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Abstract

Demographic events shape a population’s genetic diversity, a process described by the coa-

lescent-with-recombination model that relates demography and genetics by an unobserved

sequence of genealogies along the genome. As the space of genealogies over genomes is

large and complex, inference under this model is challenging. Formulating the coalescent-

with-recombination model as a continuous-time and -space Markov jump process, we

develop a particle filter for such processes, and use waypoints that under appropriate condi-

tions allow the problem to be reduced to the discrete-time case. To improve inference, we

generalise the Auxiliary Particle Filter for discrete-time models, and use Variational Bayes to

model the uncertainty in parameter estimates for rare events, avoiding biases seen with

Expectation Maximization. Using real and simulated genomes, we show that past population

sizes can be accurately inferred over a larger range of epochs than was previously possible,

opening the possibility of jointly analyzing multiple genomes under complex demographic

models. Code is available at https://github.com/luntergroup/smcsmc.

Introduction

The demographic history of a species has a profound impact on its genetic diversity. Changes

in population size, migration and admixture events, and population splits and mergers, shape

the genealogies describing how individuals in a population are related, which in turn shape the

pattern and frequency of observed genetic variants in extant genomes. By modeling this pro-

cess and integrating out the unobserved genealogies, it is possible to infer the population’s

demographic history from the observed variants. However, in practice this is challenging, as

individual mutations provide limited information about tree topologies and branch lengths. If

many mutations were available to infer these genealogies this would not be problematic, but

the expected number of observed mutations increases only logarithmically with the number of
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observed genomes, and recombination causes genealogies to change along the genome at a

rate proportional to the mutation rate. As a result there is considerable uncertainty about the

genealogies underlying a sample of genomes, and because the space of genealogies across the

genome is vast, integrating out this latent variable is hard.

A number of approaches have been proposed to tackle this problem [reviewed in 1]. A com-

mon approximation is to treat recombination events as known and assume unlinked loci,

either by treating each mutation as independent [2–7], or by first identifying tracts of genetic

material unbroken by recombination [8–12]. To account for recombination while retaining

power to infer earlier demographic events, it is necessary to model the genealogy directly.

ARGWeaver [13] uses Markov chain Monte Carlo (MCMC) for inference, but does not allow

the use of a complex demographic model, and since mutations are only weakly informative

about genealogies this leaves the inferred trees biased towards the prior model and less suitable

for inferring demography. Restricting itself to single diploid genomes, the Pairwise Sequen-

tially Markovian Coalescent (PSMC) model [14] uses an elegant and efficient inference

method, but with limited power to detect recent changes in population size or complex demo-

graphic events. Several other approaches exist that improve on PSMC in various ways [15–18],

but they remain limited particularly in their ability to infer migration.

We here focus on the general problem of inferring demography from several whole-genome

sequences, which is informative about demographic events in all but the most recent epochs

[13, 14, 16]. A promising approach which so far has not been applied to this problem is to use

a particle filter. Particle filters have many desireable properties [19–22], and applications to a

range of problems in computational biology have started to appear [23–26]. Like MCMC

methods, particle filters converge to the exact solution in the limit of infinite computational

resources, are computationally efficient by focusing on realisations that are supported by the

data, do not require the underlying model to be approximated, and generate explicit samples

from the posterior distribution of the latent variable. Unlike MCMC, particle filters do not

operate on complete realisations of the model, but construct samples sequentially, which is

helpful since full genealogies over genomes are cumbersome to deal with.

To use particle filters, we use a formulation of the coalescent model in which the state is a

genealogical tree at a particular genome locus, which “evolves” sequentially along the genome,

rather than in evolutionary time. To avoid confusion, in this paper “time” by itself refers to the

variable along which the model evolves, while evolutionary (coalescent, recombination) time

refers to an actual time in the past on a genealogical tree.

Originally, particle filters were introduced for models with discrete time evolution and with

either discrete or continuous state variables [19, 27]. In this paper, the latent variable is a piece-

wise constant sequence of genealogical trees along the genome, with trees changing only after

recombination events that, in mammals, occur once every several hundred nucleotides. The

observations of the model are genetic variants, which are similarly sparse. Realizations of the

discrete-time model of this process (where “time” is the genome locus) are therefore stationary

(remain in the same state) and silent (do not produce an observation) at most transitions, lead-

ing to inefficient algorithms. Instead, it seems natural to model the system as a Markov jump

process (or purely discontinuous Markov process, [28]), a continuous-time stochastic process

with as realisations piecewise constant functions x : ½1; L�7!T, where T is the state space of the

Markov process (the space of genealogical trees over a given number of genomes) and L the

length over which observations are made (here the genome size).

Particle filters have been generalised to continuous-time diffusions [29–31], as well as to

Markov jump processes on discrete state spaces [32, 33], and hybrids of the two [34, 35], as

well as to piecewise deterministic processes [36]; for a general treatment see [37, 38]. Here we

focus on Markov jump processes that are continuous in both time and state space; to our
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knowledge the method has not been extended to this case. The algorithm we propose relies on

Radon-Nikodym derivatives [see e.g. 31], and we establish criteria for choosing a finite set of

“waypoints” that makes it possible to reduce the problem to the discrete-time case, while

ensuring that particle degeneracy remains under control.

Although the algorithm generally works well, we found that for the CwR model we obtain

biased inferences for some parameters. For example, coalescent rates for recent epochs are

associated with tree nodes that persist across long genomic segments (the model exhibits “long

forgetting times”), because their short descendant branches attract few recombinations. They

have few informative mutations as well, and collecting these mutations therefore require long

lags in the fixed-lag smoothing procedure, in turn resulting in increased particle degeneracy

[39]. For discrete-time models the Auxiliary Particle Filter [40] addresses a related problem by

“guiding” the particle filter towards states that are likely to be relevant in future iterations,

using an approximate likelihood that depends on data one step ahead. This approach does not

work well for some continuous-time models, including ours, that have no single preferred

time scale. Instead we introduce an algorithm that shapes the resampling process by an

approximate “lookahead likelihood” that can depend on data at arbitrary distances ahead.

Using simulations we show that this substantially reduces the bias.

The particle filter generates samples from the posterior distribution of the latent variable,

here the sequence of genealogies along the genome, and we infer the model parameters from

this sample. One strategy is to use stochastic expectation-maximization [SEM; 41]. However,

such approaches yield point estimates, ignoring any uncertainty in the inferred parameters.

Combined with the bias due to self-normalized importance sampling which cause particle fil-

ters to under-sample low-rate events, this result in a non-zero probability of inferring zero

event rates, which are fixed points of any SEM procedure. In principle this can be avoided by

using an appropriate prior on the rate parameters. To implement this we use Variational Bayes

to estimate an approximate joint posterior distribution over parameters and latent variables,

partially accounting for the uncertainty in the inferred parameters, as well as providing way to

explicitly include a prior. In this way zero-rate estimates are avoided, and more generally we

show that this approach further reduces the bias in parameter estimates.

Applying these ideas to the coalescent-with-recombination (CwR) model, we find that the

combination of lookahead filter and Variational Bayes inference enables us to analyze four

diploid human genomes simultaneously, and infer demographic parameters across epochs

spanning more than 3 orders of magnitude, without making model approximations beyond

passing to a continuous-locus model.

The remainder of the paper is structured as follows. We first introduce the particle filter,

generalise it to continuous-time and -space Markov jump processes, describe how to choose

waypoints, introduce the lookahead filter, and describe the Variational Bayes procedure for

parameter inference. In the results section we first introduce the continuous-locus CwR pro-

cess, then discuss the lookahead likelihood, choice of waypoints and parameter inference for

this model, before applying the model to simulated data, and finally show the results of analyz-

ing sets of four diploid genomes of individuals from three human populations. A discussion

concludes the paper.

Methods

The sequential coalescent with recombination model

The coalescent-with-recombination (CwR) process, and the graph structures that are the

realisations of the process, was first described by Hudson [42], and was given an elegant

mathematical description by Griffiths [43], who named the resulting structure the Ancestral

PLOS ONE Demographic inference using a particle filter

PLOS ONE | https://doi.org/10.1371/journal.pone.0247647 March 2, 2021 3 / 24

https://doi.org/10.1371/journal.pone.0247647


Recombination Graph (ARG). Like the coalescent process, these models run backwards in evo-

lutionary time and consider the entire sequence at once, making it difficult to use them for

inference on whole genomes. The first model of the CwR process that evolves sequentially

rather than in the evolutionary time direction was introduced by Wiuf and Hein [44], opening

up the possibility of inference over very long sequences. Like Griffiths’ process, the Wiuf-Hein

algorithm operates on an ARG-like graph, but it is more efficient as it does not include many

of the non-observable recombination events included in Griffiths’ process. The Sequential

Coalescent with Recombination Model (SCRM) [45] further improved efficiency by modifying

Wiuf and Hein’s algorithm to operate on a local genealogy rather than an ARG-like structure.

Besides the “local” tree over the observed samples, this genealogy includes branches to non-

contemporaneous tips that correspond to recombination events encountered earlier in the

sequence. Recombinations on these “non-local” branches can be postponed until they affect

observed sequences, and can sometimes be ignored altogether, leading to further efficiency

gains while the resulting sample still follows the exact CwR process. An even more efficient but

approximate algorithm is obtained by culling some non-local branches. In the extreme case of

culling all non-local branches the SCRM approximation is equivalent to the SMC’ model [46,

47]. With a suitable definition of “current state” (i.e., the local tree including all non-local

branches) these are all Markov processes, and can all be used in the Markov jump particle fil-

ter; here we use the SCRM model with tunable accuracy as implemented in [45].

The state space T of the Markov process is the set of all possible genealogies at a given locus.

The probability measure of a complete realisation x can be written as

pxðxÞ ¼ exp �

Z

BðxsÞrðsÞds
� �

Yjxj

j¼1

exp �

Z tj

nj

buðxsjÞCðuÞdu

( )

rðsjÞCðtjÞ

" #

ðdsÞjxjðduÞ2jxj: ð1Þ

Here x is the sequence of genealogies along the genome; |x| is the number of recombinations

that occurred on x; bu(xs) is the number of branches in the genealogy at locus s at evolutionary

time u; BðxsÞ ¼
R rootðxsÞ
u¼0

buðxsÞdu is the total branch length of xs; ρ(s) is the recombination rate

per nucleotide and per generation at locus s, so that ρ(s)B(xs) is the exit rate of the Markov pro-

cess in state xs; (sj, νj) is the locus and recombination time of the jth recombination event; τj>
νj is the coalescence time of the corresponding coalescence event; and C(u) = 1/2Ne(u) is the

coalescence rate in generation u. See Appendix (“The sequential coalescent with recombina-

tion process”) for more details. The distribution πx(x) has a density with respect to the Lebes-

gue measure (ds)|x|(du)2|x|, because each of the |x| recombination events is associated with a

sequence locus, a recombination time, and a coalescent time.

Mutations follow a Poisson process whose rate at s depends on the state xs via μ(s)B(xs)
where μ(s) is the mutation rate at s per nucleotide and per generation. Mutations are not

observed directly, but their descendants are; a complete observation is represented by a set

y ¼ fðsj;AjÞgj¼1;...;jyj 2 Y where sj 2 [1, L) is the locus of mutation j, and Aj 2 {0, 1}S are the

wildtype (0) and alternative (1) alleles observed in the S samples. The conditional probability

measure of the observations y given a realisation x is

pðyjX ¼ xÞ ¼
1

jyj!
exp �

Z

BðxsÞmðsÞds
� �

Yjyj

j¼1

PðAjjxsj ; mðsjÞÞ

" #

ðdsÞjyj ð2Þ

where P(A|xs, μ) is the probability of observing the allelic pattern A given a genealogy xs and a

mutation rate μ per nucleotide and per generation; this probability is calculated using Felsen-

stein’s peeling algorithm [48]. Note that B(xs)μ(s) = ∑A6¼(0,. . .,0) P(A|xs, μ(s)).
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Particle filters

Particle filters methods, also known as Sequential Monte Carlo (SMC) [22], generate samples

from complex probability distributions with high-dimensional latent variables. An SMC

method uses importance sampling (IS) to approximate a target distribution using weighted

random samples (particles) drawn from a tractable distribution. We briefly review the dis-

crete-time case. Suppose that particles {(x(i), w(i))}i=1,. . .,N, approximate a distribution with den-

sity p(x), such that

Ep½f ðXÞ� ¼
Z

f ðxÞpðxÞdx �
1

PN
i¼1

wðiÞ
XN

i¼1

wðiÞf ðxðiÞÞ ð3Þ

for any bounded continuous function f, where X� p(x)dx. Here and in the remainder, we use

“approximate” and� to mean that XN� ∑w(i) δx(i)(x) converges in distribution to X� p(x)dx
and equality holds in (3) as N!1; and summations without an index are over N particles

indexed by i. Under mild conditions (i.e., q(x)/p(x) must exist almost everywhere and be

absolutely continuous) we can use IS to obtain particles approximating another distribution

q(x)dx:

Eq½f ðXÞ� ¼
Z

f ðxÞ
qðxÞ
pðxÞ

pðxÞdx �
1

P
wðiÞ

X
wðiÞ

qðxðiÞÞ
pðxðiÞÞ

f ðxðiÞÞ �
1

P
~wðiÞ
X

~wðiÞf ðxðiÞÞ;

where ~wðiÞ :¼ wðiÞqðxðiÞÞ=pðxðiÞÞ, and the last step holds because
P

~wðiÞ=
P

wðiÞ � Ep½q=p� ¼ Eq½1� ¼ 1. This shows that fðxðiÞ; ~wðiÞÞg approximate q(x)dx. The

normalisation ensures that any constant factor in w(i) drops out, so that it is sufficient to know

the ratio q(x)/p(x) up to a constant. A particle filter builds the desired distribution sequentially,

making it suited to hidden Markov models, for which the joint distribution of latent variables

X and observations Y has the form

PðX ¼ x1��sÞ ¼ pðx1Þpðx2jx1Þ � � � pðxsjxs� 1Þ ð4Þ

PðY ¼ y1��sjX ¼ x1��sÞ ¼ gðy1jx1Þ � � � gðysjxsÞ ð5Þ

Here 1 � � s denotes the set {1, 2, . . ., s}, and x ¼ x1��s ¼ ðx1; x2; . . . ; xsÞ and y ¼ y1��s are vectors.

Let {(x(i), w(i))} be particles approximating the target distribution PðX1��s ¼ x1��sjY1��s ¼ y1��sÞ,

which for brevity we write as Pðx1��sjy1��sÞ. If ~xðiÞ is the vector obtained by extending x(i)

with a sample from Pðxsþ1jxðiÞs Þ, then from (4) and (5) it follows that fð~xðiÞ;wðiÞÞg
approximate Pðx1��sþ1jy1��sÞ / Pðx1��sþ1; y1��sÞ. Now, Pðx1��sþ1jy1��sþ1Þ / Pðx1��sþ1; y1��sþ1Þ ¼

Pðx1��sþ1; y1��sÞgðysþ1jxsþ1Þ, so that using IS and setting

~wðiÞ ¼ wðiÞgðysþ1j~x
ðiÞ
sþ1Þ ð6Þ

we obtain particles fð~xðiÞ; ~wðiÞÞg that approximate Pðx1��sþ1jy1��sþ1Þ. This shows how to sequen-

tially construct particles that approximate the target distribution Pðx1��Ljy1��LÞ. Instead of sam-

pling from pðxsþ1jxðiÞs Þ, any proposal distribution qðxsþ1jxðiÞs ; y1��LÞ (subject to conditions) can be

used, which is advantageous if q is easier to sample from, is closer to the target distribution, or

has heavier tails than p. Again, IS accounts for the change in sampling distribution, resulting

in

~wðiÞ ¼ wðiÞgðysþ1j~x
ðiÞ
sþ1Þ

pð~xðiÞsþ1jxðiÞs Þ
qð~xðiÞsþ1jx

ðiÞ
s Þ
: ð7Þ
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For now we will choose q to be independent of y. Because samples from q do not follow the

desired target P(x|y), the fraction of particles close to the target’s mode diminishes exponen-

tially at each iteration until (3) fails altogether. To address this, we occasionally draw samples

from the approximating distribution itself, assigning each resampled particle weight 1/N—

interestingly, if we interpret fitness as (proportional to) the likelihood gðysþ1j~x
ðiÞ
sþ1Þ, this is the

same process that is used in the Wright-Fisher model with selection to describe how fitness dif-

ferences shape an evolving constant-size population [49]. Doing this tends to remove particles

that have drifted from the mode of the target and have low weight, and duplicates particles

with large weights, while (3) remains valid. Although resampling substantially decreases the

future variance of (3), it increases the variance at the current iteration. To avoid increasing this

variance unnecessarily, resampling is performed only when the estimated sample size, defined

as ESS = (∑w(i))2/∑(w(i))2, drops below a threshold, e.g. N/2. In addition, we use systematic

resampling to minimize the variance that is introduced when resampling is performed [50].

This leads to Algorithm 1 [19].

Note that the algorithm can be seen as a recipe to transform a sample from P(X) to a sample

from P(X)P(Y|X)/P(Y) = P(X|Y), that is, an application of Bayes’ theorem. Following this inter-

pretation we will refer to P(X) as the prior distribution, and P(X|Y) as the posterior.

The algorithm generates an approximation to Pðx1��sjy1��sÞ rather than Pðxsjy1��sÞ, but we fol-

low [22] in calling it a particle filter algorithm instead of a smoothing algorithm (although our

use of fixed-lag distributions for parameter estimation is a partial smoothing operation).

The marginal likelihood can be estimated (although with high variance, see [51]) by setting

the weights to N � 1
P

iw
ðiÞ
s rather than N−1 when particles are resampled. This makes the

weights asymptotically normalized, so that (3) becomes EP(X,Y=y)[f]� ∑i w(i) f(x(i)), and

PðY ¼ yÞ ¼
R
Pðx; yÞdx ¼ EPðX;Y¼yÞ½1� �

P
iw
ðiÞ
L .

Algorithm 1 Particle filter
Input: y1��L

Output: Particles fðxðiÞ1��L;w
ðiÞ
L Þg approximating Pðx1��Ljy1��LÞ

wðiÞ0  1=N, xðiÞ0  ;ði ¼ 1; . . . ;NÞ
For s from 0 to L − 1
Loop invariant: fðxðiÞ1��s;wðiÞs Þg � pðx1��sjy1��sÞ

If ESS < N/2:
Resample, with replacement, fxðiÞ1��sg proportional to fwðiÞs g
wðiÞs  N� 1ði ¼ 1; . . . ;NÞ

For i from 1 to N:
Sample xðiÞsþ1 � qðxsþ1jxðiÞs Þ

wðiÞsþ1  wðiÞs
pðxðiÞsþ1

jxðiÞs Þ

qðxðiÞsþ1
jxðiÞs Þ

gðysþ1jx
ðiÞ
sþ1Þ.

Continuous-time and -space Markov jump processes

For the hidden process we now consider Markov jump processes, which have as realisations

piecewise constant functions x : ½1; LÞ7!T where T is the state space of the Markov process.

Recall that in the model we consider, T is the space of rooted genealogical trees with branch

lengths. Let ðX ;F x; pxÞ be a probability space, where X ¼ T½1;LÞ is the space of possible realisa-

tions of the hidden stochastic process X = {Xs}s 2 [1, L), F x � PðXÞ is the σ-algebra of events,

and πx(X) is the probability measure on X induced by the stochastic process X. See the

Appendix (“Conditional distributions and the Markov property”) for some remarks on how to

define a Markov model when the phase space T is uncountable.

The complete model is defined by specifying the observation process. We consider models

where observations Y are generated by a Poisson process whose intensity at time (i.e. locus) s
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depends on Xs [a Cox process, see e.g. 52]. The space of observations Y consists of finite sub-

sets of [1, L) ×M, where M is a discrete set of potential events, each of which may occur at

some s 2 [1, L). For a full observation y ¼ ðð~s1;m1Þ; . . . ; ð~sk;mkÞÞ 2 Y we write |y| ≔ k for the

number of events in y. Writing λ(y) for the Lebesgue measure (ds)|y|, the emission distribution

π(Y|X = x) has a density r(y|x) relative to λ(y). For Cox processes this density has the form

rðyjxÞ ¼
1

jyj!
exp �

Z L

s¼1

rðxsÞ

� �
Yjyj

i¼1

rð~si;mijx~si
Þ ð8Þ

where r(s, m|xs) is the rate at which event m occurs at time s conditional on Xs = xs and

rðxsÞ :¼
X

m2M

rðs;mjxsÞds ð9Þ

is the intensity of the emission Poisson process at s conditional on Xs = xs. The probability

space for the joint process is ðX � Y;F ; pÞ, and the posterior distribution of interest is π con-

ditioned on an observation y 2 Y, written as π(X|Y = y).

The absence of events in an interval s 2 [a, b) is also informative about the latent variable

through the exponential factor in (8). In practice however, not all intervals may have been

observed, so that events may or may not have occurred in these intervals. Assuming that the

“observation process” is independent of the Markov jump process X, such unobserved inter-

vals can simply be left out of integral (8).

Some more notation is needed to describe the Markov jump process version of algorithm 1.

As above πx denotes the prior distribution of the latent variable X, and ξx denotes the proposal

distribution, both Markov processes on X , playing the role of p(x) and q(x) in the discrete

case. We write a:b for the interval ½a; bÞ � R, and αa: b for the restriction of a measure or func-

tion α to a:b; similarly ya:b≔ y\([a, b) ×M) and Xa:b≔ {Xs}s2[a,b). The particle filter algorithm

uses the notation (dα/dβ)(x) for distributions α and β to denote their Radon-Nikodym deriva-

tive: the ratio of their density functions with respect to a common reference measure, evaluated

at x. To simplify notation we write the Radon-Nikodym derivative of two conditional distribu-

tions aðXjGÞ and bðXjGÞ at x as ðda=dbÞðxjGÞ, and we also do not explicitly restrict distribu-

tions to their appropriate intervals when this is clear from the context, so that we write for

example ðdp=dlÞðysj:sjþ1
jXsj:sjþ1

¼ xÞ instead of ðdpsj:sjþ1ðYjXsj :sjþ1
¼ xÞ=dlsj :sjþ1Þðysj:sjþ1

Þ. With

this notation we can formulate Algorithm 2.

Algorithm 2 Particle filter for Markov jump processes
Input: y1:L 2 Y; waypoints 1 = s0 < s1 < . . . < sK = L.
Output: Particles fðxðiÞ1:L;w

ðiÞ
L Þg approximating the posterior distribution

π(X|Y = y1:L)
wðiÞ1  N� 1, xðiÞ1:1  ; (i = 1, . . ., N)

For j from 0 to K − 1
Loop invariant: fðxðiÞ1:sj ;w

ðiÞ
sj
Þg � pðX1:sj

jY1:sj
¼ y1:sj

Þ

If ESSðfwðiÞsj gÞ < N=2:

Resample fxðiÞ1:sjg with probabilities proportional to fwðiÞsj g
wðiÞsj  N� 1 (i = 1, . . ., N)

For i from 1 to N:
Sample xðiÞsj :sjþ1

� xxðXsj :sjþ1
jXsj
¼ xðiÞsj Þ

wðiÞsjþ1
 wðiÞsj

dpx

dxx
ðxðiÞsj :sjþ1

jXsj
¼ xðiÞsj Þ

dp
dl
ðysj :sjþ1

jXsj :sjþ1
¼ xðiÞsj :sjþ1

Þ.

The choice of waypoints s1, . . ., sK is discussed below; in particular they need not be the

same as the event loci ~s1; . . . ;~s jyj of the observation y. Note that there is no initialization step;
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instead, initially xðiÞ1:1 ¼ ;, and the first sample will be drawn from ξ conditioned on an empty

set, i.e. the unconditional distribution. The loop invariant holds when j = 0 since 1:s0 ¼ ;. As

with Algorithm 1 it is possible to estimate the likelihood density πθ(y1:L) by replacing the fac-

tors N−1 with N � 1
P

iw
ðiÞ
sj

; then the likelihood density w.r.t. λ(dy) = (ds)|y| is approximated

by
P

iw
ðiÞ
L .

Note that by the nature of Markov jump processes, particles that start with identical latent

variables have a positive probability of remaining identical after a finite time. Combined with

resampling, this causes a considerable number of particles to have one or more identical sib-

lings. For computational efficiency we represent such particles once, and keep track of their

multiplicity k. When evolving a particle with multiplicity k> 1, we increase the exit rate k-

fold, and when an event occurs one particle is spawned off while the remaining k − 1 continue

unchanged.

Using lookahead to improve the particle filter

At the jth iteration, Algorithm 2 uses data up to waypoint sj to build particles approximating

pðX1:sj
jY1:sj

¼ y1:sj
Þ. This is reasonable as pðX1:sj

jy1:sj
Þ is independent of data beyond sj. How-

ever, not all particles are equally important for approximating subsequent posteriors, which

suggests to emphasise particles that will be relevant in future at the expense of those relevant

only to pðX1:sj
jy1:sj
Þ. This echoes the justification of resampling: although resampling increases

the variance of the approximation to the current partial posterior, the variance at subsequent

iterations by increasing the number of particles that are likely to contribute to future distribu-

tions. For discrete-time models p(X1:n|y1:n), the Auxiliary Particle Filter (APF) [40] implements

this intuition by targeting a resampling distribution [53], which includes a “lookahead” factor

~pðyiþ1jxiÞ approximating the probability of observing data yi+1 given the current state xi.
Importance sampling is used to keep track of the desired distribution p(X1:i|y1:i).

In the continuous-time context it is natural to look an arbitrary distance ahead. Similar to

APF, the lookahead distribution can be conditioned on the current state only, and must be an

approximation of the true distribution. It should be heavy-tailed with respect to the true distri-

bution to ensure that the variance of the estimator remains finite [22], which implies that the

distribution should not depend on data too far beyond s; what is “too far” depends on how

well the lookahead distribution approximates the true distribution.

The lookahead distribution is only evaluated on a fixed observation y, and is used to quan-

tify the plausibility of a current state xðiÞs , rather than to define a distribution over y. For this

reason we call it a lookahead likelihood. In fact, for correctness of the algorithm it is not neces-

sary that this likelihood derives from a probability distribution. We define the lookahead

likelihood as a family of functions hsðys:LjxsÞ : Ys:L � T! R, and an associated family of

unnormalized distributions ~psðx1:s; y1:LÞ ¼ p
1:sðx1:s; y1:sÞhsðys:LjxsÞl

s:L
ðys:LÞ on X 1:s � Y. The

functions hs can be chosen arbitrarily, except that hs(�, xs)λs:L must be absolutely continuous

w.r.t. πs:L(�|Xs = xs) to ensure that importance sampling is justified. The lookahead Algorithm 3

keeps track of two sets of weights, which together with a single set of samples form two sets of

particles that approximate the resampling and target distributions.

Algorithm 3 Markov-jump particle filter with lookahead
Input: y1:L 2 Y; waypoints 1 = s0 < s1 < . . . < sK = L.
Output: Particles fðxðiÞ1:L;w

ðiÞ
L Þg approximating π(X|Y1:L = y1:L)

wðiÞ1  1=N, vðiÞ1  1=N, xðiÞ1:1  ; (i = 1, . . ., N)
For j from 0 to K − 1
Loop invariant: fðxðiÞ1:sj ;w

ðiÞ
sj
Þg � p1:sjðX1:sj

jY1:sj
¼ y1:sj

Þ
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Loop invariant: fðxðiÞ1:sj ; v
ðiÞ
sj
Þg � ~psjðX1:sj

jY ¼ y1:LÞ

If ESSðfvðiÞsj gÞ < N=2:

Resample fxðiÞ1:sjg with probabilities proportional to fvðiÞsj g
wðiÞsj  N� 1wðiÞsj =v

ðiÞ
sj
(i = 1, . . ., N)

vðiÞsj  N� 1 (i = 1, . . ., N)

For i from 1 to N:
Sample xðiÞsj :sjþ1

� xxðXsj :sjþ1
jXsj
¼ xðiÞsj Þ

wðiÞsjþ1
 wðiÞsj

dpx

dxx
ðxðiÞsj :sjþ1

jXsj
¼ xðiÞsj Þ

dp
dl
ðysj :sjþ1

jXsj :sjþ1
¼ xðiÞsj :sjþ1

Þ

vðiÞsjþ1
 vðiÞsj

dpx

dxx
ðxðiÞsj :sjþ1

jXsj
¼ xðiÞsj Þ

d~psjþ1

d~psj
ðysj :LjXsj :sjþ1

¼ xðiÞsj :sjþ1
Þ

(see Appendix, “Proof of Algorithm 3”.) To implement the lookahead particle filter we

need a tractable approximate likelihood of future data given a current genealogy. To do this

we simplify the full likelihood, and ignore all data except for a digest of singletons and dou-

bletons that are informative of the topology and branch lengths near the tips of the genealogy

—in particular, singletons are informative of terminal branch lengths, and doubletons iden-

tify the existence of nodes with precisely two descendants (“cherries”). This digest consists of

the distance si to the nearest future singleton for each haploid sequence, and� n/2 mutually

consistent cherries ck = (ak, bk) identified by their two descendants ak, bk, together with loci

s0k � s00k where their first and last supporting doubleton were observed (Fig 1a). Under some

simplifying assumptions we derive an approximation of the likelihood hsðftig; fck; s0k; s
00
kgjxsÞ

of the current genealogy given these data; see Appendix (“A lookahead likelihood”) for

details.

Choosing waypoints

The choice of waypoints sj can significantly impact the performance of the algorithm: choosing

too few increases the variance of the approximation, and choosing too many slows down the

algorithm without increasing its accuracy. Waypoints determine where the algorithms might

perform a resampling step. A high density of waypoints is therefore always acceptable, but

a low density may result in particle degeneracy. Choosing a waypoint at every event ensures

that any weight variance induced at these sites is mitigated, but there is still the opportunity for

weight variance to build up between events.

Fig 1. a. Example of data digest. Lines represent genomes of 6 lineages, circles observed genetic variants. Of the data shown, one singleton

(yellow) and five doubletons (red) contribute to the digest. Cherry c3 is supported by a single doubleton; r does not contribute because the

mutation patterns p and q are incompatible with c3. Similarly, p does not contribute because it is incompatible with c2 and c3. b. Partial

genealogy (unbroken lines) over 6 lineages. Open circles and arrowheads represent potential recombination and coalescence events that

would change the terminal branch length for lineage 1 (t,u), and remove cherry c3 (x,y).

https://doi.org/10.1371/journal.pone.0247647.g001
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If ξx = πx, particle weights diverge only because different particles ðxðiÞ1:s;wðiÞs Þ experience a

different total intensity rðxðiÞs Þ of observed events. If ESS0 is the current estimated sample size,

then under some assumptions, along an interval of length L where no events occur we have

ESS � ESS0e� s
2L2

ð10Þ

(see Appendix, “Particle weight variance”), where σ2 the variance of the total event intensity

r(xs) (9) under the prior πx(x). Therefore, if we choose waypoints at every event, adding addi-

tional waypoints so that they are never more than a distance 1=
ffiffiffiffiffiffiffi
2s2
p

apart, the ESS will not

drop more than a factor
ffiffiffiffiffiffiffi
1=e

p
� 0:6 between waypoints, and particle degeneracy is avoided.

To apply this to our situation, assume a panmictic population with constant diploid effec-

tive population size Ne. The variance of the total coalescent branch length in a sample of n
individuals is ð4NeÞ

2Pn� 1

i¼1
i� 2 [54]. The variance of total mutation intensity σ2 is obtained by

multiplying this by μ2, since the rate of mutations on the coalescent tree is μ times the total

branch length. Rewriting this in terms of the heterozygosity θ = 4Ne μ, and approximating

the sum with
P1

i¼1
i� 2 ¼ p2=6 gives σ2 = θ2 π2/6, and a minimum waypoint distance of

1=
ffiffiffiffiffiffiffi
2s2
p

¼
ffiffiffi
3
p

=py � 1=2y.

Because the assumptions mentioned above are in practice only met approximately, this

minimum waypoint density should be taken as a guide; breakdown of the assumptions can be

monitored by tracking the ESS, increasing the density of waypoints if necessary.

Parameter inference

Parameters can be inferred by stochastic expectation maximization (SEM), which involves

maximizing the expected log likelihood over the posterior distribution of the latent variable.

The probability density for a Poisson process is 1

c! y
ce� qy, where c is the event count, and θ is the

rate of events per unit of “opportunity” q, measured in units of time or space or some combi-

nation of them. The expected log likelihood c log θ − qθ (ignoring constants) is maximized for

θ = c/q, where c and q are the expected event count and opportunity. We consider Markov

jump processes Xs with parameters θ and distribution

pxðxjyÞ ¼
Y

i

1

jxji!
expf� yiQiðxÞgy

jxji
i dx; ð11Þ

where |x|i is the event count and Qi(x) is the total opportunity for events of type i in realisation

x; both can be random variables. Similar to the Poisson case, the parameters maximizing the

expected log likelihood are

y
0

i;EM ¼
Epðxjy;yÞ½ jxji �
Epðxjy;yÞ½ QiðxÞ �

ð12Þ

The expectations can be computed by using samples over x� π(x|y, θ) as approximated by

Algorithm 3.

To evaluate the expectations above we do not use the complete set of events in the full reali-

sations x, since resampling causes early parts of x to become degenerate due to “coalescences”

of the particle’s history of events along the sequence, which would lead to high variance of the

estimates. Using only the most recent events is also problematic as these have not been shaped

by many observations and mostly follow the prior πx(x|θ), resulting in highly biased estimates.

Smoothing techniques such as two-filter smoothing [55] cannot be used here since finite-time

transition probabilities are intractable. For discrete-time models fixed-lag smoothing is often
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effective [39]. For our model the optimal lag depends on the epoch, as the age of tree nodes

strongly influence their correlation distance. For each epoch we determine the correlation dis-

tance empirically, and for the lag we use this distance multiplied by a factor α; we obtain good

results with α = 1.

Particularly in cases where some event types are rare, Variational Bayes can improve on EM

by iteratively estimating posterior distributions rather than point estimates of θ. A tractable

algorithm is obtained if the joint posterior π(x, θ|y)dxdθ is approximated as a product of two

independent distributions over x and θ, and an appropriate prior over θ is chosen. For the

Poisson example above, combining a Γ(θ|α0, β0) prior with the likelihood θc e−qθ results in a

Γ(θ|α0 + c, β0 + q) posterior. Similarly, with this choice the Variational Bayes approximation

results in an inferred posterior distribution of the form

y
0

i;VB � Gða0 þ E½ jxji �; b0 þ E½ QiðxÞ �Þ ð13Þ

where expectations are taken over x�
R
π(x|y, θ)π(θ)dθ, and π(θ) is the current posterior over θ.

It would appear that obtaining samples x from this distribution is intractable. However, if π(θ)

is a Gamma distribution, θ can be integrated out analytically in the likelihood π(x, y|θ)Γ(θ|α, β),

resulting in an expression that is identical to the likelihood of the point estimate θi = αi/βi except

for an additional scaling factor eψ(α
i)/αi for each event of type i in x, where ψ is the digamma

function. These scaling factors render the normalization constant of the likelihood intractable,

but fortunately SMC algorithms only require densities to be defined up to normalization. As

a result, Algorithm 3 can be used to generate samples from this distribution at no additional

computational cost. See the Appendix (“Variational Bayes for Markov Jump processes”) for

more details.

Explicitly, for model (1) the parameters y
0
¼ ðrEM;CEM

Þmaximising E½log pxðxjy
0
Þ�, where

the expectation is taken over the posterior x� π(x|y, θ)dx as approximated by Algorithm 3, is

r0
EM
¼

E½ jxj �
E½
R
BðxsÞds�

and C0
EM
¼

E½ jxj �
E½
Pjxj

j¼1

R tj
nj
buðxsjÞ�

; ð14Þ

where θ = (ρ, C) is the vector of current parameter estimates. Note that C0
EM

in (14) is constant

in evolutionary time. In practice we maximize (1) with respect to piecewise constant functions

C0
EM
ðtÞ, which yields

C0
EM
ðtÞ ¼

E½ jxjn;t �
E½
Pjxj

j¼1

R

u2½nj;tjÞ\½n;tÞ
buðxsj

Þdu� ð15Þ

for t 2 [ν, τ), where |x|ν,τ denotes the number of coalescent events in x that occur in the epoch

[ν, τ). Similarly, a Variational Bayes inference procedure uses

r0
VB
� Gðar þ E½ jxj �; br þ E½

R
BðxsÞds�Þ ð16Þ

C0
VB
� GðaC þ E½ jxj �; bC þ E½

Pjxj
j¼1

R tj
nj
buðxsjÞ�Þ ð17Þ

where expectations are taken over x�
R
π(x|y, θ)p(θ)dθ, where p(θ) is the posterior parameter

distribution (16 and 17) of the previous iteration, and αρ, βρ, αC, βC parameterize the prior dis-

tributions ρ� Γ(αρ, βρ) and C� Γ(αC, βC).
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Results

Simulation study

We implemented the model and algorithm above in a Python/C++ program SMCSMC
(Sequential Monte Carlo for the Sequentially Markovian Coalescent) and assessed it on simu-

lated and real data.

To investigate the effect of the lookahead particle filter, we simulated four 50 megabase

(Mb) diploid genomes under a constant population-size model (Ne = 10, 000, μ = 2.5 × 10−8

and ρ = 10−8, both per generation and per site, generation time g = 30 years). We inferred pop-

ulation sizes Ne through evolutionary time, defined as the inverse of twice the instantaneous

coalescent rate, as a piecewise constant function across 9 epochs (with boundaries at 400, 800,

1200, 2k, 4k, 8k, 20k, 40k and 60k generations) using particle filters Algorithms 2 and 3, as well

as a recombination rate, which was taken to be constant through evolutionary time (and along

the genome). Although recombination rate can be inferred, we here focus on the accuracy of

the inferred Ne through evolutionary time. Observations are often available as unphased geno-

types, and we assessed both algorithms using phased and unphased data, using the same simu-

lations for both. Experiments were run for 15 EM iterations and repeated 15 times (Fig 2a).

On phased data (Fig 2a, top rows), Ne values inferred without lookahead show a strong pos-

itive bias in recent epochs, corresponding to a negative bias in the inferred coalescence rate.

Increasing the number of particles reduces this bias somewhat. By contrast, the lookahead fil-

ter shows no discernable bias on these data, even for as little as 1, 000 particles. On unphased

data (Fig 2a, bottom rows), the default particle filter continues to work reasonably well; in fact

the bias appears somewhat reduced compared to phased data analyses, presumably because

integrating over the phase makes the likelihood surface smoother, reducing particle degener-

acy. By contrast, the lookahead particle filter shows an increased bias on these data compared

to the default implementation. This is presumably because of the reliance of the lookahead

likelihood on the distance to the next singleton; this statistic is much less informative for

Fig 2. Accuracy of population size inferences in simulated data. Shown are true population sizes (black) and median inferred population sizes across 15 independent

runs (blue); shaded areas denote quartiles and full extent. a Impact of lookahead, phasing and number of particles on the bias in population size estimates for recent

epochs, for data simulated under a constant population size model. b Inference in the “zigzag” model on phased data using lookahead and 30, 000 particles, comparing

inference using stochastic Expectation Maximization (SEM) and Variational Bayes (VB).

https://doi.org/10.1371/journal.pone.0247647.g002
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unphased data, making the lookahead procedure less effective, and even counterproductive for

early epochs.

We next investigated the impact of using Variational Bayes instead of stochastic EM, using

the lookahead filter on phased data. We simulated four 2 gigabase (Gb) diploid genomes using

human-like evolutionary parameters (μ = 1.25 × 10−8, ρ = 3.5 × 10−8, g = 29, Ne(0) = 14312)

under a “zigzag” model similar to that used in [16] and [18], and inferred Ne across 37

approximately exponentially spaced epochs; see Appendix (“Implementation Details”). Both

approaches give accurate Ne inferences from 2, 000 years up to 1 million years ago (Mya);

other experiments indicate that population sizes can be inferred up to 10 Mya (but see Fig 3b).

The upwards bias in the most recent epochs is reduced considerably by the Variational Bayes

approach compared to SEM (Fig 2b), although some bias remains.

Inference on human subpopulations

We applied SMCSMC to three sets of four phased diploid samples, of Northern European

(CEU), Han Chinese (CHB) and Yoruban (YRI) ancestry respectively, from the 1000 Genomes

project. For comparison we also ran msmc [16] inferring on the same data, and on subsets of 2

and 1 diploid samples. Inferences show good agreement where msmchas power (Fig 3). Since

the inferences show some variation particularly in more recent epochs, we simulated data

under a demographic model closely resembling CEU and YRI ancestry as inferred by multiple

methods (see Appendix, “Implementation Details”), and we inferred population sizes using

SMCSMC and msmc as before. This confirmed the accuracy of SMCSMC inferences from about

5,000 to 5 million years ago, while inferences in more recent epochs show more variability. A

representative comparison of run times is provided in Table 1.

Discussion

Motivated by the problem of recovering a population’s demographic history from the genomes

of a sample of its individuals [1], we have introduced a continuous-locus approximation of the

Fig 3. Population size inferences by SMCSMC on four diploid samples. Left, three human populations (CEU, CHB, YRI), together

with inferences from msmc using 1, 2 and 4 diploid samples. Right, simulated populations resembling CEU and YRI population

histories. All inferences (SMCSMC, msmc) were run for 20 iterations.

https://doi.org/10.1371/journal.pone.0247647.g003
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CwR model, and developed a particle filter algorithm for continuous-time Markov jump pro-

cesses with a continuous phase space, by evaluating the doubly-continuous process at a suit-

ably chosen set of “waypoints”, and applying a standard particle filter to the resulting discrete-

time continuous-state process. It however proved very challenging to obtain reliable parameter

inferences for our intended application using this approach. To overcome this challenge we

have extended the standard particle filter algorithm in two ways. First, we have generalized the

Auxiliary Particle Filter of Pitt and Shephard [40] from a discrete-time one-step-lookahead

algorithm to a continuous-time unbounded-lookahead method. This helped to address a chal-

lenging feature of the CwR model, namely that recent demographic events induce “sticky”

model states with very long forgetting times. With an appropriate lookahead likelihood func-

tion (and phased genotype data), we showed that the unbounded-lookahead algorithm miti-

gates the bias that is otherwise observed in the inferred parameters associated with these recent

demographic events. Some bias however remained, particularly for very early epochs. We

reduced this remaining bias by a Variational Bayes alternative to stochastic expectation maxi-

mization (SEM), which explicitly models part of the uncertainty in the inferred parameters,

and avoid zero rate estimates which are fixed points for the SEM procedure. The combination

of a continuous-time particle filter, the unbounded-lookahead method, and VB inference,

allowed us to infer demographic parameters from up to four diploid genomes across many

epochs, without making model approximations beyond passing to the continuous-locus limit.

On three sets of four diploid genomes, from individuals of central European, Han Chinese

and Yoruban (Nigeria) ancestry respectively, we obtain inferences of effective population size

over epochs ranging from 5,000 years to 5 million years ago. These inferences agree well with

those made with other methods [14–18], and show higher precision across a wider range of

epochs than was previously achievable by a single method. Despite the improvements from the

unbounded-lookahead particle filter and the Variational Bayes inference procedure, the pro-

posed method still struggles in very recent epochs (more recent than a few thousand years

ago), and haplotype-based methods [e.g., 12] remain more suitable in this regime. In addition,

methods focusing on recent demography benefit from the larger number of recent evolution-

ary event present in larger samples of individuals, and the proposed model will not scale well

to such data, unless model approximations such as those proposed in [18] are used.

A key advantage of particle filters is that they are fundamentally simulation-based. This

allowed us to perform inference under the full CwR model without having to resort to model

approximations, such as requiring coalescences to occur at certain evolutionary times only,

that characterizes most other approaches. The same approach will make it possible to analyze

complex demographic models, as long as forward simulation (along the sequential variable)

is tractable. The proposed particle filter is based on the sequential coalescent simulator

SCRM [45], which already implements complex models of demography that include migra-

tion, population splits and mergers, and admixture events. Although not the focus of this

paper, it should therefore be straightforward to infer the associated model parameters,

Table 1. Runtimes (total CPU time, hours) for analyzing one or two diploid human genomes using msmc (40 EM

iterations), and SMCSMC (15 Variational Bayes iterations). Table lists means ± one standard deviation across 10

independent runs in a high performance compute environment. Note that due to parallel execution of SMCSMC (146

genomic chunks) and msmc (8 cores), wall clock time was considerably less than the total CPU time.

Algorithm 2 haploids 4 haploids

msmc 5.2±0.5 107.3±18.7

SMCSMC 5,000 particles 109.2±5.7 277±15

SMCSMC 10,000 particles 219±11 673±32

https://doi.org/10.1371/journal.pone.0247647.t001
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including directional migration rates. In addition, several aspects of the standard CwR

model are known to be unrealistic. For instance, gene conversions and doublet mutations

are common [56, 57], and background selection profoundly shapes the heterozygosity in

the human genome [58]. These features are absent from current models aimed at inferring

demography, but impact patterns of heterozygosity and may well bias inferences of demogra-

phy if not included in the model. As long as it is possible to include such features into a coa-

lescent simulator, a particle filter can model such effects, reducing the biases otherwise

expected in other parameter due to model misspecification. Because a particle filter produces

an estimate of the likelihood, any improved model fit resulting from adding any of these fea-

tures can in principle be quantified, if these likelihoods can be estimated with sufficiently

small variance. However, even improved models will capture only a fraction of relevant fea-

tures of a population’s evolution, and the inferred effective population sizes will continue to

have a complex relationship with census population due to population substructure, varia-

tion in family size, and many other aspects [59].

A further advantage of a particle filter is that it provides a sample from the posterior distri-

bution of ancestral recombination graphs (ARGs). Such explicit samples simplify the estima-

tion of the age of mutations and recombinations, and explicit identification of sequence tracks

with particular evolutionary histories, for instance tracts arising from admixture by a second-

ary population. In contrast to MCMC-based approaches [13], a particle filter can provide only

one self-consistent sample of an ARG per run. However, for marginal statistics such as the

expected age of a mutation or the expected number of recombinations in a sequence segment,

a particle filter can provide weighted samples from the posterior in a single run.

The algorithm presented here scales in practice to about 4 diploid genomes, but requires

increasingly large numbers of particles as larger numbers of genomes are analyzed jointly.

This is because the space of possible tree topologies increases exponentially with the number

of genomes observed, while the number of informative mutations grows much more slowly,

resulting in increasing uncertainty in the topology given observed mutations. This uncertainty

is further compounded by uncertainty in branch lengths. Nevertheless, the many effectively

independent genealogies underlying even a single genome provide considerable information

about past demographic events [14], and a joint analysis of even modest numbers of genomes

under demographic models involving migration and admixture events enable more complex

demographic scenarios to be investigated. Our results show that particle filters are a viable

approach to demographic inference from whole-genome sequences, and the ability to handle

complex model without having to resort to approximations opens possibilities for further

model improvements, hopefully leading to more insight in our species’ recent demographic

history.

Appendix

Conditional distributions and the Markov property

Here we outline how to define a conditional distribution pð�jGÞ given a distribution π on X
and a conditioning subset G � X of measure 0. Suppose Gt is a family of subsets of X so that

[tGt ¼ X . A particular subset Gt for a fixed τ plays the role of the conditioning event B in the

standard definition P(A|B) = P(A \ B)/P(B). It can be shown that, under some conditions, there

exists an essentially unique family of measures pGt
and a measure μ so that pGt

is concentrated

on Gt, pGt
ðXÞ ¼ 1 for all τ, and Ep½f � ¼

RR
f ðxÞpGt

ðdxÞmðdtÞ for well-behaved functions f [60],

making it possible to define the conditional expectation as Ep½f jG� ¼ EpG
½f � ¼

R
f ðxÞpGðdxÞ:
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Using this, the Markov property of π can be expressed in terms of conditional expectations:

Ep½f ðxtÞjxs1 ¼ t1; . . . ; xsk ¼ tk� ¼ Ep½f ðxtÞjxsk ¼ tk� ð18Þ

for loci s1 < s2 < . . .< sk< t and any well-behaved function f.

Proof of Algorithm 3

The algorithm is proved by induction on j. For j = 0 the loop invariant holds, while for j = K
it implies the output condition. Suppose the loop invariant is true for some j. If ESS< N/2,

assume w.l.o.g. that vðiÞ ¼ vðiÞsj are normalized, let ik be the index of the kth new particle,

v̂ðkÞ ¼ N � 1 and ŵðkÞ ¼ N � 1wðikÞ=vðikÞ be its weights, and write pj ¼ pðX1:sj
jY1:sj

¼ y1:sj
Þ,

~p j ¼ ~psjðX1:sj
jY1:sj

¼ y1:sj
Þ, then

EfvðiÞg½
XN

k¼1

v̂ðkÞf ðXðikÞÞ� ¼
1

N

XN

k¼1

EfvðiÞg½f ðX
ðikÞÞ� ¼

1

N

XN

k¼1

XN

i¼1

vðiÞf ðXðiÞÞ � E~p j ½f ðXÞ�;

and

EfvðiÞg½
XN

k¼1

ŵðkÞf ðXðikÞÞ� ¼
1

N

XN

k¼1

EfvðiÞg½
wðikÞ

vðkÞ
f ðXðikÞÞ� ¼

1

N

XN

k¼1

XN

i¼1

wðiÞf ðXðiÞÞ � Epj ½f ðXÞ�;

so that the loop invariant continues to hold after the optional resampling step.

After sampling xðiÞsj:sjþ1
� xxðXsj :sjþ1

jXsj
¼ xðiÞsj Þ, the particles fðxðiÞ1:sj ;w

ðiÞ
sj
Þg approximate

pðX1:sj
jY ¼ y1:sj

ÞxxðXsj:sjþ1
jXsj
Þ. To make this distribution absolutely continuous w.r.t.

pðX1:sjþ1
;Ysj:sjþ1

jY1:sj
Þ, multiply it with the constant measure lsj :sjþ1

ðysj:sjþ1
Þ; any measure will do

as long as it has a density w.r.t. lsj :sjþ1
and is independent of X. Taking the Radon-Nikodym

derivative of these two distributions gives

dp1:sjþ1ðX1:sþ1;Ysj :sjþ1
jY1:sj
Þ

d½p1:sjðX1:sj
jY1:sj
Þx

sj :sjþ1

x ðXsj:sjþ1
jXsj
Þl

sj:sjþ1ðYsj:sjþ1
Þ�
ðx1:sjþ1

; ysj:sjþ1
Þ

¼
d½p1:sjðX1:sj

jY1:sj
Þp

sj:sjþ1
x ðXsj :sjþ1

jXsj
Þpsj:sjþ1ðYsj :sjþ1

jXsj:sjþ1
Þ�

d½p1:sjðX1:sj
jY1:sj
Þx

sj :sjþ1

x ðXsj:sjþ1
jXsj
Þl

sj:sjþ1ðYsj:sjþ1
Þ�

ðx1:sjþ1
; ysj:sjþ1

Þ

¼
dpx

dxx
ðxsj:sjþ1

jXsj
¼ xsj
Þ
dp
dl
ðysj:sjþ1

jXsj:sjþ1
¼ xsj:sjþ1

Þ

This shows that fwðiÞsjþ1
;XðiÞ1:sjþ1

g form particles approximating p1:sjþ1ðX1:sþ1; ysj:sjþ1
jy1:sj
Þ, and since

pðx1:sjþ1
; ysj:sjþ1

jY1:sj
¼ y1:sj

Þ / pðx1:sjþ1
jY1:sjþ1

¼ y1:sjþ1
Þlsj:sjþ1

ðysj:sjþ1
Þ they also approximate

pðx1:sjþ1
jY1:sjþ1

¼ y1:sjþ1
Þ. The argument showing that ðvðiÞsjþ1

;XðiÞ1:sjþ1
Þ � ~psjðx1:sjþ1

jY¼ y1:LÞ is analo-

gous. This proves the loop invariant for j + 1, and the algorithm.

Particle weight variance

To derive a criterion on the waypoints that limits the effect of weight variance build-up, let

R(s) = f(Xs) be the stochastic variable that measures the instantaneous rate of occurrence of

emission events for a particular (random) particle X, and let WðsÞ ¼W0expð�
R s

0
RðuÞduÞ

be that particle’s time-dependent weight; the dependence on W on X is not written explicitly.

Note that the expression for W(s) is valid as long as no events have occurred in the interval

[0, L). We assume that R(s) is time-homogeneous, that it can be approximated by a Gaussian
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process, that particles are drawn from the equilibrium distribution, and that W0 and R(s)
are independent. Write hV(X)i≔

R
V(X)dπ(X) for the expectation of V over π(X). Writing

RðsÞ ¼ mþ ~RðsÞ where μ = hR(s)i is the mean event rate (which is independent of s by assump-

tion), then

hWðLÞi ¼ hW0e
�

R L

0
mþ~RðsÞds

i ¼ hW0ie� mLh
Yk

i¼1

ð1 � ~RðsiÞDsÞi ð19Þ

as k!1, where Δs = L/k and si = iΔs. The last expectation becomes

h
X1

n¼0

ð� 1Þ
n

Z

0<s1<���<sn<L

~Rðs1Þ � � �
~RðsnÞds1 � � � dsni

¼
X1

n¼0

ð� 1Þ
n

n!

Z L

s1 ;...;sn¼0

h~Rðs1Þ � � �
~RðsnÞids1 � � � dsn

¼
X1

m¼0

1

ð2mÞ!
ð2m � 1Þ!

2m� 1ðm � 1Þ!

Z L

s1 ;s2¼0

Kðs1; s2Þds1ds2

� �m

¼
X1

m¼0

1

2mm!
Cm ¼ e

‘

1

2
C

where in the second equality we used the formula for higher moments of a Gaussian

distribution, K is the covariance function of the Gaussian process ~RðtÞ, and C is the integral
R L
s1 ;s2¼0

Kðs1; s2Þds1ds2. Now define σ2 ≔ K(s, s) and assume that the covariance function satis-

fies 0� K(s1, s2)� σ2, then 0� C� σ2 L2 and

hWi ¼ hW0ie� mLþ
1
2
C � hW0ie� mL; ð20Þ

hW2i ¼ hW2
0
ie� 2mLþC � hW2

0
ie� 2mLþs2L2

; ð21Þ

so that across an interval [0, L) where no events occur,

ESS ¼
ð
PN

i¼1
wðiÞÞ2

PN
i¼1
ðwðiÞÞ2

�
N2hWi2

NhW2i
�

NhW0i
2e� 2mL

hW2
0
ie� 2mLþs2L2

¼ ESS0e
� s2L2

ð22Þ

where ESS0 is the expected sample size at s = 0, and� denotes convergence in distribution as

N!1 as before.

In practice particles will not be drawn from the equilibrium distribution πx(X), but from

the joint distribution on X and Y conditioned on observations y. However, for most likeli-

hoods conditioning will reduce the variance of R as observations tend to constrain the distri-

bution of likely particles, making this a conservative assumption. The other assumption that is

likely not met is that R(t) is a Gaussian process; it is less clear whether making this approxima-

tion will in practice be conservative.

The sequential coalescent with recombination process

In formula (1), if s is a recombination point, xs is the genealogy just left of the recombination

point and includes the infinite branch from the root, so that bu(xs) = 1 for u above the root.

The measure (1) describes the CwR process exactly as long as x encodes both the local gene-

alogy and the non-local branches used by the SCRM algorithm. In practice the SCRM algo-

rithm prunes some of these branches, and we use (1) on the pruned x.

Note that we take the view that the realisation x encodes not only the sequence of genealo-

gies xs but also the number of recombinations |x| (some of which may not change the tree),
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their loci sj ¼ sxj , and the recombination and coalescence times nxj and txj . This information is

also kept in the implementation of the algorithm, and is used to calculate the sufficient statis-

tics required for inference of the coalescence and recombination rates.

Variational Bayes for Markov jump processes

We consider hidden Markov models where the latent variable follows a Markov jump process

over x 2 X , that with respect to a suitable measure dxdy admits a probability density of the

form

pxyðx; yjyÞdxdy ¼ pyðyjxÞ
Y

i

expf� yiBiðxÞgy
jxji
i dxdy: ð23Þ

Here, |x|i is the event count for events of type i in realisation x, and Bi(x) is the total opportu-

nity for events of that type in x. For example, in our case

BR
UðxÞ ¼

Z

s

Z

u2U
buðxsÞduds; BC

UðxÞ ¼
Xjxj

j¼1

Z

u2½nj;tj�\U
buðxsj

Þdu; ð24Þ

and jxjRU ¼ #fj : nj 2 Ug, jxjCU ¼ #fj : tj 2 Ug, for recombinations and coalescence opportuni-

ties and counts occurring in an epoch U� [0,1).

A Variational Bayes approach approximates the true joint posterior density π(x, θ|y)/

πxy(x, y|θ)πθ(θ), where πθ is a prior on the parameters, with a probability density ϕ(x, θ) that is

easier to work with (here the constant of proportionality implied by “/” hides a constant den-

sity λ(y)). Following Hinton and van Camp [61] and MacKay [62], we choose to constrain ϕ
by requiring it to factorize as ϕ(x, θ) = ϕx(x)ϕθ(θ), and we choose to optimize it by minimizing

the Kullback-Leibler divergence KL(ϕ||π), also referred to as the variational free energy [63],

Fð�Þ ¼ �
Z

x

Z

y

�ðx; yÞlog
pðx; yjyÞ
�ðx; yÞ

� �

dydx: ð25Þ

To optimize ϕθ(θ) we write F(ϕ) as a function of ϕθ with ϕx fixed, as

Fð�Þ ¼ �
Z

�xðxÞ�yðyÞ
X

i

jxjilog yi � BiðxÞyi þ log pyðyÞ � log �yðyÞ

( )

dydx þ const ð26Þ

¼

Z

�yðyÞlog
�yðyÞ

pyðyÞ
Q

iy
E�x ½jxji �
i expf� E�x ½BiðxÞ�yig

dyþ const ð27Þ

This is minimized by setting logϕθ(θ) equal to the log of the denominator. We can still choose

the prior πθ(θ); a product of Gamma distributions
Q

iGðai; biÞðyiÞ /
Q

iy
ai � 1

i expf� biyig is

suitable as it is conjugate to the factors appearing in the denominator. The result is that

�yðyÞ ¼
Y

i

Gða0i; b
0

iÞ ð28Þ

with a0i ¼ ai þ E�x ½jxji� and b
0

i ¼ bi þ E�x ½BiðxÞ�. Next, to optimize ϕx(x) we write F(ϕ) as a
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function of ϕx with ϕθ fixed,

Fð�Þ ¼ �
Z

�xðxÞ�yðyÞ
X

i

jxjilog yi � BiðxÞyi þ log pyðyjxÞ � log�xðxÞ

( )

dydx þ const

¼

Z

�xðxÞlog
�xðxÞ

pyðyjxÞ
Q

iexpfjxjiE�y ½log yi� � BiðxÞE�y ½yi�g
dxþ const

Define �y i :¼ E�y ½yi� and y
�

i :¼ expfE�y ½logyi�g, then using properties of the Gamma distribu-

tion we get �y ¼ a0i=b
0

i and y
�

i ¼ expfcða0iÞ � log b0ig where ψ is the digamma function. Again,

F(ϕ) is minimized if the numerator and denominator are proportional, which happens for

�xðxÞ / pyðyjxÞ
Y

i

exp f� �y iBiðxÞg ðy
�

i Þ
jxji / pðxjy; �yÞ

Y

i

y
�

i
�y i

� � jxji
¼ pðxjy; �yÞ

Y

i

Z
jxji
i ð29Þ

where Zi :¼ y
�

i =
�y i ¼ expfcða0iÞg=a

0
i. As given, the algorithms in this paper sample from a dis-

tribution of the form pðxjy; �yÞ, but they can easily be modified to sample from ϕx(x) instead by

including an additional factor ηi in a particle’s weight for every event of type i that occurs.

A lookahead likelihood

Let si denote the distance along the genome to the nearest future singleton in each sequence,

and let ck = (ak, bk) be� n/2 mutually consistent cherries with loci s0k � s00k of their first and last

supporting doubleton. To simplify notation we assume that the current locus is 0 (Fig 1a).

Note that recombinations result in a change of a terminal branch length (TBL) if either the

recombination occurred in the branch itself and the new lineage does not coalesce back into it,

or the recombination occurred outside the branch and the new lineage coalesces into it (Fig

1b). To compute the likelihood that the first singleton in lineage i occurs at locus si, we assume

that all TBLs are equal to li, and that coalescences occur before li. Then, the total rate of events

that change the TBL i is

ri :¼ lir
n � 1

n
þ ðn � 1Þlir

1

n
¼ 2lir

n � 1

n
:

Define μi≔ μli to be the total mutation rate on branch i, and assume that when a TBL changes,

it reverts deterministically to some length l0i. If a terminal branch with length li changes at u to

l0i, which happens with probability e−ρi u ρidu, the likelihood that the first singleton occurs at

distance si is e� miue� m0iðsi � uÞm0idt; where m0i :¼ ml0i. Conversely, if that branch does not change

along [0, si), which happens with probability e� risi , the likelihood is e� misimidt. Combining these

possibilities and marginalizing over u 2 [0, si) gives (using Mathematica to evaluate the inte-

gral)

pð1st singleton in i at sijli; l0iÞ ¼
1

ri þ mi � m
0
i

rim
0

ie
� m0isi þ ðmi � m

0

iÞðri þ miÞe
� ðriþmiÞsi

� �
dt:

In the case that no singleton is observed up until si but data was missing thereafter, the same

probability densities apply except for the factors μi and m0i in the likelihood, so that

pðno singleton in i until sijli; l0iÞ ¼
1

ri þ mi � m
0
i

rie
� m0isi þ ðmi � m

0

iÞe
� ðriþmiÞsi

� �
dt: ð38Þ

We account for the uncertainty in l0i by marginalizing over the empirical distribution of TBLs

for sequence i.
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To approximate the likelihood of the doubleton data, note that a node c with precisely two

descendants (a, b) (a “cherry”) at height l changes if a recombination occurs in either branch a
or b and the new lineage coalesces out, or a recombination occurs outside of a and b and coa-

lesces into either (Fig 1b). Again assuming that all TBLs are l and coalescences occur before l,
the total rate of change is 2lr n� 2

n þ ðn � 2Þlr 2

n ¼ 4lr n� 2

n :¼ rC. When a cherry changes, we

assume that the new cherry is drawn from the equilibrium distribution. To calculate the pro-

bablity of observing c = (a, b) at equilibrium, assume that a tree supports 1� k� n/2 cherries.

The branches of c are among the 2k branches subtended by the tree’s k cherries with probabil-

ity 2k
n

2k� 1

n� 1
, and a is paired with b with probability 1

2k� 1
. Since k has mean n/3 if n� 3 [64], the

probability of observing (a, b) at equilibrium is 2

3ðn� 1Þ
. We approximate the likelihood of a dou-

bleton by 0 if the c is not in the tree, and by 1 if it is. Then, the likelihood of observing ck = (ak,
bk) at the last known locus s00k conditional on the tree currently containing ck is

pðak; bk; s0k; s
00
k jðak; bk; lÞ 2 tÞ ¼ e� rCs00k þ

2

3ðn � 1Þ
ð1 � e� rCs00k Þ; ð30Þ

where (ak, bk;l) 2 τ expresses that τ contains cherry ck = (ak, bk) at height l. Now suppose ck =2 τ
and let�l be the average TBL in τ. Under similar assumptions, cherries are created at a rate

ðn � 1Þr�l and assuming that new cherries are drawn from the equilibrium distribution, the

likelihood of observing ck at the first known locus s0k is

pðak; bk; s0k; s
00
k j

�l; ðak; bkÞ=2tÞ ¼
2

3ðn � 1Þ
ð1 � e� r0Cs0kÞ; ð31Þ

where r0C ¼ ðn � 1Þ�lr is the effective rate of recombinations that potentially result in the crea-

tion of ck. Note that (30 and 31) are likelihoods for τ supporting ck at the given locus, rather

than for a doubleton mutation actually occurring.

These likelihoods show good performance, but result in some negative bias in inferred pop-

ulation size for recent epochs. We traced this to the lack of correlation between li and l0i, requir-

ing a single very recent coalescence to explain a long segment devoid of singletons, rather than

allowing for the possibility of several correlated coalescences each in slightly earlier epochs. To

model correlations, we averaged the likelihood above over ρ0 = ρ and ρ0 = ρ/2 each weighted

with probability 1/2. This effectively removed the negative bias.

To deal with missing data, we reduce μ proportionally to the missing segment length and

the number of lineages missing. For unphased mutation data, singletons and doubletons can

still be extracted, and are greedily assigned to compatible lineages. The likelihoods are also

similarly calculated, by greedily assigning cherries to observed doubletons. Unphased single-

tons can result from mutations on either of the individual’s alleles; the likelihood term uses the

sum of the two branch lengths for that individual to calculate the expected rate of unphased

singletons.

Implementation details

While x1:s refers to the entire sequence of genealogies along the sequence segment 1: s, storing

this sequence would require too much memory. Instead we only store the most recent geneal-

ogy xs (including non-local branches where appropriate), which is sufficient to simulate subse-

quent genealogies using the SCRM algorithm. To implement epoch-dependent lags when

harvesting sufficient statistics, we do store records of the events (recombinations, coalescences

and migrations) that changed x along the sequence, as well as the associated opportunities, for

each particle and each epoch; this implicitly stores the full ARG. To avoid making copies of

PLOS ONE Demographic inference using a particle filter

PLOS ONE | https://doi.org/10.1371/journal.pone.0247647 March 2, 2021 20 / 24

https://doi.org/10.1371/journal.pone.0247647


potentially many event records when particles are duplicated at resampling, these are stored in

a linked list, and are shared by duplicated particles where appropriate, forming a tree structure.

Records are removed dynamically after contributing to the summary statistics, and when parti-

cles fail to be resampled, ensuring that memory usage is bounded.

The likelihood calculations involve many evaluations of the exponential function, often for

small exponents. We use the continued-fraction approximation ex � 1þ 2x= 2 � xþ 1

6
x2

� �

for |x|< 0.03, with relative error bounded by 10−10 [65].

Table 2 shows the commands to generate the data for the three simulation experiments.

Epoch boundaries for Ne inference in generations for the zigzag experiment were defined by

taking interval boundaries −14312log(1−i/256)/2, i = 0, . . ., 255, merging intervals according

to the pattern 4 � 1 + 7 � 2 + 8 � 5 + 7 � 13 + 1 � 15 + 8 � 11 + 1 � 3 (37 epochs; see [14]). For the

real data experiments, epochs boundaries for the 32 epochs were logarithmically spaced from

133 to 133016 generations ago, using generation time g = 29 years, without merging intervals

(command line option -P 133 133016 31�1).
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