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Abstract: This review highlights ten “hot topics” in current antiviral research: (i) new nucleoside deriva-
tives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii)
cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infec-
tions; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising
activity against both α- and γ -herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir
with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipi-
ravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the
replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly
emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously
used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073);
(viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such
as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)],
showing activity against influenza and other viruses; and (x) two structurally unrelated compounds
(i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA
viruses. C© 2012 Wiley Periodicals, Inc. Med. Res. Rev., 33, No. 6, 1215–1248, 2013
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1. INTRODUCTION

The search for new antivirals has proceeded unabatedly. In previous reviews on “stories on
antiviral drug discovery,” I have reviewed various subjects in which I was personally involved.1–5

In this review, hopefully the first of a new series, I will address “hot topics” in areas of antiviral
research in which over the past few years significant progress has been made requiring due
attention. Most of the compounds covered are still in the preclinical stage. Compounds that
have successfully completed phase II and III clinical trials and progressing to approval (or
have already been approved) are not subject of this review. Instead, this article is based on
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compounds in the pipeline that offer attractive perspectives as future antiviral drugs. In this
sense, the present survey is a little arbitrary in the selection of the topics, which depends at least
in part on my own prejudices and a number of other factors, not at least my own acquaintance
with the subject.

An important impetus for initiating this review was based on the 24th ICAR Abstract Is-
sue (Antiviral Research, vol. 90: A21–A78, 2011) covering the presentations at the 24th ICAR
(International Conference on Antiviral Research), held in Sofia (Bulgaria) on May 8–11, 2011.
Unfortunately, I could not attend the Conference, but guided by a certain devotion, I went
through the Abstract Issue and spotted a number of interesting leads which I would like to
reflect on in the present article: (i) nucleoside analogues, targeted at hepatitis C virus (HCV)
NS5B RNA polymerase, such as PSI-352938;6 (ii) cyclopropavir for the treatment of human
cytomegalovirus (HCMV) infections;7 (iii) North-methanocarbathymidine (N-MCT) for the
treatment of α-herpesvirus [herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)] and γ -
herpesvirus [Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV)
infection];8 (iv) CMX001 (1-O-hexadecyloxypropyl cidofovir) for the treatment of a broad va-
riety of DNA virus infections;9 (v) favipiravir (T-705) for the treatment of influenza virus infec-
tions and various other RNA virus infections;10 (vi) the increasing number of compounds found
effective against arenaviruses;10, 11 (vii) new picornavirus (i.e., rhinovirus) inhibitors;12, 13 (viii)
natural products with antiviral activity such as aglycoristocetin derivatives14 and tricin (4′,5,7-
trihydroxy-3′,5′-dimethoxyflavone);15 (ix) mitogen extracellular kinase (MEK) inhibitors, such
as U0126, acting at a cellular target, and effective against influenza and other viruses;16 and (x)
two unique sets of compounds which should be effective against virtually all enveloped DNA
and RNA viruses.17

Taken together, compounds (i) through (x) cover all major viral pathogens: polyoma-,
adeno-, herpes-, pox-, picorna-, flavi-, arena-, myxo-, bunya-, and retroviruses, and particularly
HSV, HCMV, hemorrhagic fever, influenza, and human immunodeficiency virus (HIV).

2. NUCLEOSIDE ANALOGUES TARGETED AT THE HCV NS5B POLYMERASE

2′-Deoxy-2′-fluorocytidine (FdC) could be considered as the first nucleoside analogue (Fig. 1)
found to inhibit the hepatitis C virus (HCV) replicon in cell culture, its 5′-triphosphate inhibiting
the NS5B polymerase.18 Introduction of a methyl group at the C-2′ position, as in β-D-2′-fluoro-
2′-C-methylcytidine (Fig. 1), conferred a similar potency as FdC in the HCV replicon assay.19

Although the 2′-C-methylcytidine (Fig. 1) demonstrated somewhat lesser activity against HCV
than 2′-deoxy-2′-fluoro-2′-C-methylcytidine,19 the prodrug of 2′-C-methylcytidine, its 3′-O-
valine ester, NM283 (valopicitabine) (Fig. 1) was developed (but later dropped) for phase II
clinical trials.20

Introduction of a 4′-azido group (Fig. 1), as in R1479,21, 22 RO-9187, RO-0622,23 4′-azido-
2′-deoxy-2′,2′-difluorocytidine, and 4′-azido-2′-deoxy-2′-fluoroarabinocytidine significantly in-
creased the potency in the HCV replicon system [i.e., with 50% effective concentration (EC50)
values of 66 and 24 nM for the latter two compounds].24 The 2′,3′,5′-triisobutyrate ester prodrug
of 4′-azido-2′-C-methylcytidine (RG1626) (Fig. 1) has been (but is no longer) in development
as inhibitor of HCV, according to Reddy et al.25

According to Reddy et al.,25 RG7128 (Fig. 1) is currently in phase IIb clinical trials.
RG7128 is the 3′,5′-diisobutyrate ester prodrug of PSI-6130 (Fig. 1); in a 4-week combination
study with the current standard of care (soc) for HCV infection (i.e., combination of pegylated
interferon-α and ribavirin), RG7128 demonstrated efficacy in genotype 1, 2, and 3 patients, and,
therefore, represents the first direct acting antiviral to show pan-genotype HCV coverage in the
clinic.

Medicinal Research Reviews DOI 10.1002/med
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Figure 1. Structures of nucleoside analogues and their prodrugs active against HCV NS5B polymerase.
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Figure 1. Continued.

PSI-6130 (β-D-2′-deoxy-2′-fluoro-2′-C-methylcytidine) is a potent inhibitor of HCV repli-
cation in the HCV replicon system [for an efficient, diastereoselective synthesis of PSI-6130,
see Wang et al.26]. To be active at the NS5B RNA polymerase level, PSI-6130 must be phos-
phorylated successively to its 5-mono-, di-, and triphosphate, the final, active metabolite which
acts as a chain terminator of the NS5B RNA polymerase.27 However, in addition to the
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5′-triphosphate of PSI-6130, the 5′-triphosphate of its uridine counterpart, β-D-2′-deoxy-2′-
fluoro-2′-C-methyluridine (RO2433) (Fig. 1), is also formed,28 and this second metabolite of
PSI-6130 is also a potent inhibitor of the HSV NS5B RNA polymerase.29 Deamination of
PSI-6130 occurs at the 5′-monophosphate level.29 RO2433 (Fig. 1) itself is inactive in the HCV
replicon system, but its phosphoramidate prodrug PSI-7672 (Fig. 1) is active in this system,
where it is released as its 5′-monophosphate which can then be further phosphorylated intra-
cellularly to the 5′-di- and 5′-triphosphate.29

From R02433 (a uridine homolog, which was renamed PSI-6206), another phosphorami-
date prodrug, PSI-7851 (Fig. 1) was prepared, which proved to be pan-genotype inhibitor of
HCV replication, with, however, lesser activity against the S282T replicon mutant (while the
S96T/N142T mutation remained fully susceptible to PSI-7851).30 Inside the cell, PSI-7851 is
converted to the 5′-monophosphate of PSI-6206, and in this sense, PSI-7851 can be considered
as a prodrug of PSI-7411.31 PSI-7851 is, in fact, a mixture of two diastereoisomers, PSI-7976
(Rp diastereomer) and PSI-7977 (Sp diastereomer), the latter being the more active inhibitor
of HCV RNA replication in the replicon system.31, 32 PSI-7977 is currently being evaluated in
phase II clinical trials.33

From 2′-deoxy-2′-fluoro-2′-C-methylguanosine-5′-monophosphate a phosphoramidate
prodrug was prepared, PSI-353661 (Fig. 1), which proved highly active against genotypes 1a,
1b, and 2a HCV RNA replication in the replicon system, genotype 1a and 2a infectious virus
production, and HCV replicons harboring the NS5B S282T or S96T/N142T mutations.33 PSI-
353661 [(S)-2-{(S)-[(1R,4R,5R)-5-(2-amino-6-methoxy-purin-9-yl)-4-(R)-fluoro-3-hydroxy-4-
methyl-tetrahydro-furan-2-yl-methoxy]-phenoxy-phosphonylamino}-propionic acid isopropyl
ester] is the more active isomer of a mixture (PSI-352879) of two diastereoisomers.

Recently, the 2′-deoxy-2′-α-fluoro-2′-β-C-methyl 3′,5′-cyclic phosphate prodrug PSI-
352938 (Fig. 1) was described. Based on its antipan-genotype HCV activity (EC50 for the
replicons in the 0.1–0.2 μM range) also including activity against S282T or S96T/N142T
mutations, ability to produce high intracellular 5′-triphosphate levels both in vitro and in
vivo, the synthetic accessibility of a single diastereomer,34 PSI-352938 was selected for further
development.25, 35 The compound is currently in phase I clinical trials.

Supportive of continued development as a clinical candidate for the treatment of HCV infec-
tion is INX-08189 or (2S)-neopentyl 2-(2R,3R,4R)-5-(2-amino-6-methoxy-9H-purin-9-yl)-3,4-
dihydroxy-4-methyltetrahydrofuran-2-yl)(methoxy)(naphthalen-1-yloxy)(phosphorylamino)
propanoate, an aryl-phosphoramidate of 6-O-methyl-2′-C-methyl guanosine; its EC50 for 1a,
1b, and 2a HCV replicons is around 0.01 μM.36 The separated diastereomers of INX-08189
were shown to have similar activity in the replicon assay. INX-08189 has completed investi-
gational new drug (IND) enabling studies and has progressed to human clinical trials for the
treatment of chronic HCV infection.37

3. CYCLOPROPAVIR

Cyclopropavir (Fig. 2) can be viewed as structurally related to acyclovir, ganciclovir, and penci-
clovir in that the acyclic side chain of the latter has been replaced by a methylenecyclopropane.
Its antiviral properties have been known since a decade or so.38 Cyclopropavir has proven to
be effective against herpesviruses.39, 40 It has proven particularly effective in animal models
for cytomegalovirus (CMV) infection,41 including SCID-hu (where SCID is severe combined
immunodeficient) mouse models for HCMV.42 In addition, cyclopropavir has also been found
effective in vitro against human herpesvirus type 6 (HHV-6), like HCMV, a β-herpesvirus.43

Currently available drugs for the treatment of HCMV infections are ganciclovir, cidofovir,
foscarnet, and valganciclovir (the valine ester of ganciclovir). Esterification of ganciclovir with

Medicinal Research Reviews DOI 10.1002/med
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Figure 2. Structures of cyclopropavir, valcyclopropavir, and the cyclic phosphonate of cyclopropavir.

L-valine increased its oral bioavailability, as was previously also shown for acyclovir (valaci-
clovir) and would be later shown for the valine esters of 2′-deoxy-L-cytidine (valtorcitabine)
and 2′-C-methylcytidine (valopicitabine).20 Also, the L-valine ester of cyclopropavir (valcyclo-
propavir) (Fig. 2) has been constructed.44 In mice, oral bioavailability of valcyclopropavir was
95%.

Against all those HCMV strains against which cyclopropavir was compared with ganci-
clovir, cyclopropavir displayed an EC50 that was five- to tenfold lower than that of ganciclovir.45

This was also the case for UL97 mutations that affected cyclopropavir and ganciclovir suscep-
tibility. In fact, purified pUL97 phosphorylated cyclopropavir (to its monophosphate) 45-fold
more extensively than ganciclovir.46 This phosphorylation is stereoselective.

Medicinal Research Reviews DOI 10.1002/med
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Cyclopropavir monophosphate is converted successively to its diphosphate and its triphos-
phate (the latter is the active metabolite interacting with the HCMV pUL54 DNA polymerase)
by a single cellular enzyme, guanosine monophosphate kinase (GMPK), once the monophos-
phate is formed by a virally encoded kinase.47

While new and safe anti-HCMV drugs are eagerly awaited, the fact that cyclopropavir
has excellent activity against HCMV, combined with its specific phosphorylation by the viral
enzyme pUL97 would seem to justify further development of the compound and its valine ester
(valcyclopropavir), and eventually that of its phosphonate and cyclic phosphonate as well.48

It is curious, in this regard, that while both the phosphonate and cyclic phosphonate (Fig. 2)
were equally active against HCMV, only the phosphonate, but not the cyclic phosphonate, was
active against the γ -herpesvirus, EBV.48

4. NORTH-METHANOCARBATHYMIDINE (N-MCT)

N-methanocarbathymidine (N-MCT) with a pseudosugar rigidly fixed in the Northern confor-
mation (1R,2S,4S,5S)-1-(hydroxymethyl)-2-hydroxy-4-(5-methyl-2,4(1H,3H)-dioxopyrimidin-
1-yl)bicyclo[3.1.0]hexane (Fig. 3) was first synthesized by Marquez et al. in 1996.49 It was found
to exhibit potent antiviral activity against HSV-1 and HSV-2. This was further corroborated
in subsequent studies.50–52 N-MCT appeared to be phosphorylated to the mono- and diphos-
phate by the HSV-encoded thymidine kinase, and to inhibit the viral DNA polymerase through
its triphosphate metabolite.50 Kinases would prefer substrates that adopt the S sugar confor-
mation, whereas cellular DNA polymerases almost exclusively incorporated the triphosphate
of the locked N conformer, notwithstanding the presence of higher triphosphate levels of the
S-conformer S-MCT (Fig. 3).53

HO

HO

N

NH

O

O

HO

HO

N

NH

O

O

HO

OH

N

NH

O

O

HO

HO

N

NH

O

O

Figure 3. Structures of carbocyclic thymidine, North-methanocarbathymidine (N-MCT), South-
methanocarbathymidine (S-MCT), and D-(+)-iso-methanocarbathymidine (D-(+)-iso-MCT).
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Antiviral activity against vaccinia virus was first shown with carbocyclic thymidine
(Fig. 3).54 N-MCT was found to be highly effective against orthopoxvirus infections in vivo
(mice),55, 56 although the lung, nasal, brain virus reductions it achieved for vaccinia virus infec-
tion (1HD strain) were not nearly to the same extent as for cidofovir.57

Vaccinia virus lacking the F2L gene encoding functional deoxyuridine triphosphatase
(dUTPase, that catalyzes the conversion of dUTP to dUMP) continued to replicate well in vitro
and in vivo, but proved hypersensitive to the inhibitory effect of N-MCT.58

As to its activity spectrum, N-MCT is not only active against the α-herpesviruses HSV-1,
HSV-2, but also against the γ -herpesviruses EBV55 and KSHV.59 Apparently, N-MCT inhibits
lytic KSHV DNA synthesis through its triphosphate metabolite produced in KSHV-infected
cells expressing a virally encoded thymidine kinase.59

Recently, a “greener” enantioselective synthesis of N-MCT from 2-deoxy-D-ribose has been
reported60 and a new MCT distinct from N-MCT, namely D-(+)-iso-MCT (Fig. 3), has been
described as a high-affinity substrate for HSV-1 thymidine kinase.61 N-MCT shows potent
anti-HIV activity in human osteosarcoma (HOS) cells modified so as to contain, and express,
the HSV-1-encoded thymidine kinase. Possible anti-HIV activity of D-(+)-iso-MCT may have
been masked by cytotoxicity.61

N-MCT represents an interesting conformational concept.62 Its therapeutic utility, however,
remains to be demonstrated. As there are, at present, no therapeutic options for EBV and KSHV
infections, these infections may well represent unique opportunities for the clinical potential of
N-MCT to be further explored.

5. CMX001 (HDP-CDV)

CMX001 is the 1-O-hexadecyloxypropyl (HDP) prodrug of the acyclic nucleoside phosphonate
cidofovir (CDV), representing an oral version of cidofovir with reduced (nephro)toxicity.63 The
active form of HDP-CDV (CMX001) is cidofovir (Fig. 4), which explains why, in principle,
CMX001 should possess an activity spectrum similar to that of cidofovir, thus, encompassing
DNA viruses, herpes-, adeno-, polyoma-, and poxviruses. For all these indications, CMX001
could, given its oral bioavailability and safer (nephro)toxicity profile, replace cidofovir in future
therapeutic regimens.

Against disseminated or central nervous system (CNS) HSV infections, firm Chimerix
(CMX) appears to be superior to acyclovir.64 Orally administered HDP-CDV is four- to
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Figure 4. Structures of cidofovir (CDV) and HDP-CDV (CMX001).
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eightfold more active, on a molar basis, than intraperitoneally administered cidofovir against
HCMV infection in SCID/hu mice.65 HDP-cidofovir exhibits multiple-log enhancement of
antiviral activity against both HCMV and HSV replication in vitro,66 and oral treatment with
HDP-CDV is as effective as parenteral CDV for the treatment of murine CMV infections.67 As
long awaited, oral HDP-CDV improves the outcome of CMV infection in a congenital model
for CMV infection in pregnant guinea pigs.68

Ether lipid esters of cidofovir, such as HDP-CDV, are much more potent than cidofovir
against adenovirus replication in vitro.69 HDP-CDV (CMX001) suppressed adenovirus-induced
mortality in immunosuppressed hamsters, a powerful model to evaluate the efficacy of anti-
adenovirus agents.70 A first case of the successful eradication of disseminated adenovirus in-
fection by CMX001 has been recently reported in a severely immunosuppressed pediatric stem
cell transplant recipient.71

In line of earlier observations on the inhibitory effects of cidofovir against murine and
primate polyomaviruses,72 cidofovir was shown to inhibit polyomavirus BK replication in
human renal tubular cells.73 Either lipid esters of cidofor such as HDP-CDV were then shown
to inhibit polyomavirus BK replication in vitro at a 3 log10-fold lower concentration than
cidofovir.74 CMX001 proved highly effective in inhibiting polyomavirus BK replication in
primary human renal tubular epithelial cells.75 This points to the potential of CMX001 in the
treatment of BK virus nephropathy that is seen in 1–10% of kidney transplant recipients.

The JC polyomavirus infects human oligodendrocytes leading to the development of pro-
gressive multifocal leukoencephalopathy. CMX001 was shown to suppress polyomavirus JC
in human fetal brain SVG cell cultures76 [the SVG cell line is derived from primary human
brain cells transfected with Simian virus 40 (SV40) and expressing SV40 T antigen in these
cells]. CMX001 was recently shown to inhibit polyomavirus JC replication in human brain
progenitor-derived astrocytes,77 and a case of progressive multifocal leukoencephalopathy (ac-
companied by idiopathic CD4+ lymphocytopenia) responded successfully to treatment with
CMX001.78

Alkoxyalkyl esters of cidofovir, including HDP-CDV, have been most intensively pur-
sued for inhibition of orthopoxvirus replication.79 They were first proven active in vitro
against vaccinia virus and cowpox,80 before their in vivo activity against the same viruses
was demonstrated.81 Their efficacy was demonstrated in a lethal mousepox model (based on
lethal, aerosol ectromelia virus infection in A/NCR mice).82 In an improved model for eval-
uating antipoxvirus therapies, based on the use of C57BL/6 mice infected with mousepox
(ectromelia) virus, CMX001 proved more efficacious than in A/NCR mice.83

Ectromelia virus infection of mice serves as a model to support the licensure of an-
tiorthopoxvirus therapeutics based on the “animal efficacy rule” because of the genetic simi-
larity of ectromelia virus to variola and monkeypox viruses.84 In the lethal mousepox model,
complete protection against mortality was achieved when administration of CMX001 was de-
layed until as late as 5 days postinfection.85 A single dose of 25 mg/kg of CMX001 administered
4 or 5 days postinfection sufficed to be effective in the mousepox model.86

CMX001 is also efficacious in the treatment of monkeypox virus infection in STATI-
deficient C57BL/6 mice.87 Against the highly virulent, interleukin-4 expressing ectromelia
virus recombinant, CMX001 may afford the highest efficacy when combined with another
antiviral drug, ST-246.88 The pre- and postexposure prophylactic efficacy of CMX001 has also
been demonstrated in rabbits infected with rabbitpox virus.89, 90

Compared with CDV, CMX001 would have the advantages that it could be administered
orally (whereas CDV needs to be administered intravenously) and, unlike CDV, CMX001 may
not lead to nephrotoxicity.91 Furthermore, various additional alkoxyalkyl esters of CDV have
been described, that is, 1-O-octadecyl-2-O-benzyl-sn-glycero-3-CDV (ODBG-CDV),92, 93 which
may be worth further exploring for potential advantages over HDP-CDV (CMX001).

Medicinal Research Reviews DOI 10.1002/med
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6. FAVIPIRAVIR (T-705)

Favipiravir (T-705) (Fig. 5) is currently in clinical trials in Japan (phase III) and the United
States (phase II) for the treatment of influenza virus infections (as mentioned by Buys et al.94).
The in vitro and in vivo activities of T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) were
first reported in 2002 by Furuta et al.95 The compound showed potent inhibitory activity
against influenza A, B, and C viruses, some activity against picorna- and paramyxoviruses, but
no activity whatsoever against DNA viruses. From its structure, it was immediately clear that
the mode of action of T-705 had to be different from that of the M2 ion channel inhibitors
amantadine and rimantadine, as well as that of the neuraminidase inhibitors zanamivir and
oseltamivir.

This mechanism of action was further addressed by Furuta et al.96 Within the cells,
T-705 would be converted to T-705 ribofuranosyl monophosphate by a purine (adenine,

Medicinal Research Reviews DOI 10.1002/med
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hypoxanthine/guanine) phosphoribosyl transferase. Two phosphorylations would then gen-
erate T-705–4-ribofuranosyl-5′-triphosphate (T-705 RTP), the active metabolite of T-705.96

That the latter is indeed the active metabolite of T-705 was also shown in cells infected with the
highly pathogenic influenza A (H5N1) virus.97, 98

Meanwhile, Sidwell et al.99 had shown that T-705, when orally administered at dosages
from 30 to 300 mg/kg (once or twice daily), prevented death due to a lethal avian influenza A
(H5N1) virus infection in mice. In vitro, favipiravir proved antivirally active against influenza
A (H1N1) virus strains that were resistant to antiviral drugs such as oseltamivir,100 and, in vivo,
synergistic effects were obtained with favipiravir combined with oseltamivir against influenza
A (H5N1) infection.101

The carboxamide group present in favipiravir (T-705) is reminiscent of the carboxamide
present in ribavirin. This carboxamide group is also present in T-1105 and T-1106, two com-
pounds that are structurally related to T-705 (Fig. 5). All the compounds share, with ribavirin,
a broad-spectrum activity against various RNA viruses. Thus, T-1105 shows activity against
foot-and-mouth disease virus (FMDV) and, as it can be administered through food, it could
be a powerful tool to control foot-and-mouth disease in pigs.102 T-1106 has proven efficacious
against Yellow fever virus (YFV) in a hamster model of YFV infection103 and is also active
against bovine viral diarrhea virus (BVDV),102 another flavivirus that could be considered as a
surrogate virus for hepatitis C virus (HCV).

T-705 is also efficacious in the YFV hamster model, although the dose of T-705 required
for efficacy in hamsters is higher than that of T-1106 required for efficacy. Yet, T-705 improved
the disease parameters in YFV-infected hamsters, which may indicate its potential utility in the
treatment of YFV infection in humans.104

In rodents (mice or hamsters), orally administered T-705 is also effective against West Nile
virus (WNV),105 another flavivirus related to YFV. Whether T-705 or any of its analogues
T-1105 or T-1106 would be effective against two other mosquito borne flaviviruses, dengue
virus and Japanese encephalitis virus, remains an intriguing possibility worth exploring. West-
ern equine encephalitis virus (WEEV), an alphavirus belonging to the broad family of the
flaviviridae, would seem to respond to T-705 treatment.106

The antiviral activity spectrum of T-705 extends to arenaviruses: that is, Junin virus
(JUNV), Pichinde virus, Tacaribe virus, Machupovirus (MACV), and Guanarito virus (GTOV)
replication in cell culture could be inhibited by T-705, and as previously noted for its inhibitory
effect on influenza virus, the antiarenavirus activity of T-705 could be reversed by the ad-
dition of purine, but not pyrimidine nucleosides.107, 108 T-705 also proved efficacious against
Pichinde virus infection in hamsters, even when treatment was begun after the animals fell ill,
the day before the animals began to succumb to the disease.109 Thus, for the treatment of late
stage arenaviral hemorrhagic fever, T-705 could be considered as an alternative option to rib-
avirin. This would seem very important for severe arenavirus infections, such as Lassa fever, in
humans.

Besides arenavirus infections, bunyaviruses, that is, Punta Toro, La Crosse, Rift Valley fever,
and sandfly fever virus, have also proven sensitive to inhibition by T-705 in vitro, and, for Punta
Toro virus, also in vivo (mice and hamsters).107 In hamsters infected with Punta Toro virus,
T-1106 was more efficacious than T-705, but in mice, T-705 was the more effective.110

Of the bunyaviridae, the hantaviruses Dobrava and Maporal were found to be sensitive to
the inhibitory effects of T-705.94 Maporal virus is phylogenetically similar to Andes virus, the
principal cause of hantavirus cardiopulmonary syndrome (HCPS) in Argentina. It would now
seem mandatory to further explore the efficacy of T-705 in the suitable hantavirus models in
hamsters and/or mice.

In conclusion, T-705 is an intriguing new antiviral compound that should be further
explored not only for its clinical potential in the prevention/therapy of influenza virus infections,
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but also for its broad activity spectrum against (−) and (+) RNA strand viruses, its target of
action (RNA-dependent RNA polymerase for all these RNA viruses ?), and its structure-
activity relationship and pharmacodynamics relative to that of related structural analogues
such as T-1105 and T-1106.

7. ARENAVIRUS INHIBITORS

Since McCormick’s pioneering paper in 1986111 on the effective therapy of Lassa fever with
ribavirin, ribavirin has remained the only antiviral drug available for the treatment of are-
navirus infections. The inhibitory effect of ribavirin on arenaviruses might, at least partially,
be attributed to lethal mutagenesis.112 In recent years, antiarenaviral drug development has
received increasing attention,113, 114 one of the new antiarenaviral drug candidates being favipi-
ravir (T-705) (see preceding section).

The Tacaribe arenavirus infection model has been employed to explore the antiviral
potential of novel aristeromycin analogues,115 and new imidazo[2,1-b]thiazole carbohydrate
derivatives have been found to inhibit the replication of the Argentine hemorrhagic fever
virus Junin.116 Small interfering (si)RNAs targeting the conserved RNA termini of Lassa
fever virus117 offer therapeutic potential and so do interferon-α and interferon-γ ,118 whereas
antimicrobial cationic peptides were found active against JUNV as well as HSV-1 and
HSV-2.119

Lassa fever virus is restricted by the bone marrow stromal antigen 2 (BST-2), also called
tetherin, which besides inhibiting the release of HIV-1, also inhibits the egress of arenaviruses.120

Tetherin could thus be considered an innate immunity strategy to suppress arenavirus
replication.

The Lassa fever viral nucleoprotein (NP) is endowed with several functions (i.e., a 3′-5′

exoribonuclease a the C-domain, involved in suppressing interferon induction, and a m7GpppN
cap-binding site at the N-domain, protecting the cap against cap snatching), which may serve
as potential targets for chemotherapeutic intervention.121

One of the most fascinating targets for novel antiarenavirus strategies is the arenavirus
envelope glycoprotein complex (GPC) processing by the cellular site 1 protease (S1P), which is
strictly required for the production of infectious progeny and cell-to-cell virus propagation.122

The small molecule PF-429242 (Fig. 6) was recently reported to be a potent S1P inhibitor
in vitro (cell-based assay).123, 124 This correlated with the compound’s potent antiviral activity
against Lassa fever virus in cell culture.125

Of the small molecular weight inhibitors targeted at arenaviral entry, in particular the
viral glycoprotein GP2, the first to be announced chosen for drug development was ST-294
(Fig. 6).126 The arenavirus GP is synthesized as a single polypeptide that undergoes posttrans-
lational processing to yield the mature virion glycoproteins GP1 and GP2. GP1 is involved in
receptor binding, whereas GP2 is similar to the fusion proteins of other enveloped viruses such
as retroviruses, paramyxoviruses, and filoviruses. A series of small molecules, including 17C8
(Fig. 6) have been identified to be targeted at the arenavirus GP.127

These small molecule entry inhibitors (including ST-294 and ST-193) interact with the
envelope GPC of arenaviruses so as to stabilize the complex against pH-induced activation
of membrane fusion in the endosome.128 Both ST-294 and ST-193 (Fig. 6) inhibit the pH-
induced dissociation of the receptor-binding GP1 subunit from GPC. ST-294 and ST-193
thus stabilize the GPC against pH-acidification which would otherwise initiate the fusion
process.129

The antiviral potency of ST-193 (Fig. 6) against Lassa virus and other arenavirus pseu-
dotypes is within the range of 0.2–12 nM. The sensitivity to ST-193 is dictated by a segment
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Figure 6. Arenavirus inhibitors targeted at viral entry.

of about 30 amino acids within the GP2 subunit. This region includes the carboxy-terminal
region of the ectodomain of the transmembrane domain of the envelope protein.130

The small molecule arenavirus inhibitor ST-193 was compared with ribavirin in a guinea
pig model for Lassa virus infection, and found to increase the survival rate from 0% (control,
ribavirin) to 62.5% (ST-193).

What now remains to be established is how ST-193 compares with other arenavirus in-
hibitors such as favipiravir (T-705) and PF-429242, both in terms of efficacy and safety, and
whether its efficacy can be extrapolated from Lassa to other arenavirus infections such as Junin,
Machupo, Sabia, and Guanarito.
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8. PLECONARIL AND ANTIPICORNAVIRUS AGENTS REVISITED

Although picornaviruses encompass a number of important human pathogens, including the
enteroviruses polio, Coxsackie A and B, and echo, and rhinoviruses, there is still no single
antipicornavirus agent approved for clinical use. Yet, a wealth of compounds has been shown to
inhibit picornaviruses, including, especially for Coxsackie B virus, a number of natural products
(see Section 8). Prominent among the currently envisaged antipicornavirus therapies131 are the
original Winthrop compounds (disoxaril derivatives), which engage in a specific binding to the
viral capsid.

Pleconaril (Fig. 7), the prototype of this class of compounds,132 had been shown to inhibit
the replication of various entero- and rhinoviruses133 and had demonstrated tentative efficacy
against potentially life-threatening enterovirus infections,134 before, in 2002, it was rejected by
the US FDA for the treatment of common cold.135 Several double-blind placebo-controlled
trials with pleconaril in infants with enterovirus meningitis,136 and adults with common cold137

were conducted, and Pevear et al.138 showed that the efficacy of pleconaril in reducing the
duration and severity of common cold symptoms (when it was administered within 24 hr of
symptom onset) was related to the virus susceptibility to pleconaril. De Palma et al.139 in their
review mentioned that a phase II double-blind, placebo-controlled trial to evaluate the effects
of pleconaril nasal spray on common cold symptoms and asthma exacerbations following
rhinovirus exposure was completed in 2007, but that results of this trial have not yet been
divulged.

Pleconaril has in the meantime been found to shorten the course of illness, compared to
placebo, in patients with enteroviral meningitis, but the benefit appeared to be modest after
adjusting for confounding variables.140 Pleconaril did not have any effect on viral replica-
tion in a common variable immunodeficiency (CVID) patient with parechovirus-associated
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Figure 7. Structures of pleconaril, BTA-798, and V-073.
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enteropathy.141 New pleconaril derivatives have been reported to be active against pleconaril-
resistant Coxsackie B virus.142

Meanwhile, new benzimidazole derivatives have been synthesized and found active against
Coxsackie B3 virus,143 and a small interfering (si)RNA has been shown to block Coxsackie
B virus replication.144 Synergistic activity against Coxsackie B3 virus was obtained if the
siRNA was combined with the soluble Coxsackievirus-adenovirus receptor.145 A new class of
compounds, which be structurally described as 9-arylpurines, was recently described to inhibit
a variety of enteroviruses, that is, Coxsackie A16, A21, A24, Coxsackie B3, and echovirus 9, at
low micromolar concentrations.146

In earlier papers dating from 2003 to 2004, we have demonstrated that Cox-
sackie B3 virus-induced myocarditis in mice can be inhibited by mycophenolate
mofetil,147 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile,148 and the interferon inducer ampli-
gen [poly(I).poly(C12,U)].149

Three antipicornavirus agents are currently in clinical development: pleconaril, BTA-798,
and V-073150 (Fig. 7). Pleconaril is under development as an oral formulation for the treatment
of rhinovirus infections in high-risk patients with chronic lung diseases.139, 151, 152 Oral BTA-
798 is in phase II trial for symptomatic human rhinovirus infection in asthmatic adults.139

V-073 is under further scrutiny for the treatment of poliovirus infections. Their EC50 values
are, respectively, for BTA-798 0.02 μM against human rhinovirus type 14 and 0.2 μM against
enterovirus 71, 0.06 μM for pleconaril against human rhinovirus type 14, and 0.026 μM for
V-073 against poliovirus type 1.150 Pleconaril, BTA-798 and V-073 behave as capsid binders.
They could, if required, be combined to provide an additive to slightly synergistic antiviral
effect.150

As reviewed recently,153 antivirals directed against human rhinoviruses could be used to
treat the common cold, but also be employed therapeutically or prophylactically to prevent
asthma and chronic obstructive pulmonary disease (COPD) exacerbations in high-risk patients.

9. NATURAL PRODUCTS WITH ANTIVIRAL ACTIVITY

Natural compounds, primarily those originating from plants, have received increasing attention
for their antiviral potential. Typical examples are constituents of Ardisia chimensis154 and
caffeoylquinic acids from Schefflera heptaphylla,155 both originating from Southern China and
found active particularly against Coxsackie B3 virus.

Norsesquiterpenoids isolated from the roots of Phyllanthus emblica showed, again, some
activity against Coxsackie B3 virus156 and triterpenoids isolated from S. heptaphylla (Fig. 8)
were accredited with broader activity against Coxsackie B3, influenza A, respiratory syncytial
virus (RSV), and HSV-1.157

Calycosin-7-O-beta-D-glucopyranoside (Fig. 8), the main isoflavonoid isolated from
Astragalus membranaceus, also showed activity against Coxsackie B3 virus in vitro, and would
improve the survival rate of mice infected with Coxsackie B3 virus.158

Flavans 7-O-galloyltricetifavan and 7,4′-di-O-galloyltricetifavan isolated from the leaves of
Pithecellobium clypearia would show activity against the same array of viruses (Coxsackie B3,
influenza A, RSV, and HSV-1) as the triterpenoids mentioned above.159

Homoisoflavonoids 3-benzyl-4-chromones (Fig. 8) showed activity against Coxsackie virus
B1, B3, B4, A9, and echovirus 30, but not against poliovirus.160

The flavone 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone (tricin), isolated from the bamboo
Sasa albo-marginata was found effective against HCMV at an EC50 of 0.17 μg/mL which
means a stronger antiviral activity than ganciclovir.161 Tricin has also been accredited with
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Figure 8. Structures of natural products.

antiinfluenza virus activity.162 To increase the oral bioavailability of tricin, it has been conju-
gated with alanine-glutamic acid. The prodrug of tricin (tricin-alanine-glutamic acid) showed
excellent oral bioavailability upon oral administration in rats.163

The isoflavone genistein (Fig. 8) was originally isolated from fermentation broth of Pseu-
domonas sp.164 and initially described as a tyrosine-specific protein kinase inhibitor.165 Only
recently, genistein has been shown to inhibit arenavirus infection,166 putatively by inhibit-
ing arenavirus entry which occurs through a cholesterol-dependent clathrin-mediated en-
docytic mechanism.167 Genistein has been found to increase the survival rate of hamsters
infected with the arenavirus Pirital virus, a surrogate model for hemorrhagic fever causing
arenaviruses.168
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Raoulic acid (Fig. 8) is the principal ingredient of Raoulia australis. It was shown to inhibit
picornaviruses, that is, rhinovirus 2 (HRV2), rhinovirus 3 (HRV3), Coxsackie B3, Coxsackie B4,
and enterovirus 71 at EC50 values in the range of 0.1–0.4 μg/mL, that is, at lower concentrations
than those at which the aforementioned triterpenoids and flavans showed antiviral activity.169

However, raoulic acid did not show activity against influenza A or B.169
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Figure 8. Continued.

Terameprocol is a methylated derivative of nordihydroguaiaretic acid, a phenolic an-
tioxidant extracted from the creosote bush Larrea tridentate.170 Terameprocol (Fig. 8) has
been found to inhibit the growth of poxviruses, that is, cowpox and vaccinia, by preventing
the spread of virus particles from cell to cell.170 Nigericin (also known as antibiotic K-178,
helexin C, azalomycin M, antibiotic X-464, and polyetherin A) has also been shown to inhibit
poxvirus replication.171 It had been previously reported to inhibit poliovirus and influenza virus
replication.172, 173

Aglycoristocetin derivatives with a cyclobutenedione carrying hydrophobic chains such
as methylene bis(phenylene) (Fig. 8) inhibit influenza A and B virus infections, probably
by interference with the viral entry process.174 These types of compounds (derivatives of
glycopeptide antibiotics) have been previously shown to inhibit the replication of retro-
and coronaviruses and this inhibitory effect was also attributed to interference with virus
entry.175, 176

Brassinosteroids, that is (22S,23S)-3β-bromo-5α,22,23-trihydroxy stigmastan-6-one
(Fig. 8), represent naturally occurring polyhydroxy steroidal plant hormones modulating the
growth and differentiation of plant cells. Their antiviral activity has been well documented.177, 178

Brassinosteroids are particularly active against arenaviruses such as Tacaribe, Pichinde, and
Junin.179

Biyouyanagins A and B were originally obtained from Hypericum chinense and shown to
be active against HIV.180 These compounds possessing antiarenavirus and anti-HIV properties
have been recently obtained by total synthesis, and their originally assigned structures were
revised (Fig. 8).181

In conclusion, a wealth of natural products has been reported to possess antiviral properties.
In the majority of these cases the chemical structure was well identified but the full antiviral
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activity spectrum of the compounds still needs to be evaluated, their mode of action elucidated,
and, most importantly, their therapeutic value delineated.

10. MEK INHIBITORS

U0126 (Fig. 9) is the prototype of the MEK (mitogen-activated protein/extracellular signal-
regulated kinase) inhibitors acting at the tiered serine/threonine kinase Raf/MEK/extra-
cellular regulated kinase (ERK) signaling pathway, able to suppress the propagation of the
pandemic H1N1 influenza virus and highly pathogenic avian influenza virus in vitro and in

Figure 9. Structures of MEK inhibitors U0126, PD 184352, PD 0325901, and PD 098059.
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vivo.182 Among the MEK inhibitors, PD 0325901 and PD 184352 (Fig. 9) have been used
in clinical trials against cancer.183, 184 They are also inhibitory to influenza virus infection in
vitro.182 MEK inhibitors such as U0126 not only reduce virus titers in vitro and in vivo, but
also reduce proinflammatory cytokine expression.185

MEK inhibitors, such as U0126, have also been shown to suppress influenza B virus
propagation.186 Most importantly, to date this happened without the emergence of any resistant
virus variants, demonstrating that influenza viruses cannot easily adapt to interference with
cellular functions.

Influenza virus infections require the induction of a variety of cytokines including those
that are regulated by transcription factors of the activating protein-1 (AP-1) family and the NK
(Jun-N-terminal kinase) pathway.187 These different protein kinase pathways may ultimately
lead to RANTES production in influenza virus-infected human bronchial epithelial cells.188

The Raf/MEK/ERK cascade is the prototype of mitogen-activated protein (MAP) kinase
cascades: inhibition of Raf-signaling results in nuclear retention of viral ribonucleoprotein
complexes (RNPs), and concomitant inhibition of virus production. Signaling through the
mitogenic cascade seems to be essential for influenza virus production.189

The Raf, MEK, and ERK pathway not only plays an important role in the replication
of influenza A and B virus, but also in the replication of HIV,190, 191 Coxsackie virus B3,192

coronavirus,193 and HSV.194 MEK inhibitors such as U0126 should therefore impair the prop-
agation of these viruses, as has been specifically shown for U0126 against HSV-2194 and X4
HIV-1.191

The Raf/MEK/ERK signaling cascade is activated upon infection with Borna disease
virus (BDV), a noncytolytic highly neurotropic single-stranded RNA virus, the only known
member of the Bornaviridae (Mononegavirales) and, again, the MEK inhibitor U0126 was
found to block spread of BDV in cultures cells.195

The pathogenesis of hemorrhages in dengue hemorrhagic fever (DHF)/dengue shock
syndrome (DSS) is poorly understood. The hemorrhages may be related to the induction of the
plasminogen activator inhibitor type 1 (PAI-1) via activation of the MEK/ERK pathway, the
MEK inhibitor U0126 almost completely suppressed PAI-1 expression,196 and may therefore
be assumed to suppress hemorrhages in DHF/DSS.

The MEK/ERK pathway is also associated with the MAP kinases (MAPKs), which
may contribute to the visna virus-induced processes leading to neurodegenerative pathology.
Treatment of visna virus-infected cells with PD 98059 (Fig. 9), which had since long been
recognized as a specific inhibitor of MAPK,197, 198 abolished visna virus replication,199 attesting
as to the potential of PD 98059 to prevent the neuropathology of visna virus.

The replication of HCMV depends on a number of protein kinase pathways. Sorafenib
is a multitargeted tyrosine kinase inhibitor registered for anticancer treatment (Nexavar R©,
Bayer and Onyx Pharmaceuticals). Through the MAPK signaling pathway, sorafenib may also
interfere with the replication of HCMV.200 Imatinib may suppress HCMV replication through
inactivation of the platelet-derived growth factor-α receptor (PDGFR), which is a critical
receptor required for HCMV infection.201

Various protein kinase inhibitors containing a quinazoline moiety such as gefitinib
(Iressa R©, AstraZeneca and Teva) exert anti-HCMV activity in vitro and in vivo (gefitinib
also inhibits the HCMV kinase UL97).202 Furthermore, HCMV replication depends on the
MEK/ERK pathway, and could therefore be suppressed by MEK inhibitors such as PD
98059.203

In conclusion, MEK inhibitors may exhibit a broad-spectrum activity against a multitude
of viruses, including influenza, herpes simplex, HIV and other retroviruses, dengue, corona, and
HCMV. Although the antiviral effects could not be considered as highly specific, the advantage
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of MEK inhibitors, in view of their action targeted at a cellular process, is that they are unlikely
to lead to the (rapid) emergence of drug resistance.

11. BROAD-SPECTRUM ANTIVIRAL AGENTS TARGETING ENTRY OF ENVELOPED
VIRUSES

In the February 16, 2010, issue of the Proc Natl Acad Sci (USA) appeared a paper on a
broad-spectrum antiviral agent LJ-001 targeting entry of envelope viruses,204 followed in the
October 5, 2010, issue of the same Journal by a remarkably similar antiviral activity of a
structurally unrelated inhibitor dUY11.205 LJ-001 is a rhodanine derivative and dUY11 is
a rigid amphipathic fusion inhibitor (RAFI) derived from 2′-deoxyuridine (Fig. 10). They
both possess a rigid and planar hydrophobic moiety. With their hydrophobic moiety, LJ-001
and dUY11 would intercalate into the lipid bilayer of the viral envelope, thereby affecting
the virus-cell fusion process. Both LJ-001 and dUY11 should, in principle, be active against all
enveloped viruses. For two important human pathogens, HCV and HSV (-1 and -2), this activity
was demonstrated, but for several others (i.e., yellow fever, dengue, Japanese encephalitis), this
was not. In fact, the compounds should be compared side by side for their spectrum of activity.
Admittedly, they should not easily lead to drug resistance development, but other issues should
be further addressed, that is, in vivo activity and selectivity, biodistribution, drug formulation,

Figure 10. Structures of dUY11 and LJ-001.
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and pharmacodynamics, before their therapeutic value could be assessed. LJ-001 and dUY11
herald a new approach or strategy to combat enveloped virus infections, but the question can
be raised whether they are druggable as well.
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