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Abstract: Brain atrophy is a normal part of healthy aging, and stroke appears to have
neurodegenerative effects, accelerating this atrophy to pathological levels. The distributed pattern
of atrophy in healthy aging suggests that large-scale brain networks may be involved. At the same
time, the network wide effects of stroke are beginning to be appreciated. There is now widespread
use of network methods to understand the brain in terms of coordinated brain activity or white
matter connectivity. Examining brain morphology on a network level presents a powerful method
of understanding brain structure and has been successfully applied to charting the course of brain
development. This review will introduce recent advances in structural magnetic resonance imaging
(MRI) acquisition and analyses that have allowed for reliable and reproducible estimates of atrophy
in large-scale brain networks in aging and after stroke. These methods are currently underutilized
despite their ease of acquisition and potential to clarify the progression of brain atrophy as a normal
part of healthy aging and in the context of stroke. Understanding brain atrophy at the network level
may be key to clarifying healthy aging processes and the pathway to neurodegeneration after stroke.
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1. Introduction

Network-based methods are increasing in popularity as a means to understand the complex
functioning and wiring of the human brain. The dominant methods—functional and structural
connectivity—are designed to estimate coordinated brain activity and the complex white matter
wiring of the brain, respectively. Connectivity and network methods can also be based on shared
morphometric features such as grey matter volume or cortical thickness. While not as popular relative
to methods that estimate functional or white matter connectivity, these methods have the potential to
reveal fundamental principles of brain development and degeneration [1]. Networks derived from
different MRI modalities, such as diffusion MRI, morphometry and functional MRI, show similar
properties, spatial topographies [2,3] and patterns of disruption in neurological disease [2,4].

As network analysis methods have developed, analysis of atrophy in aging and neurological
disease has advanced from purely descriptive topography, to more formal estimates of changes to
network properties of distributed anatomical regions at finer scales [2]. Morphometry-based network
and connectivity methods can be broadly divided into voxel- or vertex-wise approaches and region of
interest approaches that utilize either volumetric- or surface-based estimates of cortical morphology
(see Evans, 2013 for a fuller taxonomy of structural methods).
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A large body of evidence has identified distributed regions across the brain that show atrophy in
the course of healthy aging [5–7]. This may reflect natural degeneration within large-scale functional
networks [8]. This atrophy may be accelerated or aggravated by stroke where, despite typically
focal damage, there are network wide effects on the brain [9–11]. Evidence from dementia subtypes
show that neurodegeneration appears to target intrinsic functional networks, with patterns of atrophy
closely resembling healthy functional networks and networks based on structural covariance [4,12].
A similar picture is emerging of network-based neurodegeneration in the course of healthy aging that is
accelerated after stroke. Tracking structural covariance network changes in aging may inform theories
of intrinsic functional network degeneration in the same way that these methods have informed
theories of intrinsic functional network development [13] and illuminate the pathway from stroke
to accelerated neurodegeneration. This review will focus on structural network methods that allow
for reliable estimates of brain morphology, and review the emerging literature showing network
neurodegeneration in healthy aging and after stroke.

2. Measuring Brain Morphometry from Magnetic Resonance Images

Clinicians routinely consult structural brain images in the assessment of aging and
neurodegenerative disease with the understanding that brain atrophy is a macroscale indicator
of neurodegeneration. Although atrophy can often easily be detected by eye in the course of
neurodegenerative dementias, more subtle changes to brain morphometry, often in presymptomatic
stages, require quantitative methods for detection. Brain regions can be segmented according to known
anatomy, either manually, automatically or with varying degrees of manual intervention. Features
of a brain region’s morphometry, such as shape or volume, can then be estimated either across or
within individuals. Although manual segmentation remains the gold standard, it is impractical for
large datasets, segmentation of multiple regions [14] or estimation of cortical thickness from the
complex folding of the cortex. Automated methods allow multiple regions to be delineated and
analysed simultaneously, which is ideal for large and longitudinal datasets. Automated methods
also allow parcellation of the brain into hundreds of regions, allowing connectivity between these
regions to be estimated. Reassuringly, there is high correspondence between automated methods and
manual segmentations [14,15]. Automated methods can be broadly divided into volume-based and
surface-based methods. Volumetric measures estimate tissue volume, which combines tissue surface
area and thickness. Surface area and thickness may change independently and at different rates,
which cannot be easily captured by composite volumetric measures. In contrast, surface measures
allow these facets of tissue structure to be examined independently. Regardless of the method used to
estimate the morphometric feature, changes in that feature over time, or differences across populations,
network methods can be applied to formally quantify the relationship between regions across the brain.
Before network or connectivity methods can be applied, morphometric measures must be estimated
on a voxel-, vertex-, or region of interest-wise level. These methods are outlined below.

2.1. Voxel-Based and Surface-Based Morphometry

A two-dimensional image is broken up into smaller units called pixels. In a similar way,
a three-dimensional structural image obtained from magnetic resonance imaging (MRI) can be
broken up into smaller elements called voxels (volumetric elements). Voxel-based morphometry
estimates volume differences or changes on a voxel-wise basis across the brain. Individual subject
images are normalized into a common template space so that volume changes can be averaged across
individuals and compared across groups. Images are first segmented into grey matter, white matter
and cerebrospinal fluid, according to their relative image intensities. The tissue of interest, typically
grey matter, is then selected for further processing, including smoothing and linear or non-linear
registration to allow for comparison across subjects [1,16]. Parametric statistical tests can be conducted
at every voxel [16], producing statistical maps showing the spatial pattern of local and global grey
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matter changes across time or groups. Voxel-wise statistical models can be corrected for confounding
variables such as age, sex and head size.

Structural images are non-linearly transformed to a template space in deformation-based
morphometry and the deformation fields used for the transformation are analysed [1,17]. This approach
is likely more sensitive to local morphometric changes than VBM, but can also be combined with VBM
as an optimized form [1]. Images with high signal-to-noise and contrast-to-noise ratios are important
for the accurate estimation of volume density, as is the absence of image artefacts, such as those that
result from head motion [1,18].

Volume-based methods do not capture the complex shape and cortical folding of the cortical
surface. In contrast to volume-based methods, surface-based methods model the boundary between
the inner white matter or the outer pial surface and the grey matter surface, accounting for the complex
folding of the cortical surface [19]. Highly accurate models of grey and white matter surfaces are
constructed, and the distance between these surfaces is calculated in order to give a measure of cortical
thickness [19,20] Deformable models are used to non-linearly align individual surface anatomy to a
template space, although surface measurements can also be estimated in native space [21]. Because they
account for the complex folding patterns of the cortex, surface methods have better inter-individual
alignment, which aids comparison across individuals. Cortical thickness measurements can be made
with submillimetre accuracy, allowing enough sensitivity to track changes, such as gradual cortical
atrophy, within or across individuals [20]. Surface-based methods allow for estimates of cortical
thickness, shape, surface area and gyrification. Surface-based methods have been evaluated against
histology and manual segmentation, further validating their accuracy [22].

Surface- and volume-based methods can be applied cross-sectionally to estimate brain atrophy,
but the development of longitudinal methods have allowed for more accurate estimation of changes
in brain morphometry that accounts for across-subject variability in cortical thickness measures.
Longitudinal measures typically use each individual as their own control, often creating a template
based on the average of all timepoints from which to register images obtained at each timepoint [23].
Longitudinal designs are more sensitive to morphology changes than cross-sectional designs, and they
require fewer participants in order to detect an effect [22,24].

In region of interest-based approaches, the brain can be parcellated into anatomically or
functionally specific areas and the morphometric measure can be extracted [25]. The relationship
between these regions can then be estimated, using network methods such as graph theory. Graph
theory is a branch of network science that formally describes the relationship between different
nodes, for example anatomical brain regions, in a network. Region of interest approaches require
apriori parcellation of the cortex, which may introduce bias depending on the parcellation scheme
implemented. Different parcellation schemes have been shown to change structural network
properties [21].

2.2. Connectivity and Network Based Methods

The application of connectivity and network methods to brain morphometry is based on the
observation that regions of the brain co-vary in morphological features [25,26]. Regions of the
brain that show inter-individual differences in some measure of morphology, co-vary with other
regions showing inter-individual differences [26]. Regions with shared morphological features seem
to also be part of networks that share functions, such that structural covariance networks closely
resemble intrinsic functional connectivity networks [26]. This feature of brain organization has been
shown at post-mortem within visual and motor networks [26], emphasizing the link between shared
morphometry and shared function. As is the case with functional connectivity, the relationship in
morphometry between spatially distributed regions in the brain is not reliant on direct white matter
connections [21]. There is however evidence for covariance amongst regions with direct white matter
connections, for example in the language network [26].
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The dominant method for examining relationships in morphometry across the brain is structural
covariance. Structural covariance networks can be derived using the same methods applied to derive
networks of functional connectivity. The main approaches are seed-based, data-driven and graph
analysis [2,26]. In seed-based approaches, the morphological measure, such as cortical thickness or
volume, is extracted from the seed region and compared to the morphological measure across the rest
of the brain (Figure 1a). Data-driven methods, such as principal or independent components analysis,
do not require the selection of an apriori seed region of interest, but instead reduce inter-regional
covariance amongst brain regions to components that explain the majority of the variance across people.
Finally, graph analysis assigns network properties to structural covariance networks by examining the
relationship and correlations in a morphometric measure, between nodes, regions of interest, voxels or
vertices. Structural covariance networks can be compared cross-sectionally or longitudinally in order
to estimate atrophy within networks in aging or after stroke.

Figure 1. Hypothetical, illustrative examples of (a) structural covariance and (b) atrophic covariance
of the default mode network. (a) In structural covariance, volume or cortical thickness in a posterior
cingulate seed (circle shape) is compared to volume or cortical thickness with the rest of the brain on a
voxel- or vertex-wise basis and at a group level; (b) In atrophic covariance, the rate of atrophy in the
posterior cingulate region (circle shape) is compared with the rate of atrophy in the rest of the brain on
a voxel- or vertex-wise basis and at a group level. Colour spectrum represents strength of correlation,
with lighter colours reflecting higher correlation values.

3. Network-Based Neurodegeneration in Aging

Grey and white matter atrophy is a normal part of healthy aging [27]. The pathological basis
of this neurodegeneration, as indicated by post-mortem studies, is likely to be the loss of neuropil
(i.e., dendritic and synaptic density), rather than neuronal loss [28,29]. Cortical thinning is widespread
in aging and evident from middle age [5,27]. An extensive literature review has shown distinct
and reproducible patterns of atrophy including concentrations in the prefrontal and frontal cortex
and medial temporal lobes, which have been associated with executive and memory declines also
evident in healthy aging [7,8]. Cortical thinning appears to occur on an anterior–posterior axis, with
the greatest rates of atrophy occurring in the frontal lobes [27]. This converges with some evidence
from voxel-based morphometry [29], although volume and thickness measurements have produced
contradictory results [28]. Lemaitre et al. (2012) systematically investigated regional and global
patterns of brain morphometry. They aimed to clarify the different patterns of morphological changes
that occur in aging by estimating cross-sectional changes in grey matter volume, cortical thickness and
surface area in 216 healthy controls aged 18–87. All three measures showed age related reductions in
the prefrontal cortex and this was accelerated compared to global levels of atrophy in cortical thickness
and volume across the brain. There were more widespread changes in cortical thickness compared to
volume with age, and surface area showed the least change with age. This suggests that surface area
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may not be a sensitive marker of morphological changes associated with brain aging, while cortical
thickness might be the most sensitive [28].

Discrepancies between studies examining regional changes in brain structure in aging are likely
due to the wide range of methods available to estimate brain morphometry, and the different statistical
techniques used to model age effects [30]. Peelle et al. (2012) examined the impact of different image
processing techniques and statistical models on estimates of age-related changes on 420 adults aged
18–77. Segmentation of the brain into its constituent tissues was improved by increasing the number of
tissue classes and using a template more closely matched in age to the group studied [30]. The use
of total grey matter as a covariate of no interest effected regional estimates of grey matter volume,
and is an important consideration for the interpretation of group differences in estimates of brain
morphometry [30]. Nevertheless, there is also a reassuring amount of consistency with regions of the
frontal cortex, including the insulae, showing age related declines regardless of the image processing
methods used or the statistical models applied [30].

It is now recognised that patterns of atrophy may reflect alterations in large scale network
function. Regional atrophy patterns may be the result of degeneration in large-scale networks that
also underlie the cognitive functions that decline with age [8,31]. As a result, a number of studies
have used structural covariance methods to examine morphological changes across the lifespan within
known functional or neurocognitive networks [31,32]. The morphology of primary sensory and motor
networks seems to remain relatively preserved in aging compared to higher cognitive networks [31].
Higher cognitive networks including the default mode and executive control network seem to shift
from more distributed to a more localised topology with aging [31]. Interestingly, there were notable
reductions in connectivity with the posterior cingulate, a major hub of the default mode network
(DMN) that is implicated in pathological aging.

Spreng et al. (2013) demonstrated declines in structural covariance in the default mode network
in healthy aging that was more extensive in those who converted from mild cognitive impairment
to Alzheimer’s disease (AD) and more still in the AD cohort. The findings support a network-based
view of neurodegeneration in which the pattern of atrophy mirrors the intrinsic functional DMN [33].
Meunier et al. (2014) found that decreased grey matter integrity was associated with decreased
regional connectivity of the language network but overall increased language network connectivity.
This increased connectivity was thought to reflect reorganization to maintain performance, but was
ultimately less efficient, by recruiting new regions to compensate for those within the network with
reduced activity due to grey matter loss [34].

A number of studies using different methods of examining atrophy within networks have come to
similar conclusions that distributed structural covariance networks shift to a more localised topology
with age. In a study examining structural network integration based on cortical thickness in 102 young
and 97 older adults, Chen et al. (2011) demonstrated a reduced modularity in the older compared
to the younger group that they postulate reflects reduced functional integration in aging. Reduced
modularity was seen in executive and default mode networks that likely underlie the cognitive deficits
seen in aging [35]. Montembeault et al. (2012) partially replicated this finding using grey matter
volume covariance. They demonstrated reduced structural covariance with aging in the executive and
default mode networks, as well as a semantic network [8]. Finally, across 374 adults aged 64–68 and
428 adults aged 44–48, Zhu et al. (2012) showed lower global efficiency but higher local clustering in
the older age group [36]. There appears to be some consensus then, across methods and measures of
morphometry, for a loss of distributed structural covariance and modularity with aging and a shift to
more localised covariance structures.

This raises the question as to what drives structural covariance network changes in healthy aging.
Across the lifespan, there is evidence that networks show increasingly distributed structural covariance
through development, with covariance becoming more localised in healthy aging [32]. Reductions
in distributed structural covariance in aging may reflect reduced white matter connectivity between
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regions, and therefore reduced transmission of information, or co-activation of regions resulting in a
divergence in the features of their morphometry over time [37].

4. Network-Based Neurodegeneration in Stroke

Stroke may initiate or aggravate neurodegeneration beyond that seen in healthy aging, and
this neurodegeneration may be associated with cognitive impairment [38]. Cognitive impairment is
common after ischaemic stroke, and dementia occurs in 15–30% of stroke patients within five years [39].
The effects of stroke are seen well beyond the site of damage [40], in seemingly healthy cortex,
suggesting network wide effects of ischaemic stroke. There are focal grey matter volume changes that
are associated with cognitive impairment after stroke [41]. Stebbins et al. (2008) compared grey matter
volume between ischaemic stroke patients with no cognitive impairment and those with impairment
in at least one domain. The thalamus seemed to be particularly vulnerable to degeneration after stroke,
and its residual volume was associated with the presence of cognitive impairment in at least one
cognitive domain. Other cortical regions also showed evidence of grey matter volume loss, although
to a lesser extent [41]. Atrophy in the thalamus, irrespective of stroke location, and its association with
multi-domain cognitive impairment, likely reflects the thalamus’s role as a multi-network hub [42].
Because of the vast interconnectedness of the thalamus, a stroke in any number of regions is likely to
affect a network with thalamic involvement.

The concept of diaschisis, describing the remote effects of focal brain lesions, is over 125 years
old [40]. There is a renewed interest in diaschisis in light of the discovery of the complex functional
and structural network organisation of the brain. The terms connectional and connectomal diaschisis
have been coined to describe the functional and structural changes that occur after damage within
these complex brain networks [40]. Although the concept of diaschisis is most often applied to remote
functional changes after stroke, it may also go some way to explaining remote changes in structure,
including brain atrophy in regions distant from the stroke site. Regions remote from the lesion site
may degenerate due to the loss of input from the lesioned site.

Brain atrophy is also evident in subcortical ischaemic vascular disease, with an increased
white matter lesion burden associated with increased brain atrophy and cognitive decline [43].
The relationship between cognitive decline and white matter lesion load is mediated by brain volume
loss, suggesting that atrophy plays a more direct role in cognitive decline than lesion burden [43,44].
However, the pathway from the increased burden of subcortical white matter lesions to brain volume
loss is still unclear. Brain volume loss is often examined globally, not considering regional changes or
white matter volume loss. Disruptions to white matter connectivity resulting from increasing white
matter lesions may lead to denervation of cortical regions, which in turn leads to brain atrophy [43,45].
A similar pathway may also explain remote neurodegenerative effects of focal ischaemic stroke on
cortical morphology.

A useful model for untangling the effects of lesion burden and brain atrophy is the study
of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL). Patients with CADASIL can be prospectively studied with the expectation that new
lesions are likely to occur as a result of their inherited small vessel disease. Patients are also
younger than those with typical subcortical ischaemic vascular disease, allowing for more control over
comorbidities. Duering et al. (2012) estimated cortical thickness in areas with white matter connections
to incident subcortical infarcts in CADASIL patients. Cortical regions with a high probability of white
matter connectivity to the incident infarct showed the greatest degree of focal cortical thinning [45].
This provides direct evidence of focal cortical thinning and remote secondary degeneration as a result
of subcortical infarcts [45].

Studies of brain atrophy after stroke have so far been limited to regional volume changes and
cross-sectional studies. Far fewer studies have examined the network level degenerative effects of
stroke or the longitudinal effects, especially in comparison to the literature regarding ageing. Mirroring
the default mode network degeneration shown in healthy aging, mild cognitive impairment (MCI)
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and Alzheimer’s disease (AD) [33], there is evidence of atrophy within the DMN in aging that is
more extensive after ischaemic stroke [46]. Adapting the structural covariance method to examine
correlations in the rate of atrophy across the brain (Figure 1b), Veldsman et al. (2017) demonstrated
increased correlated atrophy after ischaemic stroke that suggests pathological network-wide
degeneration similar to that seen in MCI and AD.

How does ischaemic stroke result in remote or network-wide neurodegenerative effects? Like
the processes seen in healthy aging, disruption to white matter connectivity may result in a loss
of cortical input that leads to the atrophy of previously connected areas. Alternatively, stroke may
induce an ischaemic cascade that initiates or aggravates neurodegenerative processes that lead to
brain atrophy. The pathway is far more complex in stroke than in healthy aging, because there is a
background of vascular risk factors that likely led to stroke. This makes it difficult to separate the
effects of an ischaemic stroke from accelerated atrophy occurring on the background of long-term
vascular risk factors and mixed pathologies. Longitudinal studies are needed to identify changes in
cortical morphology as a result of stroke, taking into account natural aging processes and the existing
vascular burden.

5. Future Directions and Methodological Considerations

If the brain is viewed as a complex network of functionally and structurally interconnected regions,
then it is not surprising that changes associated with aging and disruption caused by stroke would be
seen on a network-wide level and not within isolated regions. Brain atrophy is a macroscale indicator
of neurodegeneration and is a strong predictor of cognitive impairment [43,47]. Neurodegenerative
diseases target intrinsic functional networks, and atrophy mirrors healthy structural covariance
networks, suggesting that meaningful patterns of atrophy underlie the variable cognitive phenotypes
of dementia subtypes [4,12]. Examining covariation in morphological measures across the brain,
and their disruption in disease, is becoming more popular in the aging literature, but it is still in its
infancy in the stroke literature. Understanding the clinical significance, or determining the patterns of
atrophy after stroke is complicated by the comorbid vascular burden and risk factors that predispose
individuals to stroke in the first place. Nevertheless, there is an emerging picture of network-wide
effects of focal ischaemic stroke that warrants further investigation, especially given the prevalence of
cognitive impairment and dementia after stroke [38]. The data are relatively easy to acquire, requiring
non-invasive structural scans which are often already obtained in scanning paradigms and stroke
protocols. This makes the method appealing for clinical researchers and easily amenable to multi-centre
research studies or for collection in open-data repositories.

Ongoing advances in imaging acquisition methods and analysis will allow for increasingly
precise characterisation of morphological changes in the brain in aging and stroke. One of the most
promising developments in the imaging of brain structure and brain atrophy is ultra-high field
imaging. The relatively recent introduction of 7 tesla (T) scanners at research centres around the
world provides better image contrast and higher spatial resolution. Many subcortical structures,
such as the thalamic nuclei, basal ganglia and hippocampal substructures, can be more precisely
delineated, and therefore atrophy can be more precisely quantified, than at 3T [48]. It is likely to be
some time before 7T scanners become as widely available as 3T scanners, and there are still concerns
regarding patient safety, contraindications and tolerance at the higher magnetic field strength of
7T [49]. This is particularly limiting for the elderly and for patient populations who are more likely to
have had multiple surgeries, implants or other contraindications than for young, healthy volunteers.
Nevertheless, the increased resolution will afford much better understanding of brain structure and its
evolution over the course of the lifespan. Parallel acceleration sequences are increasing the resolution,
signal-to-noise and contrast-to-noise ratios of structural scans at 3T [1], and are more easily acquired
on patient populations. Multiple slices are acquired simultaneously, reducing the length of sequences,
a major advantage for patients where scan time often has to be limited as their tolerance is often low.
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Methods based on magnetic resonance imaging of the brain are subject to several sources of noise,
including artefacts as the result of head motion. This is particularly problematic when comparing
brain structure across groups in which group status may be correlated with the level of in-scan motion.
For example, older participants may move more than younger participants, and patients may move
even more still [1]. Visual inspection of structural images is an important quality control step, as large
movement artefacts can often be seen clearly by the eye. MRI sequences have been developed to detect
and correct for motion during the acquisition of the images [50,51]. This approach avoids having to
discard scans post hoc due to motion artefacts.

As these methods are in their infancy, there is still significant work to be done in understanding
their biological underpinnings. There is increasing evidence of their relationship to functional
and structural networks [2,3]. For example, the same networks showing functional disruptions in
prodromal Alzheimer’s disease show evidence of network-based atrophy [33]. However, it remains to
be determined how these macroscale networks relate to histologically determined brain structure [21].
Nevertheless, structural covariance methods provide the potential to track the progression of atrophy,
which can provide important prognostic information as well as quantitative evaluation of drug or
rehabilitative interventions.
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