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Abstract

Background: The threespot damselfish, Stegastes planifrons (Cuvier), is important in mediating interactions among corals,
algae, and herbivores on Caribbean coral reefs. The preferred microhabitat of S. planifrons is thickets of the branching
staghorn coral Acropora cervicornis. Within the past few decades, mass mortality of A. cervicornis from white-band disease
and other factors has rendered this coral a minor ecological component throughout most of its range.

Methodology/Principal Findings: Survey data from Jamaica (heavily fished), Florida and the Bahamas (moderately fished),
the Cayman Islands (lightly to moderately fished), and Belize (lightly fished) indicate that distributional patterns of S.
planifrons are positively correlated with live coral cover and topographic complexity. Our results suggest that species-
specific microhabitat preferences and the availability of topographically complex microhabitats are more important than
the abundance of predatory fish as proximal controls on S. planifrons distribution and abundance.

Conclusions/Significance: The loss of the primary microhabitat of S. planifrons—A. cervicornis—has forced a shift in the
distribution and recruitment of these damselfish onto remaining high-structured corals, especially the Montastraea annularis
species complex, affecting coral mortality and algal dynamics throughout the Caribbean.
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Introduction

Caribbean coral reefs have changed dramatically over the past

few decades [1]. Until the late 1970s, Caribbean reefs displayed a

generalized zonation dominated by three common taxa of

scleractinian corals, which were the primary builders of reef

framework: the branching elkorn coral Acropora palmata, the

branching staghorn coral A. cervicornis, and the massive corals of

the Montastraea annularis species complex [2,3]. Since that time

coral cover has declined [4], and the pattern of zonation has

essentially vanished [5]. The most conspicuous change has been

the near-elimination of acroporid corals across the entire region

[6]. Several factors have been responsible for the mass mortality of

Acropora, with white-band disease, predation, and hurricanes

ranking as the most significant [1,6]. Corals of the M. annularis

complex have also declined on some reefs [7,8], but the causes

have been different than for the Acropora species [9]. In this paper,

we examine the effects of these shifts in coral assemblage structure

on microhabitat utilization by the ecologically significant threespot

damselfish, Stegastes planifrons (Cuvier). This species of herbivorous

fish is important in reef communities of the Caribbean, because it

mediates interactions among corals, algae, and other herbivores

[10].

Although S. planifrons are capable of occupying a number of

microhabitats [10–14], they prefer thickets of A. cervicornis

[10,15,16]. Before 1980, S. planifrons were common residents of

shallow and intermediate depths (,30 m) on fore-reef terraces

throughout the Caribbean [10]. Because suitable microhabitat was

abundant on most Caribbean reefs at the time, it was thought that

S. planifrons were not at carrying capacity and were, therefore,

recruitment-limited [11]. This view may be changing, as live coral

cover, especially that of the Acropora species, has plummeted in

recent decades, greatly reducing the overall habitat available for S.

planifrons.

Clarke [17] noted that in the Bahamas S. planifrons were 20 times

more abundant in structurally complex coral thickets, especially

thickets of A. cervicornis, than in any other microhabitat type. He

suggested that S. planifrons utilized structurally complex microhab-

itats generated by A. cervicornis to avoid predation. Williams [15]

indicated that predation on S. planifrons occupying A. cervicornis

patches was very low. In the absence of A. cervicornis threespots

exhibited a preference for structurally complex massive corals
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[12,18], which presumably also provided some refuge from

predators. These secondary, suboptimal microhabitats offered

fewer crevices and hiding areas than A. cervicornis, and as a result

resident damselfish suffered higher mortality [16,19]. Once

territories were established on massive corals, however, S. planifrons

showed strong site fidelity and long-term survivorship [20–23].

S. planifrons are highly territorial and actively kill scleractinian

corals by biting the living tissue and cultivating dense algal lawns

on the coral skeletons [10]. Many reef fishes tend algal gardens,

but S. planifrons are the only Caribbean damselfish so strongly tied

to stands of living coral (Figure 1), aggressively defending and

guarding their territories against other herbivores. In this respect

they represent the extreme expression of a behavior manifested in

a host of reef-dwelling pomacentrid species in the genera Stegastes,

Dischistodus, Hemiglyphidodon, Plectroglyphidodon, Pomacentrus, Micro-

spathodon, and Chrysiptera [24]. Although S. planifrons do not appear

to kill corals for direct food value [19], the fish clearly benefit from

causing coral mortality [10,25].

Historical Observations
In the 1970s, prior to the acroporid die-off, Kaufman [10] noted

that up to 40% of the surface of the fore-reef terrace at Discovery

Bay, Jamaica was covered by algal gardens of S. planifrons. At any

given time more than 20% of the reef surface contained living

coral under attack by S. planifrons [26]. Because the life-history

strategy of M. annularis complex includes slower growth and a

more massive skeletal structure than Acropora spp., the effects of S.

planifrons gardens on knobs and pillars of living M. annularis

complex are more devastating (Figure 1); Kaufman [10] suggested

that gardening by S. planifrons could actually increase the spatial

coverage of healthy stands of A. cervicornis by dampening

competition from massive corals and by promoting branch

fragmentation. Thresher [27] likewise suggested that the activity

of S. planifrons permitted A. cervicornis to dominate, because the

branching corals recovered rapidly from their injuries while more

massive corals did not. Wellington [28] noted a similar

relationship in the eastern Pacific, where the activity of the

damselfish S. acapulcoensis facilitated the establishment of mono-

specific stands of branching pocilloporid corals at the expense of

massive pavonid colonies.

In 1980, Hurricane Allen struck the north coast of Jamaica,

drastically altering reef community structure by breaking and

killing most of the branching corals [29]. S. planifrons, their

territories, and the supporting thickets of A. cervicornis were almost

entirely eliminated to a depth of ,12 m on the fore reef at

Discovery Bay [26]. After the storm, the density of S. planifrons

increased in deeper water as the fish relocated and recruited to

areas that were still relatively coral-rich. Immigration of mature S.

planifrons into deeper water was reflected in patterns of coral

mortality and microhabitat utilization [26]. S. planifrons that

recruited to deeper water after the storm generally did not return

to shallow water, a direct consequence of the disappearance of

physical structure caused by the loss of the branching acroporids.

New S. planifrons territories established on surviving A. cervicornis

colonies in shallow water caused significant secondary mortality of

the corals [30]. Knowlton et al. [30] noted that when A. cervicornis

was abundant, predators such as S. planifrons generally did not have

a detrimental effect; however, when A. cervicornis was rare,

predation effects could devastate the surviving colonies. Roberts

[31] suggested that the continuing negative effect of S. planifrons on

remnant colonies of A. cervicornis may be keeping the coral rare,

threatening the long-term prospects for its persistence regionally.

More than 90% of large, robust colonies of the M. annularis

complex survived Hurricane Allen on the fore reef at Discovery

Figure 1. A threespot damselfish, Stegastes planifrons, and its territory on a colony of Monastraea faveolata. Note the bite-induced lesions
of living coral tissue along the margin of the territory. From Carysfort Reef, Florida Keys National Marine Sanctuary; summer 2003; 10 m depth. Photo
by WFP.
doi:10.1371/journal.pone.0010835.g001
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Bay [32]. Columnar growths of Montastraea protruded upward

from fields of broken and flattened A. cervicornis branches, and

many surviving Montastraea colonies were subsequently colonized

by the S. planifrons that had lost their territories in A. cervicornis

thickets (WFP, LK personal observations). This switch caused

significant collateral mortality in the remaining population of M.

annularis complex, as well as subsequent algal overgrowth of the

dead colonies [1]. Liddell et al. [33] were the first to suggest that

the shift in microhabitat use by S. planifrons following the loss of A.

cervicornis might represent an important new source of mortality for

M. annularis complex and ultimately affect the production of reef

framework.

Were the densities of S. planifrons artificially inflated by decades

of overfishing, which released the damselfish from predation? To

answer this question, Kaufman [34,35] sampled fossil A. cervicornis

branches from the Pleistocene Falmouth Formation (,125 ka) at

Rio Bueno, Jamaica. He observed abundant skeletal galls on fossil

branches of A. cervicornis that had resulted from the bites of S.

planifrons, suggesting that high densities of threespot territories have

long been an attribute of Caribbean reef ecology. The discovery of

a living amphipod species found only in S. planifrons algal gardens

on A. cervicornis [36] is further circumstantial evidence that the

relationship between S. planifrons and A. cervicornis is historically

rooted and not a recent artifact of Caribbean reef ecology.

Recent Observations
The recent paucity of A. cervicornis throughout the Caribbean has

apparently caused a shift in S. planifrons from its preferred

microhabitat to secondary microhabitats. S. planifrons are familiar

occupants of any microhabitat that is structurally complex with

abundant vertical fissures. These include columnar morphologies

of the M. annularis complex [14,37,38]. In Florida, Eakin [39]

observed that, in the absence of live branching corals, juvenile S.

planifrons preferentially recruited to living Montastraea colonies.

These observations strongly suggest that M. annularis complex has

now become the primary microhabitat of S. planifrons on fore-reef

terraces throughout the Caribbean.

Reef-fish assemblages have changed concomitantly with coral

assemblages. Predators, especially groupers (Serranidae) and

snappers (Lutjanidae), have declined in recent decades due to

overfishing and habitat loss [40–42]. A number of authors have

asserted a causal chain leading from overfishing, to reduced

densities of predators, to enhanced damselfish densities, to

increased coral mortality, and thence to increased algal cover.

Vicente [43] and Hernandez-Delgado [37], for example, attrib-

uted algal overgrowth of corals in Puerto Rico to overfishing,

which in their view released S. planifrons from predation and

allowed them to kill the corals. Ogden [44], citing results from the

Caribbean Coastal Marine Productivity (CARICOMP) Program,

implicated overfishing as causing enhanced abundance of

damselfishes throughout the region. He suggested that increases

in damselfish densities have overwhelmed the capacity of the

corals to counteract their impacts, resulting in the decline of coral

populations and the smothering of reefscapes with vast algal lawns.

Others have voiced similar opinions in the scientific literature and

the popular news media [45–47].

A major factor confounding the overfishing hypothesis is the loss

of reef fish, including the predators of damselfishes and the

damselfish themselves, caused by mass coral mortality and the

consequent loss of reef structure [48–50]. Although it stands to

reason that fewer predators could result in higher numbers of

algal-gardening damselfish [51] or alterations in territorial

dynamics [52], these expectations are predicated on the

assumption that S. planifrons were/are in fact predator-limited.

An alternative hypothesis is that S. planifrons populations are

limited ultimately by predators but proximally by the availability

of microhabitat: they have evolved to evade predation by

remaining closely associated with appropriate structural refugia.

If this alternative hypothesis is correct, reducing predator

abundance could result in increased survival of non-territorial or

peripheral individuals, but the density of coral-killing algal

gardeners should remain approximately the same over a broad

range of predation intensities. There has never been a formal test

of the hypothesis that the density of territorial S. planifrons is

predator-limited when sufficient preferred habitat is available.

Hypotheses
The null hypothesis is that there is no proximal effect of

piscivorous fishes on the abundance of S. planifrons. If on the other

hand predation by piscivorous fishes controls the abundance and

distribution of S. planifrons, reefs with higher fishing pressure

should have higher densities of S. planifrons than reefs with lower

fishing pressure. Under this scenario S. planifrons territories should

have spread into all available microhabitats on overfished reefs,

causing coral mortality and the massive proliferation of algal

gardens. If microhabitat availability controls the abundance of S.

planifrons, the loss of A. cervicornis should have caused a shift in

microhabitat use without necessarily increasing the overall

densities of these damselfish on overfished reefs. The shift to

secondary, suboptimal microhabitats that were previously devoid

of S. planifrons should also have resulted in coral mortality and

proliferation of algal gardens. A third alternative is the combined

action of the two processes: both predatory release and

microhabitat availability controlling the distribution and abun-

dance of S. planifrons.

Methods

Study Areas
During the period 1998–2001, we compared sites in Jamaica

(heavily fished), Florida and the Bahamas (moderately fished), the

Cayman Islands (lightly to moderately fished), and Belize (lightly

fished) to test the alternative hypotheses (Table 1). We selected

study sites based on the following criteria: (a) sites were chosen

along a gradient of fishing pressure; (b) all sites were located in

fore-reef habitats at 10–15 m depth; (c) all sites were known to

have had abundant stands of A. cervicornis in the recent past; and (d)

A. cervicornis was either rare or absent at each site during the study

period. Differences in fishing pressure were ascertained from the

published literature [40,41,53–57], as well as from interviews with

fisherman, dive operators, reef scientists, and site managers from

these locations.

One to three study sites were established at each survey location. At

each site, six 25-m surveyor’s tapes were laid haphazardly. A diver

swam along each transect, identifying and counting fishes within 1 m

on either side of the tape. Fish species were categorized as: (a) S.

planifrons; (b) pomacentrid species other than S. planifrons; (c)

herbivores other than damselfish; or (d) piscivores. The diver then

swam back over the transect line, recording the sessile organism or

substratum type beneath each 10-cm mark on the tape. Finally, the

diver swam the transect a third time, recording all regular echinoids

within 1 m on either side.

Structural complexity, or topographic heterogeneity, was

measured by conforming a 5-m length of brass chain (links

17 mm long) to the substratum along the central portion of each

25-m tape, beginning 10 m from the start of the transect. An index

of structural complexity was calculated as C = 12d/l, where d is

the horizontal distance covered by the chain when conformed to
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the substratum and l is the length of the chain when fully extended

[58].

Statistical Analysis
We used principal components analysis (PCA) on mean values

from the six 25-m transects at each study site to determine the

proportion of among-site variance in the abundance of S. planifrons

attributable to: (a) the cover of M. annularis complex (which

consisted exclusively of M. annularis sensu stricto and M. faveolata);

(b) the cover of A. cervicornis; (c) the cover of living hard corals other

than M. annularis complex and A. cervicornis (‘other hard corals’); (d)

the structural complexity of the benthos; (e) the water depth; (f) the

abundance of piscivorous fish; (g) the abundance of non-

pomacentrid herbivorous fish (‘other herbivorous fishes’); and (h)

the abundance of pomacentrids other than S. planifrons (‘other

damselfishes’). Regular echinoids were exceedingly rare in the

transects and were not included in the PCA. Significant

eigenvector loadings were identified by performing Pearson

correlation analyses between the original independent variables

and their corresponding eigenvectors for each PC [59].

PCA requires that all samples for each independent variable be

drawn from a normal distribution. To meet this requirement,

point-counts of A. cervicornis were transformed using the function

{Y = 21/x}. The remaining seven variables did not require data

transformation.

We also performed separate linear-regression analyses of S.

planifrons abundance versus: (a) the abundance of piscivores; (b) the

cover of M. annularis complex; (c) the structural complexity of the

substratum; and (d) the total cover of living hard corals (including

M. annularis complex and A. cervicornis). Total hard-coral cover was

calculated as the sum of point-counts for M. annularis complex, A.

cervicornis, and all other species of hard corals. The regressions were

run to determine whether the variables of primary interest had

significant predictive power in explaining the abundance of S.

planifrons among sites. S. planifrons abundance and all independent

variables were log10-transformed prior to regression analysis.

Results

Three principal components (PCs) extracted from the correla-

tion matrix explained 87.3% of the variability among sites

(Figure 2, Table 2). PC1 and PC2 explained 73.4% of the

variability, and PC4 contributed 13.9%. The remaining five PCs

explained 12.7% of the total variance and were not considered

further.

PC1 accounted for 38.9% of the variability in the data set, yielding

significantly negative eigenvector loadings for point-counts of M.

annularis complex, structural complexity, and depth (Table 2). Sites

with lower PC1 scores had higher point-counts of M. annularis

complex, higher structural complexities, and slightly deeper depths.

M. annularis complex was the most abundant coral taxon at each site,

with an overall mean proportional contribution to total living-coral

point-counts of 0.5360.04 SE (range 0.32–0.78).

PC2 accounted for 32.9% of the total variance in the data set

and yielded significantly positive eigenvector loadings for mean

counts of piscivores; non-pomacentrid, other herbivores; other

damselfishes; and point-counts of other corals. Positive eigenvector

loadings were generated for all functional groups of fish, indicating

that piscivores did not have a negative impact on either other

pomacentrids or other herbivorous fishes. Sites with higher PC2

scores exhibited higher abundances of piscivores, other herbivo-

rous fishes, other damselfishes, and other hard corals. PC3

explained 15.8% of the variance in the data set and represented

the abundance of A. cervicornis at each location.

The piscivores detected in the transects at all sites were small to

intermediate in size, at 20–50 cm standard length. Belt transects

are poor estimators of the abundance of large, wide-ranging,

predatory fishes, as compared to smaller, site-attached fishes

[60,61]. We noted the presence/absence of larger piscivores,

including sharks, barracuda, groupers, snappers, and jacks,

adjacent to our transects; at all study sites these fishes were

uncommon to rare and, therefore, assumed not to be of primary

importance to our analysis.We focused on small- to intermediate-

sized piscivores, which included the smaller serranids and

lutjanids, because they are the primary predators of adult and

juvenile S. planifrons [47,62]. These smaller predators could

themselves have been released by the overfishing of larger

predators; thus, fishing pressure could actually be expected to

result in fewer, rather than more, damselfishes. For example,

Stallings [63] found that the harvesting and depletion of Nassau

grouper, Epinephelus striatus, allowed two smaller-bodied, interme-

diate predators (coney and graysby groupers, Cephalopholis fulva and

C. cruentata) to proliferate, which in turn had strong negative effects

on their prey. Our data, however, do not support such a

hypothesis.

Sites with low PC1 loadings—high point-counts of M. annularis

complex, high levels of structural complexity, and deeper depths—

exhibited high densities of S. planifrons; these sites were located in

Belize, the Bahamas, and the Cayman Islands. Sites with high PC1

loadings exhibited low and intermediate densities of S. planifrons;

Table 1. Descriptive information for the ten sites used in the study.

Site Designation Coordinates Sampling Year Depth (m)

Grand Cayman North 19u 23.469 N, 81u 23.039 W 2001 12

Grand Cayman South 19u 15.219 N, 81u 23.039 W 2001 12

Goulding Cay, Bahamas 25u 01.159 N. 77u 34.049 W 1998 12

LTS Reef, Discovery Bay, Jamaica 18u 28.219 N, 77u 24.479 W 1998 10

Pear Tree Bottom, Jamaica 18u 27.809 N, 77u 21.699 W 1998 10

French Reef, Florida Keys 25u 02.069 N, 80u 21.009 W 2000 10

Carysfort Reef, Florida Keys 25u 13.809 N, 80u 12.749 W 2000 10

Key Largo Dry Rocks, Florida Keys 25u 07.459 N, 80u 17.809 W 2000 10

Tobacco Reef, Belize 16u 52.489 N, 88u 03.479 W 2001 12

Carrie Bow Cay, Belize 16u 48.219 N, 88u 04.429 W 2001 15

doi:10.1371/journal.pone.0010835.t001
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these sites were located in Jamaica and the Florida Keys (Figure 2).

Sites exhibiting intermediate densities of S. planifrons, all of which

were located in Florida, exhibited PC1 loadings .1.

Positive PC2 loadings, denoting high abundances of piscivores,

other herbivorous fishes, other damselfishes, other corals, were

associated with intermediate to high abundances of S. planifrons.

We interpret this to mean that the site groupings reflect differences

in overall biotic composition among locations rather than the

impact of one particular PC2 variable on the abundance of S.

planifrons. Thus, counts of S. planifrons did not decline monoton-

ically as abundances of piscivores and other damselfishes increased

but instead tracked the availability of coral-generated habitat

complexity.

In agreement with our interpretation of PC1, regression

analysis did not reveal a significant relationship between the

abundance of S. planifrons and piscivores among our study sites

(r2,0.01; p = 0.435; n = 12; Figure 3A). We did, however, detect a

strong relationship between the abundances of S. planifrons and M.

annularis complex (r2 = 0.71; p,0.001; n = 12; Figure 3B), struc-

tural complexity (r2 = 0.90; p,0.001; n = 12; Figure 3C), and total

coral counts (all hard corals, including M. annularis complex and

A. cervicornis: r2 = 0.68; p,0.001; n = 12; Figure 3D). These

findings are consistent with the high PC1 loadings for each of

these variables and consistent with the fact that M. annularis

complex is both a dominant member of the coral assemblage at

each site and currently the preferred microhabitat of S. planifrons

at these depths.

Discussion

Our data strongly suggest that the availability of appropriate

microhabitat is the primary determinant of the population density

of S. planifrons. The negative correlation between the abundance of

(small- to intermediate-sized) piscivores and the abundance of S.

planifrons, expected under the hypothesis of predatory control, was

negligible and non-significant. The evolution of microhabitat

preference by S. planifrons is likely to have been at least in part a

consequence of predation pressure [64]; however, the survey data

do not support the hypothesis that current densities of piscivorous

fishes determine current densities of S. planifrons, a conclusion

borne out by other studies in Curaçao and the Florida Keys [65].

In a long-term monitoring program in the U.S. Virgin Islands,

smaller serranids and lutjanids increased over an 18-year interval,

while larger piscivores remained rare [66]. Population densities of

S. planifrons increased during the same period. The increase in

small- to intermediate-sized predators, however, should have

resulted in fewer damselfish. Clearly the abundances of piscivores

and S. planifrons were decoupled. Likewise, whether or not fishing

pressure enhanced the abundances of small- to intermediate-sized

piscivores at any of our sites is moot from the standpoint of the

abundance of threespot damselfish.

Figure 2. Scatterplot of site-scores on the first and second principal components. These two axes represent 73.4% of the total variation in
the correlation matrix. Independent variables listed on each axis indicate variables with significant eigenvector loadings. Abbreviations for variables
are listed in Table 2. Mean S. planifrons densities are given for each site (n = 6 transects per site).
doi:10.1371/journal.pone.0010835.g002

Table 2. Eigenvectors and eigenvalues for the principal
component analysis of eight independent variables collected
at the 12 sites.

Original Variables PC1 PC2 PC3

Piscivores (Pisc) 0.230 0.480 20.392

Other Herbivorous Fishes (Herb) 20.346 0.397 20.143

Other Damselfish (OD) 0.055 0.545 20.268

Montastraea annularis (Mont) 20.539 0.057 20.104

Acropora cervicornis (Acrop) 0.057 20.282 20.755

Other Hard Corals (OC) 20.055 20.443 0.404

Structural Complexity (SC) 20.519 0.125 20.092

Depth (Depth) 20.509 20.141 20.034

Eigenvalue (%) 38.9 32.9 15.8

doi:10.1371/journal.pone.0010835.t002
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Williams [67] performed exclusion experiments in Jamaica to

test the effect of predation on adult S. planifrons. She found no

significant change in numbers of S. planifrons in the absence of

predation. Likewise, She noted that when A. cervicornis was

abundant predators did not have a strongly detrimental effect on

S. planifrons populations [15,67]. On the Great Barrier Reef,

artificial reefs constructed from the high-complexity coral

Pocillopora damicornis supported the same numbers of juvenile

damselfish when predators were abundant as when predators were

absent [68].

The highest densities of piscivores and damselfishes other than

S. planifrons were found in the Florida Keys and could have been

related to the local protection afforded no-take reserves. S.

planifrons occurred at intermediate abundances in Florida, despite

the negative effects of predation and competition that might have

been expected (contra 69).

Prior to the demise of the acroporids, Bohnsack [70] tested the

predation hypothesis in the Florida Keys. In contrast to our results,

he found that reefs with high fishing pressure did have significantly

higher numbers of S. planifrons than reference reefs with lower

fishing pressure and higher numbers of piscivores. The results,

however, were confounded by differences in habitat type between

his study reefs: the protected sites with higher numbers of S.

planifrons were dominated by A. cervicornis, whereas the sites with

lower numbers of S. planifrons were dominated by an assemblage of

head corals. Bohnsack [70] recognized this problem and was

careful to note, ‘‘Stating that piscivorous predation is an important

factor controlling community structure of reef fishes based on

present evidence would be premature.’’

Perhaps the most persuasive evidence against monolithic

predator-limitation of S. planifrons is that even on the north and

west coasts of Jamaica, an extreme example of a chronically

overfished situation [71], S. planifrons exhibited high microhabitat

specificity. Population and territory spillage onto hemispheric or

horizontal-foliose corals occurred only where these non-preferred

microhabitats were immediately adjacent to patches of preferred

microhabitat [10,72]. When acroporids virtually disappeared,

threespots moved onto very specific secondary and tertiaty

microhabitats (M. annularis complex and Porites porites; [26]). Where

only low-relief fields of coral rubble remained, the density of adult

S. planifrons was drastically reduced [see also 73]. The greatly

expanded small-coral and coral-rubble microhabitats were heavily

colonized by two other damslefish species that became more

prevalent: Stegastes diencaeus, which is a less active gardener than S.

planifrons, and S. partitus, which is a planktivore and not an algal

gardener (LK personal observation). Gladfelter et al. [74] also

Figure 3. Relationships between key parameters and the abundance of S. planifrons. The abundance of S. planifrons regressed on: (A)
piscivore abundance; (B) proportional cover of the Montastraea annularis species complex; (C) structural complexity; and (D) proportional cover of
total hard corals. The coordinates of each point are the log-transformed means of the transects within a site.
doi:10.1371/journal.pone.0010835.g003
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noted a decrease in numbers of S. planifrons in St. Croix after

Hurricane Hugo as a direct consequence of the physical loss of

microhabitat.

On a regional level, the loss of structural complexity caused by

the Caribbean-wide mass mortality of A. cervicornis in the late 1970s

and 1980s [50] reduced the total amount of shelter available to S.

planifrons. The damselfish relocated or recruited to remaining high-

structured living corals, especially M. annularis complex. S. planifrons

predation on the living coral tissue of these secondary microhab-

itats has been chronic and intense, resulting in extensive coral

mortality and proliferation of algal gardens (Figure 1).

Wellington [75] demonstrated that loss of structurally complex

branching corals from disturbance resulted in the relocation of S.

acapulcoensis to secondary microhabitats, with lethal consequences

for massive corals. Monospecific stands of Pocillopora damicornis, the

microhabitat preferred by the damselfish [28], were killed in the

Gulf of Panama by the 1982–1983 El Niño event. As structural

complexity was reduced by bioerosion in the years following this

disturbance, S. acapulcoensis colonized the massive coral Gardiner-

oseris planulata. Colonies of Gardineroseris that had been monitored

for 14 years were free of S. acapulcoensis before the El Niño event.

These colonies subsequently suffered substantial mortality from S.

acapulcoensis [7,76].

These examples show that when the preferred microhabitats of

territorial damselfish are abundant, there is little collateral

mortality or algal overgrowth on secondary microhabitats. When

the preferred microhabitats are eliminated by mortality of the

engineer species, which is to say branching corals, the impact on

secondary microhabitats can be dramatic and intense. Because

massive corals grow more slowly than branching corals, episodes

of mass mortality of branching corals inhabited by algal gardeners

may leave an enduring imprint on community structure,

continuing long after the branching corals reestablish themselves

and the damselfishes move back into them and away from their

suboptimal microhabitats.

Observations from Pleistocene coral assemblages confirm that S.

planifrons had been abundant and A. cervicornis had been their

preferred microhabitat in the tropical Atlantic for a long time prior

to any human interference [34,35]. Other paleoecological

evidence indicates the recent mass mortality of Caribbean

acroporids to be a novel event in the late Holocene [77]. Although

some populations of Acropora spp. have been extirpated locally, the

two species are surviving regionally and may yet recover to their

former large population sizes [78]. Caribbean-wide regeneration

and recovery of the S. planifrons–Acropora relationship could take

decades or centuries. Locally, however, acroporid restoration

could yield improved survivorship for massive corals by allowing

the S. planifrons to relocate to their preferred microhabitat; this idea

is currently being tested by two of us (LSK and WFP) in the

Florida Keys. In the meantime, further community disintegration

should be expected as S. planifrons continue their turf wars on slow-

growing, long-lived, massive corals.
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