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Abstract: Animal-keratin-wastes (AKWs), horns (HN), hair (HR), puffed waterfowl feathers (PF),
hydrolyzed waterfowl feathers (HF), hydrolyzed fish meal (HM), crab meat (CM), feathers (FR),
shrimp chaff (SC), fish scales (FS), and waste leather (WL) were used as modifiers to prepare
animal-keratin-wastes biochars (AKWs-BC) derived from Trapa natans husks (TH). AKWs-BC have a
well-developed microporous structure with a pore size mainly below 3 nm. Due to the doping of
AKWs, the surface chemical properties of AKWs-BC (especially N functional groups) were improved.
The utilization of APWs not only realizes the resource utilization of waste, but also can be used to
prepare high-performance biochars.

Keywords: animal-keratin-waste (AKWs); biochars; N/O functional groups

1. Introduction

At present, strong oxidants, nitrogen compounds, metal salts, and other chemical modifiers are
mainly used for the modification of surface chemical functional groups of biochar [1,2]. However,
chemical modifiers have the disadvantages of being high-cost and having secondary pollution.
More than 5 million tons of animal-keratin-waste (AKWs) is produced each year in the world [3].
AKWs are single-fiber crosslinked structural proteins (S–S) with intramolecular and intermolecular
disulfide bonds (S–S) [4]. AKWs represent renewable biopolymers that can be better utilized. However,
there is a relative lack of information about the possibility of using AKWs as bio-modifiers to prepare
biochar. During pyrolysis, the formation of novel radicals is produced by AKWs decomposition,
which can react with precursors to produce certain new ester salts and promote the formation of new
functional groups. Therefore, we used ten common AKWs (Table 1 and Figure 1), including horns
(HN), hair (HR), puffed waterfowl feathers (PF), hydrolyzed waterfowl feathers (HF), hydrolyzed fish
meal (HM), crab meat (CM), feathers (FR), shrimp chaff (SC), fish scales (FS), and waste leather (WL),
as modifiers to obtain environmentally sustainable biochar with a high surface chemistry.
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Table 1. Textural parameters, amount of acidic and basic functional groups, and elemental compositions
of the AKWs-BC and TH-BC.

AKWs Biochars SBET
(m2/g)

Smic
(m2/g)

Vtot
(cm3/g)

Vmic
(cm3/g)

Acidic
(mmol/g)

Basic
(mmol/g)

C
(%)

N
(%)

O
(%)

S+H
(%)

HN HN-BC 1503 491 1.51 0.20 3.283 1.821 73.47 1.4 22.22 2.91
HR HR-BC 1422 443 1.41 0.18 3.358 1.832 72.81 1.42 23.38 2.39
PF PF-BC 1403 424 1.40 0.17 3.382 1.803 73.42 1.33 23.42 1.83
HF HF-BC 1331 354 1.40 0.15 3.183 1.812 75.03 1.33 21.49 2.15
HM HM-BC 1342 380 1.37 0.16 3.154 1.805 75.53 1.31 21.16 2.00
CM CM-BC 1301 358 1.36 0.15 3.503 1.672 71.81 1.11 24.85 2.23
FR FR-BC 1317 365 1.38 0.15 3.32 1.677 74.15 1.12 23.13 1.6
SC SC-BC 1376 389 1.51 0.20 3.098 1.712 75.32 1.16 21.43 2.09
FS FS-BC 1503 438 1.55 0.17 3.294 1.752 73.93 1.28 22.69 2.1

WL WL-BC 1434 445 1.38 0.20 3.412 1.811 72.71 1.39 23.99 1.91
- TH-BC 1492 491 1.49 0.20 1.426 1.423 72.38 0.42 16.35 10.85

variation
coefficients cv 0.051 0.115 0.0444 0.117 - - - - -

BET surface area (SBET), micropore surface area (Smic), micropore volume (Vmic), total pore volume (Vtot).
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Figure 1. Thermogravimetric analysis (TGA) (a) and differential thermogravimetric analysis (DTG) 
(b) curves for the pyrolysis of animal-keratin-wastes biochars (AKWs-BC) and TH-based biochar (TH-
BC). 

The pore size distributions (Figure 2a); N2 adsorption/desorption isotherms (Figure 2b); and 
textural properties of SBET, Smic, Vmic, and Vtot (Table 1) of AKWs-BC and TH-BC were obtained by 
automatic specific surface area and pore size analyzer (GEMINT VII 2390, Mahwah, NJ, USA). As 
shown in the Figure 2a, both APWs-BC and TH-BC have a narrow pore size distribution (2–3 nm). 
As shown in the Figure 2b, the isotherms of AKWs-BC and TH-BC were mixture of types I and IV 
(IUPAC), with small hysteresis loop indicating the presence of well-developed mixed micro-
mesopores structure. The variation coefficients in the SBET, Smic, Vmic, and Vtot groups were analyzed 
by SPSS software (Table 1). The low dispersion state of the data within each group indicates that the 
pore structure characteristics of AKWs-BC and TH-BC are similar.  

Figure 1. Thermogravimetric analysis (TGA) (a) and differential thermogravimetric analysis (DTG) (b)
curves for the pyrolysis of animal-keratin-wastes biochars (AKWs-BC) and TH-based biochar (TH-BC).
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2. Experimental Materials and Procedures

Preparation method: All chemicals used were of analytical grade. Trapa natans (TH), containing a
large amount of lignin and cellulose, is high-yield waste. TH-based biochar has well developed pore
structure and specific surface area. TH (Taihu in Jiangsu, China) and ten groups of AKWs (from one
farmers’ market in Shanghai, China) were crushed into particle between 0.35 and 1.0 mm. TH was
mixed with 10 groups of AKWs, respectively, and the mixed mass ratio was 99:1 (g TH/g AKWs). Each
mixture was impregnated with 85% phosphoric acid (g phosphoric acid/g TH = 2.2:1) for 10 hours
at room temperature. To improve the degree of impregnation, series of pretreatments were used to
treat the AKWs: the samples were first soaked in PPA (phosphoric acid, 85 wt.%) for 30 min, then
irradiated with ultrasound for 20 min, and finally heated at 100 ◦C and 1.5 MPa for 30 min in a vertical
automatic electrothermal pressure steam sterilizer. Each of the impregnation slurries was heated to 500
◦C (heating rate = 100 ◦C/min) in a tube furnace and maintained at this temperature for 1 hour under
nitrogen protection. Each carbon solid was washed several times with clean water until the pH of the
filtrate was near neutral (about 7). Each carbon solid was dried, ground, and sieved (160–200 mesh).
Finally, 10 sets of biochar were obtained: HN-BC, HR-BC, PF-BC, HF-BC, HM-BC, CM-BC, FR-BC,
SC-BC, FS-BC, and WL-BC, which were collectively called AKWs-BC. Pure TH-based biochar (TH-BC)
was prepared by the same method in Table 1 and Figure 1.

Characterization methods: surface area and pore size distribution were determined by N2

adsorption-desorption at 77 K with a surface area analyzer (Quanta Chrome Corporation, Mahwah,
NJ, USA). Sur-face area (SBET) was measured by the BET (Brunauer–Emmet–Teller equation) method.
Pore size distribution was determined by the density functional theory (DFT) method. Micropore
volume (Vmic) and micropore surface area (Smic) were calculated using the t-plot method. The total
pore volume (Vtot) was deduced from the manufacturer’s software by the BJH theory. The contents of
C, H, O, N, and S of the biochar were measured by a Vario EI III Element Analyzer (Mahwah, NJ, USA).
Boehm titration method was used to quantify the acidic and basic functional groups of the biochars.
XPS (X-ray photoelectron spectroscopy) analyzer (Nico-let-460, Thermo Fisher, Mahwah, NJ, USA)
was conducted to determine the binding energy between electrons and characterize the elements on
the surface of biochars.

3. Experimental Results and Discussion

Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (DTG) curves
for the pyrolysis of AKWs-BC and TH-BC were obtained by TGA-50 analyzer (Figure 1). As shown
in the Figure 1, the pyrolysis process of each sample is roughly divided into three decomposition
stages. In stage 1 (0–140 ◦C), AKWs-BC’s weightlessness was greater than that of TH-BC, which can be
explained by the first metamorphic decomposition of keratin [5]. Stage 1 also involved elimination
of water vapor and other volatile substances. In stage 2 (140–500 ◦C), the new radicals produced by
keratin decomposition formed different salt and esters with the thermal hydrolysate of TH and the
heat activator, thereby promoting the formation of functional groups on the surface of the biochar. In
stage 3 (500 ◦C), the weightlessness of each sample was not significant, indicating formation of the
basic structure of biochar.

The pore size distributions (Figure 2a); N2 adsorption/desorption isotherms (Figure 2b); and
textural properties of SBET, Smic, Vmic, and Vtot (Table 1) of AKWs-BC and TH-BC were obtained by
automatic specific surface area and pore size analyzer (GEMINT VII 2390, Mahwah, NJ, USA). As
shown in the Figure 2a, both APWs-BC and TH-BC have a narrow pore size distribution (2–3 nm).
As shown in the Figure 2b, the isotherms of AKWs-BC and TH-BC were mixture of types I and IV
(IUPAC), with small hysteresis loop indicating the presence of well-developed mixed micro-mesopores
structure. The variation coefficients in the SBET, Smic, Vmic, and Vtot groups were analyzed by SPSS
software (Table 1). The low dispersion state of the data within each group indicates that the pore
structure characteristics of AKWs-BC and TH-BC are similar.
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535.8 ± 0.5 eV. The nitrogen functional groups on the surface of AKWs-BC presented two peaks in 
Figure 4: (N 6, Pyridine nitrogen and amino group) –CONH– / N–H at 398.7 ± 0.5 eV or (N 5, pyrrole-
like nitrogen) –CONH–/–NH2 at 399.8 ± 0.5 eV, while –NO2 represents nitrogen in nitro group (403.6–
405.1 eV) [6,7]. The number of oxygen-containing and nitrogen-containing functional groups of 
AKWs-BC is higher than that of TH-BC, which is consistent with the results of Boehm’s titration 

Figure 2. The pore size distributions (a) and N2 adsorption/desorption isotherms (b) of the AKWs-BC
and TH-BC.

Boehm’s titration results and element composition of the AKWs-BC and TH-BC are shown in
Table 1. The percentage content of O and N elements in AKWs-BC is increased compared to TH-BC,
representing the increase in the content of acidic/basic functional groups on the surface of AKWs-BC.
The number of acidic and basic functional groups on the carbon’ surface of AKWs-BC were about 2.2
and 1.2 times that of TH-BC, respectively, which suggested that AKWs facilitated the creation of acidity
and basicity on the surface of AKWs-BC because AKWs contain a large amount of N and O.

XPS was used to identify surface functional groups of AKWs-BC and TH-BC. The peak fitting of
O 1s and N 1s was performed by XPS-PEAK software. The oxygen functional groups on the surface of
AKWs-BC exhibit three peaks in Figure 3: (O-I) C=O groups (carbonyl and quinone) at 531.1 ± 0.5 eV,
(O-II) C-OH/C-O-C (hydroxyl ether ester and anhydride) at 533.1 ± 0.5 Ev, and (O-III) –COOH at 535.8
± 0.5 eV. The nitrogen functional groups on the surface of AKWs-BC presented two peaks in Figure 4:
(N 6, Pyridine nitrogen and amino group) –CONH– / N–H at 398.7 ± 0.5 eV or (N 5, pyrrole-like
nitrogen) –CONH–/–NH2 at 399.8 ± 0.5 eV, while –NO2 represents nitrogen in nitro group (403.6–405.1
eV) [6,7]. The number of oxygen-containing and nitrogen-containing functional groups of AKWs-BC is
higher than that of TH-BC, which is consistent with the results of Boehm’s titration results and element
composition. Overall, there is strong evidence that APWs promote the formation of functional groups
on the surface of the AKWs-BC.
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Figure 3. XPS (O 1s) spectra of AKWs-BC and TH-BC: HN-BC (a); HR-BC (b); PF-BC (c); HF-BC (d); 
HM-BC (e); CM-BC (f); FR-BC (g); SC-BC (h); FS-BC (i); WL-BC (j); TH-BC (k). 
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Figure 3. XPS (O 1s) spectra of AKWs-BC and TH-BC: HN-BC (a); HR-BC (b); PF-BC (c); HF-BC (d);
HM-BC (e); CM-BC (f); FR-BC (g); SC-BC (h); FS-BC (i); WL-BC (j); TH-BC (k).
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Figure 3. XPS (O 1s) spectra of AKWs-BC and TH-BC: HN-BC (a); HR-BC (b); PF-BC (c); HF-BC (d); 
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Figure 4. XPS spectra (N 1s) of AKWs-BC: HN-BC (a); HR-BC (b); PF-BC (c); HF-BC (d); HM-BC (e);
CM-BC (f); FR-BC (g); SC-BC (h); FS-BC (i); WL-BC (j).
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4. Conclusions

The results show that it is feasible to use AKWs as a biochar modifier. AKWs-BC exhibits
a developed microporous structure and high chemical functional groups. The use of APWs
can not only realize the resource utilization of waste, it can also provide new ideas for biochar
preparation modification.
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