), and polyploid abnormalities were caused at a comparatively

early stage in the examination [36]. These findings suggest a close relationship between poly-

ploid chromosomal abnormalities and chromosomal instability, indicating that polyploidy

may cause poor prognosis in DLBCL cases.

This study has some limitations. The cases in the current study were classified into poly-

ploid cases and cases without polyploidy by using G-banding. The karyotypes were not neces-

sarily obtained for all cases with G-banding for various reasons, including the status of the

lymphoma cells and quality of tissue samples. Therefore, the possibility of some bias in case

selection cannot be excluded. Nonetheless, the G-banding technique is highly versatile and is

widely used in the diagnosis of hematopoietic tumors. As such, the detection of polyploid

abnormalities in a G-band examination is a useful tool in prognosis. Detailed genetic examina-

tion in the future should be performed to ascertain the results in this study.

In conclusion, polyploid chromosomal abnormality was associated with poor OS and was

an independent poor prognostic factor. The detection of polyploid DLBCL by using G-band-

ing might represent a new prognostic factor of poor OS.
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